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Abstract

Lineage plasticity has long been documented in both small cell lung cancer (SCLC) and 

neuroblastoma (NBL), two clinically distinct neuroendocrine (NE) cancers. In this study, we 

quantified the NE features of cancer as NE scores and performed a systematic comparison of 

SCLC and NBL. We found NBL and SCLC cell lines have highly similar molecular profiles and 

shared therapeutic sensitivity. In addition, NE heterogeneity was observed at both the inter- and 

intra-cell line levels. Surprisingly, we did not find a significant association between NE scores 

and overall survival in SCLC or NBL. We described many shared and unique NE score-associated 

features between SCLC and NBL, including dysregulation of Myc oncogenes, alterations in 

protein expression, metabolism, drug resistance, and selective gene dependencies.
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Introduction

Small cell lung cancer (SCLC) and neuroblastoma (NBL) are two very different cancer types 

with respect to their etiology, mutation spectrum/load, classification scheme, therapeutic 

strategy, and prognosis. SCLC, accounting for 13% of lung cancers, is predominantly 

found in heavy smokers, with almost ubiquitous co-mutation of RB1 and TP53, and has 

a five-year survival rate of 7% as the disease is highly metastatic. SCLC staging typically 

follows the two-stage classification convention established by the Veterans Affairs Lung 

Study Group (VALSG) in the 1980s. In the United States, two-thirds of SCLC patients 

are diagnosed at the extensive stage, with cancers that have spread beyond the lung and 

nearby lymph nodes to other distant parts of the body. SCLC bears much resemblance 

to pulmonary neuroendocrine cells in their morphology and expression of NE markers 

[1], but studies from genetically engineered mouse models suggest that some SCLC may 

also arise from other lung cell types [2]. NBL, accounting for 6% of childhood cancers 

in the US, is derived from sympathoadrenal progenitor cells within the neural crest[3], 

often develops in and around the adrenal gland, exhibits frequent genetic alterations in 

MYCN or ALK, and has a five-year survival rate of 81%. Despite these differences, both 

SCLC and NBL are neuroendocrine (NE) tumors, and NE markers are routinely used in 

immunohistochemistry (IHC) to facilitate the clinical diagnosis of both cancer types. As 

one of the “small round blue cell tumors” of childhood, undifferentiated NBL also highly 

resembles SCLC histologically.

Interestingly, the ability to transdifferentiate from the NE to non-NE lineage has been 

documented for both SCLC and NBL. Over 35 years ago, “classic“ (NE) and “variant” 

(non-NE) SCLC were reported based on distinct cellular morphologies and biochemical 

properties [4]. In the recent decade, studies have shown that transdifferentiation of SCLC 

gives rise to intratumoral heterogeneity and mediates chemoresistance [5, 6]. More recently, 

it was shown that REST, YAP, and NOTCH mediate NE transition in both SCLC and 

normal lung [7]. For NBL, morphologically distinct cell types from cell lines established 

from the same patient tumor were observed over 50 years ago [8]. Distinct biochemical 

properties and the ability to interconvert have been reported for isogenic cell subclones 

[9]. In two more recent studies, the “sympathetic noradrenergic”(NE) and “neural crest 

cell-like” (non-NE) [10], or “adrenergic” (NE) and “mesenchymal” (non-NE) [11] NBL 

cell states have been shown to exhibit distinct epigenetic and transcriptomic profiles. It has 

also been shown that NOTCH regulates TF networks to drive NE transition in NBL and 

contribute to the development of chemoresistance in NBL[12]. These independent studies 

converged on similar NOTCH-mediated mechanisms in NE lineage switch and suggest 

shared NE-associated properties across different cancer types. However, the extent of such 

similarity is still unclear. In this study, we re-analyzed the molecular and clinical data 

generated from SCLC and NBL cell lines and tumors to compare their associations with NE 

heterogeneity side-by-side, to reveal the concordance and idiosyncrasy in the landscape of 

NE state-associated features in both cancer types.
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Material and Methods

Clustering of cell lines by multiomics, drug sensitivity, and dependency data

For the clustering of cell lines based on RNA-seq data, we first conducted a principal 

component analysis for genes with a standard deviation larger than 0.4. The top ten 

principal components accounted for 41% of the total variance and were used for hierarchical 

clustering. For the clustering of RPPA and metabolomics data, we used all available features 

and did not filter the input features or perform principal component analysis.

Compared to the molecular profiling data, functional screening data tend to be noisier 

due to variations in experimental design or lack of differential sensitivity among the cell 

lines [13]. Therefore, for clustering dependency and drug data, we filter the input drug 

and dependency features by their consistency across multiple datasets. We collected nine 

compound screening datasets and three functional genomics datasets and conducted all 

possible combinations of pairwise correlations within the drug datasets and the dependency 

datasets respectively. For example, for a specific drug profiled by 4 datasets, C(4,2) 

= 6 inter-study pairwise correlation would be available, with each inter-study pairwise 

correlation assessing the measurement consistency for the same set of cell lines in two 

datasets. We then summarized these inter-study pairwise Pearson correlations by meta-

analysis to generate consistency measures for each compound and gene [13]. For the 

clustering analysis in this study, we selected consistent dependency data features with r 

> 0.4, and for drug data, we selected consistent features with multiple comparison-adjusted 

p-values < 0.05. All hierarchical clustering was performed using Ward’s minimum variance 

method.

NE score computation

The original SCLC NE signature based on microarray gene expression data was described 

by Zhang et al. [14]. Here, we used the updated signature generated from RNA-seq 

expression[15]. A quantitative NE score can be generated from an NE signature using 

the formula NE score = (correl NE – correl non-NE)/2, where correl NE (or non-NE) is 

the Pearson correlation between the expression of the 50 genes in the test sample and 

expression/weight of these genes in the NE (or non-NE) cell line group. This score ranges 

from −1 to +1, where a positive score predicts NE and a negative score predicts non-NE cell 

types. The higher the score in absolute value, the better the prediction.

Comparison between bulk RNA-seq and scRNA-seq data

Bulk RNA-seq data (CCLE_depMap_19Q1_TPM.csv) from CCLE and scRNA-seq data 

(GSE157220_CPM_data.txt.gz) [16] downloaded from GEO were used to compute the NE 

score for cell lines as well as single cells within cell lines using the above approach. For the 

scRNA-seq data, the average NE score per cell line was calculated. A total of 191 cell lines 

were shared between the two datasets, including four SCLC and two NBL cell lines. Pearson 

correlation between the bulk RNA-seq NE scores and average scRNA-seq NE scores was 

used as a measure of agreement between the two profiling approaches (Figure 2C).
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Data Availability

Cell line datasets—Copy number, RNA-seq, miRNA, histone PTM, metabolomics, 

and RPPA data were downloaded from DepMap. Compound sensitivity data for “CCLE” 

[17], “CTRP”[18], “GDSC1” and “GDSC2” [19], “PRISM_1st” and “PRISM_2nd” [20], 

and gene dependency data for demeter (RNAi) [21] and achilles [22] (CRISPR) were 

downloaded from DepMap and processed as previously described [13]. The cell line names 

and compound names were unified, and the datasets were processed to ensure that the lower 

value in each dataset always corresponded to a higher sensitivity. The processed data, lists 

of consistent compounds, and dependencies were downloaded from https://lccl.shinyapps.io/

FDCE/. The scRNA-seq data for cell lines were downloaded from the Gene Expression 

Omnibus (GEO) repository GSE157220 [16].

Additional SCLC datasets—The following SCLC transcriptomic datasets “UTSW 

SCLC cell line,” “Drapkin_2018” (PDX) [23], tumor datasets “Rudin_2012” [24], 

“George_2015” [25] , “Jiang_2016” [26], and “Cai_2021” [15] were processed as previously 

described [15]. The processed data are available in our previous publication [15]. SCLC 

scRNA-seq data were downloaded from the HTAN portal [27].

Additional NBL datasets—In addition to the CCLE RNA-seq data, additional 

NBL cell line transcriptomic and associated sample phenotype data were downloaded 

from GEO using R package GEOquery [28] with the following accession numbers: 

GSE28019, GSE89413 [29], and GSE90683 [10]. For NBL patient tumor datasets, we 

included two partially overlapped NBL datasets from Therapeutically Applicable Research 

to Generate Effective Treatments (TARGET) (https://ocg.cancer.gov/programs/target) 

initiative, phs000467 [30]. “TARGET_microarray” was downloaded from the TARGET 

Data Matrix, whereas “TARGET_RNA-seq” was downloaded from the UCSC Toil RNAseq 

Recompute Compendium [31]. Additional NBL tumor datasets were downloaded from GEO 

with the following accession numbers: GSE120572 [32], GSE3446[33], GSE19274[34], 

GSE73517[35], GSE85047[36], GSE62564[37], GSE16476[38], and GSE3960[39].

Results

NBL and SCLC cell lines are molecularly similar

We have previously established an NE score calculation method for SCLC samples based 

on a gene expression signature generated from SCLC cell line transcriptomic data [14, 

15]. This method takes the expression data of 25 NE genes and 25 non-NE genes as 

inputs and assigns a score ranging from −1 (non-NE) to 1 (NE) to each sample. From the 

pan-cancer study cancer cell line encyclopedia (CCLE)/dependency map (DepMap) [40] 

RNA-seq dataset, we averaged the expression of these 50 genes by different cancer lineages 

and performed hierarchical clustering (Figure 1A). Among cancer types in the sub-cluster 

with high expression of NE genes, SCLC and NBL had the highest number of cell lines in 

the CCLE collection. This allowed us to leverage the multi-dimensional profiling data from 

CCLE and DepMap for an in-depth comparison between SCLC and NBL. We computed 

NE scores for the pan-cancer cell lines and clustered the cell lines based on transcriptomic, 

functional proteomic (based on Reverse Phase Protein Arrays, RPPA), metabolomic, gene 
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dependency, and drug sensitivity features (Figures 1B-H). We observed tight clusters of 

SCLC and NBL cell lines with high NE scores in each clustering analysis. These results 

suggest that SCLC and NBL cell lines are highly similar in these molecular aspects.

NE heterogeneity can be observed at inter- and intra-cell line levels for both SCLC and 
NBL

We assessed NE heterogeneity in SCLC and NBL cell lines by ranking the cell lines in the 

CCLE panel based on their NE scores. While most of the SCLC and NBL cell lines had 

positive NE scores and were enriched in the top, a few cell lines had negative NE scores, 

revealing inter-cell line NE heterogeneity (Figure 2A). We also examined the expression 

of SCLC NE score signature genes in SCLC and NBL cell lines. Although the signature 

was established in SCLC cell lines, it was also highly differentially expressed in NBL cell 

lines (Figure 2B). Four key transcription factors (ASCL1, NEUROD1, POU2F3, and YAP1) 

have been proposed to define the four molecular subtypes of SCLC. We described their 

relationship with SCLC NE scores in our previous study [15]. Although these transcription 

factors have not been used to classify NBL samples, when we examined their expression in 

NBL cell lines, we observed a pattern of segregation by NE score similar to SCLC - while 

high-NE-score NBL lines were found to have high expression of ASCL1 or NEUROD1, 

low-NE-score NBL lines had high expression of YAP1. However, no NBL line was found to 

express high levels of POU2F3, a tuft cell regulator [41] (Figure 2B). These results suggest 

that similar transcriptional regulations are involved in driving NE heterogeneity in SCLC 

and NBL cell lines.

To explore NE heterogeneity at the intra-cell line level, we compared scRNA-seq-based 

average NE scores to bulk RNA-seq-based NE scores for 191 cell lines (using scRNA-seq 

data available for a panel of pan-cancer cell lines [16]) and found a strong correlation 

(Figure 2C). We also observed that some SCLC and NBL cell lines had broader NE score 

distributions than others (Figure 2D). Using scRNA-seq data from SCLC patient tumors, 

we further observed the coexistence of high- and low-NE-score SCLC cells within tumors 

that exhibited highly variable NE scores (Figure S1A-C). Similarly, upon examining NE 

and non-NE gene expression across single cells in the SCLC cell line NCI-H1048 and 

NBL cell line SKNAS, we also observed the coexistence of high- and low-NE-score cells 

within the same cell line (Figures 2E-F). Notably, within these cell lines, cells with lower 

NE scores also had higher mesenchymal and IFN-response program scores, as previously 

annotated [16]. Additionally, low-NE-score cells from SCLC cell line NCIH1048 had 

higher epithelial senescence-associated program scores, although this association was not 

statistically significant in NBL cell line SKNAS because NBL is not epithelial (Figure 

S1D). These findings indicate that the lineage heterogeneity observed in patient tumors is 

preserved both among cell lines and within individual cells from the same cell line.

NE scores do not associate with overall survival in SCLC or NBL

Next, we tested whether NE scores were associated with disease outcomes in SCLC 

and NBL. As most patients with SCLC are diagnosed at an extensive stage, surgical 

resection of SCLC primary tumors is rare in practice. A recent study that profiled biopsied 

metastatic SCLC samples found no association between NE score and outcome [42]. We 
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also investigated the prognosis association in a previously published dataset generated from 

81 surgically resected SCLC tumors, of which 30 are stage III-IV samples [25]. We also 

did not find a significant association between the NE scores and overall patient survival 

(Figure 3A). With multiple NBL tumor datasets available, we performed a meta-analysis 

to assess the association between NE scores and overall survival in NBL. We also did not 

observe a consistent and significant result (Figure 3B). In the NBL datasets we investigated, 

the previously reported prognostic factors – age, MYCN amplification, and INSS stage 

4 disease–were consistently associated with worse overall survival (Figure S2A-C), but 

we did not observe a significant difference in NE scores in groups stratified by these 

factors (Figures S2D-F). A small effect size was observed for NE score difference by 

relapse/progression status (Figure S2G); however, when comparing paired naïve and relapse 

samples from the same patient in two independent NBL studies, we did not identify a 

statistically significant difference in NE scores (Figure 3C). These findings suggest NE 

scores are not associated with prognosis in SCLC or NBL.

Myc oncogenes are differentially activated by NE states in SCLC and NBL

As members of the Myc oncogene family (MYC, MYCN, and MYCL) have been implicated 

in SCLC and NBL oncogenesis [43, 44], we attempted to dissect their relationship with 

the NE state. First, we examined copy number alterations of Myc oncogenes (Figure 4A). 

We found that MYC and MYCL were enriched in high-NE-score SCLC lines, whereas 

MYCN amplification was enriched in high-NE-score NBL lines. As MYCL is located on 

chromosome 1p, a frequently deleted region in NBL, MYCL loss appears to be frequent in 

NBL lines (Figure 4A). Examination of the gene expression data showed that the patterns for 

MYCL and MYCN agreed well with the copy number data (Figure 4B). Having made these 

observations in cell lines, we further examined the transcriptomic data from multiple SCLC 

and NBL studies. For SCLC, we included our in-house cell line RNA-seq data (UTSW cell 

lines), PDX dataset (Drapkin_2018), and four tumor datasets (Figures 4C). For NBL, we 

included three more cell line datasets along with the CCLE RNA-seq data (Figures 4D) and 

assembled 11 tumor datasets (Figures 4E). Meta-analyses with these datasets verified that 

the NE score associations with Myc oncogenes were consistent between multiple cell lines 

(Figure 4B) and patient tumor datasets (Figure 4F). Combined analysis of copy number, 

gene expression, and NE scores in the CCLE cell line dataset revealed upregulation of 

MYC expression in the low-NE-score lines without copy number gain, suggesting the 

transcriptional activation of MYC expression in the non-NE state for both SCLC and NBL 

(Figure 4G). We retrieved MYCN amplification status from eight NBL tumor datasets 

and assessed the association between NE score and MYCN expression while controlling 

for MYCN amplification (Figure 4H). Much stronger associations were observed across 

multiple studies in this multivariate linear model (Figure S3), suggesting the transcriptional 

activation of MYCN expression in the NE state NBL tumors. In summary, SCLC and 

NBL exhibit not only differential copy number gains but also differential transcriptional 

regulation for MYC family genes with regard to their NE status, with MYC transcriptionally 

upregulated in the non-NE state, MYCL preferentially amplified in high-NE score SCLC, 

and MYCN preferentially amplified and transcriptionally upregulated in high-NE score 

NBL.
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Consistent proteomic and metabolic changes are associated with NE-to-non-NE transition 
in SCLC and NBL

We performed NE score correlations with 12 sets of data from the CCLE/DepMap studies 

(Tables S1-S12). These include four sets of omics data (miRNA, histone PTM, RPPA, 

and metabolomics), six sets of compound screening data (CCLE, CTRP, GDSC1, GDSC2, 

PRISM_1ST, and PRISM_2nd), and two sets of gene dependency screening data (Demeter 

for RNAi and Achilles for CRISPR). The overall NE score association concordance was 

quite good for the omics datasets (Figure S4).

Upon close examination of the results of the RPPA associations (Figure 5A), we found most 

of the NE-score-associated features identified in SCLC cell lines could also be observed 

in NBL cell lines. Among the exceptions, Rb protein is decreased in the high-NE score 

SCLC, leading to an increase in cyclin E2 but this was not observed in NBL lines (Figure 

5C), which could be explained by the frequent RB1 loss that occurs in SCLC but not 

NBL. Although a previous study suggests RB1 loss is highly enriched in YAPoff small-cell/

neuro/neuroendocrine cancer lineages [45], the absence of RB1 mutation in NBL suggests 

the existence of an Rb-independent mechanism for YAP inactivation in NBL. Interestingly, 

in both SCLC and NBL, CDK-interacting protein/kinase inhibitory protein (CIP/KIP) p21 

is upregulated in the low-NE-score lines whereas another CIP/KIP p27 is downregulated, 

suggesting that the NE state-specific cell cycle regulators are still consistent in these two 

cancer types despite differences in the upstream Rb loss. In the low-NE-score lines of 

both SCLC and NBL, we observed higher levels of receptor tyrosine kinases and their 

phosphorylation (EGFR, EGFR_pY1068, HER2_pY1248, and VEGFR2), higher levels of 

Hippo signaling components (YAP, YAP_pS127, and TAZ), pro-inflammatory proteins (p62, 

NF-kB-p65_pS536, PAI-1, and annexin 1), ribosome biogenesis markers (S6_pS240_S244 

and S6_pS235_S236), and cell adhesion proteins (paxillin and CD49b). In the high-NE 

score lines of both SCLC and NBL, we found higher apoptotic machinery components 

(Smac, Bcl-2, Bim, and Bax), DNA repair proteins (MSH2 and MSH6), translation 

inhibitor 4E-BP1, and microtubule regulator Stathmin. Unique to SCLC, we observed higher 

epithelial junction proteins (Claudin-7 and E-cadherin) in the high-NE-score lines, these 

epithelial markers were however not expressed in the NBL lines (Figure 5A). We also 

examined the metabolomic associations and observed similar consistency between SCLC 

and NBL lines. (Figure 5B) In particular, many cholesteryl esters (CEs) were found to have 

higher levels in the low-NE-score SCLC lines; a weaker but similar trend was observed 

in NBL lines. We also found that both SCLC and NBL low-NE-score cell lines exhibited 

higher levels of citrate, aconitate, and isocitrate, three interconvertible metabolites, through 

the action of aconitase (Figures 5B and D).

Consistent and unique therapeutic vulnerabilities in NE and non-NE subtypes of SCLC and 
NBL

The SCLC vs. NBL concordance for NE score – drug sensitivity associations was poorer 

than the omics data (Figure S4). We have previously demonstrated that drug screening data 

are more consistent for compounds directed against functionally important targets that are 

differentially expressed in a panel of cell lines [13]. For many of the compounds included in 

the screens, their targets may not be functionally important in the small panel of cell lines 
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tested, which may explain the overall lower consistency. We reviewed the results (Tables 

S5-S10) to identify the most consistent associations across the multiple compound screens. 

Nine classes of compounds with different mechanisms of action (MOA) were selected. For 

each MOA class, we compared the NE score associations for different compounds in NBL 

and SCLC (Figure 6A). We also used meta-analysis to generate a summary correlation 

coefficient for each class of compounds from the SCLC and NBL assessments (Figures S5 

and 6B). We found that in both SCLC and NBL, cell lines with higher NE scores were 

more resistant to drugs that target MEK, mTOR, XIAP, LCK, HSP90, and Abl but were 

more sensitive to BCL inhibitors. We also observed that higher NE scores were associated 

with resistance to microtubule inhibitors in SCLC, but not NBL cell lines, whereas higher 

NE scores were associated with resistance to BRD inhibitors in NBL, but not SCLC lines 

(Figure 6). Notably, although we identified differential therapeutic sensitivity within SCLC 

and NBL panels relative to their NE lineage, this does not tell us about the dynamic 

ranges of compound sensitivity in SCLC and NBL. In some cases, the dynamic range of 

compound sensitivity remains different between SCLC and NBL. For example, SCLC cell 

lines are the most resistant to MEK inhibitors, whereas NBL cell lines exhibit intermediate 

sensitivity over a broader range (Figures S6A-C). In other cases, we observed a similar 

overall sensitivity of SCLC and NBL cell lines. For example, both SCLC and NBL cell 

lines were more resistant to the HSP90 inhibitor 17-AAG, but more sensitive to the BCL 

inhibitor ABT-199, compared to the other cancer lineages (Figures S6D-E). In summary, our 

results revealed that the relative differential drug sensitivities associated with NE-to-non-NE 

transdifferentiation in SCLC and NBL were similar.

Identification and comparison of SCLC and NBL-specific gene dependencies

We observed very poor overall concordance between the RNAi and CRISPR dependency 

data for their association with NE scores in SCLC and NBL (Figure S4). We rationalized 

that this is because most genes were not selectively essential in the relatively small panel 

of SCLC or NBL cell lines assessed. Hence, we adopted a set of criteria for selecting cancer-

specific gene dependencies. We looked for genes with RNAi vs. CRISPR gene effect scores 

positively correlated, as an indication of high reproducibility from independent dependency 

screening experiments, as well as negative correlations between RNAi or CRISPR gene 

effect scores and RNA-seq expression data on the premise that genes of selective functional 

importance are more highly expressed in the cells that depend on them, such that these 

cells also have more negative gene effect scores that indicate higher dependence. These 

measures from the SCLC and NBL panels were assembled to prioritize the SCLC-specific 

vulnerabilities (Table S13). Indeed, when we examined these correlations, the known SCLC 

subtype drivers and the most common NBL driver genes all met this set of criteria (Figure 

7A-B). We further closely examined genes with high RNAi vs. CRISPR correlation, and 

high anti-correlations between RNA expression and the gene effect scores as selected 

vulnerabilities (Figure 7C). Among the SCLC-selected vulnerabilities, along with ASCL1, 

we found several other NE lineage transcription factors (SOX11, FOXA2, NKX2–1) were 

more selectively essential for high-NE-score cell lines, whereas several genes involved 

in cell adhesion and motility (VCL, PXN, ACTR3, and RAC1) were found to be more 

selectively essential for low-NE-score cell lines; we also found genes frequently amplified 

in SCLC (IRS2, CCNE1, and NFIB) [46] although these genes do not have gene effect 
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scores significantly correlated with NE scores. Interestingly, among these SCLC-selected 

vulnerabilities, we also identified genes that are well characterized for their roles in NBL, 

such as the ciliary neurotrophic factor CNTF [47] and S-phase kinase-associated protein 

2 (SKP2 [48]. Among the very few vulnerabilities selected from both SCLC and NBL, 

we identified BCL2, a well-characterized gene in both cancer types. Consistent with our 

observation in the therapeutic sensitivity analysis, high-NE-score cell lines from both 

SCLC and NBL were more sensitive to BCL2 depletion (Figures 7D-E). As only nine 

NBL cell lines were included in the RNAi dependency screen, the reliability of our NBL-

selected vulnerabilities might have been undermined by the underpowered input datasets. 

Nevertheless, we were able to identify a few genes known to be important for NBL, such 

as GATA Binding protein 3 GATA3 [49], complement decay-accelerating factor CD55 
[50], Forkhead Box R2 FOXR2 [51], and breast cancer anti-estrogen resistance protein 1 

BCAR1(/p130Cas) [52]. Among these, selective essentiality for GATA3 was only observed 

for high-NE-score NBL cell lines but not SCLC cell lines (Figure 7F-G), whereas BCAR1 
appears to be a shared vulnerability for low-NE-score cell lines in both NBL and SCLC 

(Figures 7H-I). Overall, we observed unique and shared gene dependencies between SCLC 

and NBL cell lines, some of which also exhibited NE/non-NE lineage-specific selectivity.

Validations in additional cancer types

Given the distinct differences in etiology, risk factors, and molecular mechanisms between 

SCLC and NBL, we sought to validate our findings by analyzing cell lines from other cancer 

types. To this end, we identified lineage subtypes with at least two cell lines that exhibited 

positive neuroendocrine (NE) scores based on transcriptomic data (Figure S7A) and selected 

cell lines from medulloblastoma, prostate adenocarcinoma, Ewing sarcoma, and non-small 

cell lung cancer (NSCLC) for further investigation.

We confirmed that the original SCLC NE signature genes were differentially expressed by 

NE subtype in these cell lines (Figure S7B). We also examined the reverse-phase protein 

array (RPPA) and metabolomics features that were associated with NE scores in SCLC, 

finding good agreement with these features in the four additional cancer types (Figure 

S7C-D). Furthermore, we explored the relationship between Myc gene family members’ 

copy number and RNA expression and NE scores in the four cancer types. However, 

we observed no consistent pattern (Figure S7E). Notably, while c-Myc expression was 

anti-correlated with NE scores in SCLC and NBL, we found a strong positive correlation in 

medulloblastoma.

Due to the very limited number of cell lines available for drug sensitivity profiling in 

medulloblastoma, prostate adenocarcinoma, and Ewing sarcoma, we only compared SCLC 

and NSCLC for their NE score-associated drug sensitivity. Our results indicated agreement 

for MEK and BCL inhibitors (Figure S7F). However, this finding is not entirely robust, as 

NSCLC has few NE+ cell lines, and even fewer were profiled for drug sensitivity.

Discussion

Different cancers of the NE lineage have historically been investigated as separate entities, 

owing to their distinct clinical presentations. The common Notch-mediated NE lineage 
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plasticity and the adjacency of SCLC and NBL in cancer cell line clustering by multi-omics 

datasets (Figure 1) prompted us to perform a systematic comparison of these two cancer 

types. In this paper, we identified numerous common molecular associations with NE states 

in both cancer types. Most of the proteomic and metabolic features observed to associate 

with NE states in SCLC could be validated in NBL (Figure 5). NE score-associated 

transcriptomes are also highly similar between SCLC and NBL. We previously reported 

cell-autonomous immune gene repression in SCLC and pulmonary neuroendocrine cells 

in the NE state and transdifferentiation into the non-NE lineage releases the repression 

of immune genes [15]. Recently, similar observations have been reported for NBL [53]. 

Besides immune genes, many other genes also are differentially expressed by NE status 

in both SCLC and NBL. Although our omics analyses in this study do not include large-

scale transcriptomics comparison, this topic is explored in greater depth in a companion 

manuscript [54].

In the cell line cluster generated by RNA-seq, RPPA, metabolomics, drug sensitivity, 

and gene dependency data, we observed NBL and SCLC lines cluster tighter with 

each other in RNA-seq and RPPA data (Figure 1B-H). There may be several potential 

reasons. It is possible that while gene and protein expression patterns are hardwired by 

lineage specificity, the cell metabolism and functional liabilities are subjected to many 

additional feedback regulations. For example, chromosome instability may not be related 

to NE transdifferentiation, but the resulting replication stress could modulate nucleotide 

biosynthesis metabolism [55] and alter a cell’s response to DNA damaging drugs. Another 

contributing factor may be the insufficient coverage of metabolome and the drug targets of 

the drug screening panels may not adequately capture the functions differentially regulated 

by NE transdifferentiation. It is also worth noting that drug and gene dependency datasets 

are generally noisier than molecular profiling data (4), which may explain their poor NE 

score correlation agreement between SCLC and NBL (Figure S4), as well as their less robust 

clustering of the SCLC and NBL cell lines.

Our investigation of Myc family members in Figure 4 revealed that MYCN amplification 

is enriched in high-NE score NBL cell lines, MYCL amplification is enriched in high-NE 

score SCLC cell lines, whereas increased MYC gene expression is observed in low NE 

score cell lines and tumor samples of both SCLC and NBL. Interestingly, MYCN has been 

shown to drive NE prostate cancer initiation [56], as it can epigenetically activate neural 

lineage gene expression in prostate cancer [57]. A similar mechanism may also apply to 

neuroblastoma, where the dependence on MYCN to epigenetically sustain NE lineage could 

explain the high MYCN levels observed in samples with high NE scores. On the other hand, 

in a SCLC mouse model, it has been shown that c-Myc can activate Notch to drive the 

loss of NE fate [58]. Upon c-Myc activation, SCLC cells undergo a transition from Ascl1-

positive state to Neurod1-positive state [59], and eventually to Yap1-positive state [58]. In 

another mouse model of SCLC, it has been shown that loss of Ascl1 can revert SCLC to 

a more neural crest like fate [60]. In NBL, while the ASCL1-high adrenergic-type (NE) 

cells are committed to the adrenergic lineage, the ASCL1-low mesenchymal-type (non-NE) 

neuroblastoma cells are also known to resemble neural crest derived precursor cells [12]. 

Therefore, the interplay between Myc family members, ASCL1, Notch signaling, and other 

factors in regulating NE plasticity in cancer may be reflecting their roles in driving cell 
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fate towards NE or non-NE lineage during normal tissue development. However, whether 

these findings can be generalized to other cancer types remained to be verified. As shown in 

Figure S7E, some medulloblastoma cell lines with high MYC expression still exhibit high 

NE scores, indicating that c-Myc activation does not always result in the loss of NE fate. 

Additionally, loss of NE fate may occur upon Notch activation regardless of c-Myc status[7]. 

Furthermore, it is important to note that different types of cancer may involve distinct factors 

in the regulation of NE transdifferentiation. For example, NE prostate cancer driven by 

MYCN is highly dependent on Rb deletion [61], while high MYCN expression in NBL does 

not coincide with Rb deletion. Therefore, the specific factors that collaborate to regulate NE 

fate in different cancer types may impact the generalizability of MYC-dependent NE fate 

modulation. Further research is needed to fully understand the role of Myc genes and others 

in the complex regulation of NE transdifferentiation in different types of cancer.

Our comparison of SCLC and NBL therapeutic vulnerabilities revealed similar NE score 

associations for several classes of compounds with shared MOA. Interestingly, individual 

studies in SCLC or NBL have also reported many of these associations, such as MEK 

inhibitors for NBL [62], HSP90 inhibitors for SCLC [63] and NBL [64], and BCL2 

inhibitors for SCLC [65] and NBL [66]. We also identified cancer-unique vulnerabilities 

that have been previously reported, such as BRD inhibitors and GATA3 essentiality for 

NBL [67, 68]. Our findings suggest that NE plasticity may serve as a venue for therapy 

resistance in both SCLC and NBL for such drugs, as long-term monotherapy targeting 

cells of one lineage may create a selective pressure that shifts the population towards the 

other lineage. Importantly, our systematic investigation has mapped out the lineage-specific 

vulnerabilities in the NE and non-NE states. Coupled with our observation that high- and 

low- NE-score cells can co-exist within the same SCLC or NBL cell line (Figure 2), it would 

be interesting for future work to devise combinatorial therapies with drugs that target both 

NE and non-NE states and compare the efficacy to monotherapy using cell lines or cell 

line-derived xenografts as preclinical models. Although we did not experimentally validate 

the NE lineage-specific therapeutic vulnerabilities identified in this study, we have used five 

compound screening datasets and two gene essentiality screening datasets to choose features 

based on agreement across multiple datasets to maximize result reliability. Therefore, we 

believe that the generated results are credible and offer valuable insights for future work.

Compared to the omics analyses, relatively fewer similarities were observed at the functional 

liability levels. Several reasons might explain this discrepancy. First, functional data is much 

noisier than -omics data [13]. Second, fewer SCLC and NBL cell lines were included in the 

functional screening datasets and this compromised the statistical power for target discovery 

(Figure S4). As our concordance-based approach requires examining data from common 

cell lines between two datasets, this further reduces the available sample size for analysis. 

Lastly, the unique vulnerabilities for SCLC and NBL may stem from cancer drivers that act 

orthogonally to NE status. One such example is NFIB, which has been characterized as a 

metastatic promoter in SCLC [69].

In summary, our study provides a comprehensive molecular reference for features and 

vulnerabilities associated with NE-to-non-NE lineage transitions in SCLC and NBL. We 

also identified unique features that require further investigation in the context of each cancer 

Cai et al. Page 11

Mol Cancer Res. Author manuscript; available in PMC 2024 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



type. While our focus was on SCLC and NBL, which are known for their NE-to-non-NE 

transitions, we discovered that many molecular features associated with NE scores in SCLC 

are also relevant to other cancers, such as prostate cancer and NSCLC, which exhibit 

non-NE to NE transitions to develop resistance to therapy (see Figure S7). Overall, our 

findings can guide the development of combinatorial therapies targeting lineage plasticity in 

SCLC, NBL, and other cancers that display NE heterogeneity.”

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Implications

Our work establishes a reference for molecular changes and vulnerabilities associated 

with NE to non-NE transdifferentiation through mutual validation of SCLC and NBL 

samples.
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Figure 1. The molecular similarity between NBL and SCLC
A. SCLC NE signature gene expression across different cancer lineages. The expression of 

NE (left half) and non-NE (right half) genes were averaged by cancer lineages and plotted 

as a heatmap. The number of cell lines per lineage are visualized as bars plotted right to 

the heatmap. Note that SCLC and NBL are the two cancer types with the highest number 

of cell lines in the cluster with high expression of NE genes. B-H, hierarchical clustering of 

cell lines by omics and functional screening datasets. 1165 cancer cell lines by expression 

of 19159 genes (B), 897 lines by 214 RPPA features (C), 926 lines by 225 metabolites 
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(D), 688 lines by CRISPR effect score of 509 genes (E), 648 lines by RNAi effect score 

of 375 genes (F), 624 lines by 208 compounds from GDSC (G), and 794 lines by 168 

compounds from CTRP (H). Note the clustering for RNA-seq data was based on the top 

10 principal components, RPPA and metabolomics clusterings were based on all available 

features; dependency and drug clusterings were based on selected consistent features as 

previously summarized. Each leaf on the dendrogram represents a cell line. The inner rim 

right outside the dendrogram signifies the cancer lineage and the outer rim indicates the NE 

score of the cell line.
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Figure 2. Inter- and intra- cell line NE heterogeneity
A. Inter-cell line NE heterogeneity. NE scores for CCLE pan-cancer cell lines were ranked 

from high to low. SCLC and NBL lines were highlighted by colors. Although most of the 

SCLC and NBL lines have high NE scores, a few of them also have low NE scores. B. 

Consistent gene expression pattern for SCLC NE signature genes observed for SCLC and 

NBL cell lines. Cell lines are in columns. Red/blue column left to the heatmap annotates 

the correlation between the gene expression and NE score; the expression of SCLC driver 

transcription factors (TFs) and NE scores was annotated above the heatmap. SCLC lines 
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were further classified into four transcription factor (TF) classes. C. Average NE scores 

from scRNA-seq data align well with NE scores from bulk RNA-seq data for pan-cancer 

cell lines. D. Distribution of NE scores for lung cancer and neuroblastoma cell lines based 

scRNA-seq data. E-F. Intra-cell line NE heterogeneity. High- and low- NE score cells are 

found to coexist within the same SCLC cell line NCI-H1048 (E) or NBL cell line SKNAS 

(F). Single cells are in columns. Due to the high dropout rate of scRNA-seq data, only the 

top abundantly expressed genes are visualized.
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Figure 3. NE score is not associated with overall survival in SCLC or NBL
A. Survival association analysis for SCLC based on 79 patients from the George_2015 

study. NE score is not significantly associated with overall survival in univariate Cox 

regression or a multivariate model controlling for Sex and TNM stage. B. Meta-analysis for 

NBL based on seven studies and 1,531 patients. The result is also not statistically significant 

although significant results could be observed for individual studies, the trend was different. 

C. NE scores are not significantly altered in NBL relapsed samples. Paired samples from the 

same patients in two independent studies were compared.
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Figure 4. NE score association with members of the Myc oncogene family in SCLC and NBL
A-B. Copy number (A) and RNA expression (B) of Myc family genes in SCLC and NBL 

cell lines. Note that although MYC amplification was higher in the high-NE-score SCLC 

cell lines, its gene expression was higher in the low-NE-score cell lines for both SCLC 

and NBL lines. Frequent MYCL loss was found in NBL because MYCL is located in a 

frequently deleted region (chromosome 1p) in NBL. C. NE score vs. Myc gene member 

expression in SCLC studies. “UTSW cell line” is a cell line dataset; “Drapkin_2018” 

is a patient-derived xenograft dataset; “Rudin_2012”, “George_2015”, “Jiang_2016” and 

“Cai_2021” are all patient tumor datasets. D-E. NE score vs. Myc gene member expression 
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in NBL cell line datasets (D) and tumor datasets (E). Note that some of the same cell 

lines were profiled in multiple studies. F. Forest plots visualizing meta-analysis of NE score 

association with Myc family genes. MYC expression is consistently associated with lower 

NE scores in SCLC and NBL samples (left). MYCL expression positively correlates with 

NE scores in SCLC but not NBL samples (middle). MYCN expression positively correlates 

with NE scores in NBL but not SCLC samples. G. Relationship between MYC copy number 

and gene expression in NBL and SCLC cell lines. Note that MYC amplification is only 

observed in SCLC cell lines. H. MYCN gene expression positively correlate with NE scores 

while controlling for MYCN amplification status in NBL patient tumors.
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Figure 5. NE score-associated protein and metabolic features are largely consistent in SCLC and 
NBL cell lines
A-B. Heatmaps visualizing the relationship between NE scores and selected functional 

proteomic feature (A) or metabolites (B). In each heatmap, the left-side column denotes 

the Pearson correlation between the selected feature on the row and the NE score. The 

top colored rows denote NE scores and SCLC TF expression. The features were selected 

based on NE score correlation from the SCLC cell lines, adjusted p-value (p.adj) < 0.05 was 

used to select RPPA features and p.adj < 0.1 was used to select metabolic features. Note 

that although the selection was made from SCLC cell lines, a very similar pattern could be 

observed in NBL cell lines. C-D. Scatterplots visualizing the relationship between selected 

RPPA (C) and metabolic (D) features and NE scores in NBL and SCLC cell lines.
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Figure 6. Similar and distinct NE score-associated therapeutic sensitivity in SCLC and NBL cell 
lines
A. Correlation between NE scores and therapeutic sensitivity for drugs with selected targets. 

Therapeutic sensitivity data was previously harmonized such that a higher value represents 

more resistance in each study. For each of the nine selected targets, all compounds with 

the same target were identified from multiple studies. Pearson correlation coefficient r from 

correlating compound data with NE scores were calculated for NBL lines (x-axis values) 

and SCLC lines (y-axis values) respectively and visualized as a scatter plot, with colors 

annotating the source of data, and transparency annotating the statistical significance. B. 

Meta-analysis-summarized correlation between drug therapeutic sensitivity and NE scores 

in NBL (x-axis) and SCLC (y-axis) cell lines. Note that high NE scores are associated with 

resistance to inhibitors of LCK, MEK, XIAP, mTOR, HSP90, and Abl, and sensitivity to 

BCL inhibitors. NE scores are associated with resistance to BRD inhibitors in NBL but not 

SCLC whereas microtubule inhibitors resistance correlates with high NE scores in SCLC but 

not NBL cell lines.
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Figure 7. Similar and distinct NE score-associated gene dependencies in SCLC and NBL cell 
lines
A-B. Selection of SCLC (A) and NBL (B) vulnerabilities based on the consistency (positive 

correlation) between CRISPR and RNAi data, and anti-correlation between dependency 

data and gene expression data. Pearson correlation coefficients from RNAi-CRISPR (left), 

RNAi-RNA expr (middle), and CRISPR-RNA expr (right) correlations were computed for 

all genes. The distributions of these coefficients are plotted as diagonal panels; pairwise 

correlations among these three sets of correlation coefficients were visualized as scatter plots 
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in the lower triangular panels and the Pearson correlation coefficients are printed in the 

upper triangular panels. The four SCLC subtype driver TFs and the NBL oncogenic driver 

MYCN all have high consistency between CRISPR and RNAi data and high anti-correlation 

between dependency data and gene expression data. Areas with r > 0.4 from RNAi - 

CRISPR correlation, and r < −0.4 from RNAi - RNA expr and CRISPR - RNAi correlation 

were demarcated by light gray squares. C. Correlation between NE scores and effect scores 

of selected dependencies in SCLC and NBL. The upper part of the heatmap displays 

selected vulnerabilities for SCLC and was ordered by correlations between NE scores and 

the effect scores in SCLC cell lines; likewise, the lower part of the heatmap displays selected 

vulnerabilities for NBL. Genes with magenta arrows are showcased in D-I. Cell lines are 

ordered by their NE scores and annotated with NE score and SCLC driver TF expression. 

D-I, Comparison of selected gene dependencies in SCLC and NBL. In each plot, variable 

names are shown in the diagonal boxes, and scatter plots display relationships between each 

pairwise combination of variables. Lower triangular plots are colored by NE scores whereas 

upper triangular plots for SCLC figures are colored by TF classes. Pearson correlation 

coefficients are provided in lower triangular boxes for SCLC and upper triangular boxes for 

NBL. Refer to legends in C for color annotations.
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