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Abstract
With the trend in molecular epidemiology towards both genome-wide association studies and
complex modelling, the need for large sample sizes to detect small effects and to allow for the
estimation of many parameters within a model continues to increase. Unfortunately, most methods
of association analysis have been restricted to either a family-based or a case-control design, resulting
in the lack of synthesis of data from multiple studies. Transmission disequilibrium-type methods for
detecting linkage disequilibrium from family data were developed as an effective way of preventing
the detection of association due to population stratification. Because these methods condition on
parental genotype, however, they have precluded the joint analysis of family and case-control data,
although methods for case-control data may not protect against population stratification and do not
allow for familial correlations. We present here an extension of a family-based association analysis
method for continuous traits that will simultaneously test for, and if necessary control for, population
stratification. We further extend this method to analyse binary traits (and therefore family and case-
control data together) and accurately to estimate genetic effects in the population, even when using
an ascertained family sample. Finally, we present the power of this binary extension for both family-
only and joint family and case-control data, and demonstrate the accuracy of the association
parameter and variance components in an ascertained family sample.
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Introduction
For much of the past three decades, linkage analysis has been the primary tool for the initial
exploration of complex diseases believed to have an underlying genetic aetiology and has
resulted in many large cohorts of family data with DNA samples available. Unfortunately,
however, the ability of linkage analysis to localise potentially segregating susceptibility or
protective genotypes has been limited to, at best, regions of 5–10 centimorgans (cM) in length
and, at worst, 20 cM in length.1 This limitation has led to a rise in popularity of methods for
detecting allelic (or gametic) association in candidate genes, in candidate linkage regions or
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genome-wide. This allelic association, coupled with linkage, allows for much more precise
localisation of regions housing disease genes because, if it is due to linkage disequilibrium
(LD), it will span a much shorter distance within the genome than is usually found by linkage
analysis. With this rise in association studies, there has been a trend toward the collection of
unrelated case-control samples, often with the abandonment of large family studies. Certainly,
these samples are much easier to obtain than are family samples, but they also have certain
limitations, even within the context of recent genome-wide association successes.2,3 Further,
allelic association can be due to factors other than LD (which we define as the combination of
allelic association and linkage) or pleiotropy (a marker allele itself being involved in the
aetiology of the disease).4

Population stratification, which exists when multiple strata within a given sample differ with
respect to either the underlying trait distribution or the marker genotype distribution (and which
leads to spurious association when it occurs with respect to both), is a commonly cited cause
of false-positive findings in case-control association studies (eg Knowler et al.5) and the most
likely cause in genetic epidemiological studies. This threat of increased type I error rate has
led to the development of many methods that guard against the effects of population
stratification. The first two general classes use unlinked loci and can both be subsumed under
the term ‘genomic control’: (1) test for population stratification using unlinked regions of the
genome; (2) allow for the population stratification, as estimated from unlinked regions of the
genome when performing an analysis of allelic association. The third general class guards
against population stratification by using non-transmitted alleles as controls (ie a case-control
design perfectly matched for ethnicity by appropriately using family data). While these
methods are effective in controlling for population stratification, they each have their
limitations with respect to power, efficiency and flexibility.

The limitations of genomic control methods6 – 8 are the requirement of having genotypes at
many loci unlinked to the disease allele. In the context of a genome-wide association scan, the
choice of the best regions to use as a ‘control’ is difficult, as there is no guarantee that the
markers being used are indeed unlinked to a disease gene. Applying this method to a candidate
gene study suffers from the same limitation, but also requires significant additional cost and
labour to type enough (and how many is enough?) additional loci.

Transmission disequilibrium tests (TDTs) — as they were termed by Spielman et al.9 and are
commonly referred to — comprise, in general, a unique study design (rather than a single
statistical test) that protects against the effects of population stratification by comparing the
frequencies of alleles (haplotypes or genotypes) transmitted from parents to their affected
children with the frequencies of non-transmitted alleles to these same children. These tests of
allelic association condition on, at least, parental genotypes and offspring disease phenotypes.
Many TDT-type designs have been suggested since first proposed by Rubinstein et al.,10

including extensions for multiple siblings, missing parents and extended pedigrees — to name
but a few (see Table S1). All of these extensions, however, retain conditioning on part of the
data available and therefore share the following limitations: (1) conditional tests are sensitive
to sampling strategy, leading to very low power under several conditions;11 and (2) missing
parental data, transmissions from homozygous parents — or from heterozygous parents to
heterozygous children —are non-informative, which results in a dramatic reduction of effective
sample size and therefore of power, particularly when analysing single nucleotide
polymorphism (SNP) data. This may also lead to an increased type I error rate if care is not
taken to include the transmissions from two similarly heterozygous parents when the child is
heterozygous.12 Further, as for all tests of allelic association, the power of TDT-type designs
rapidly decreases if the marker is not the disease locus and/or if the marker and disease allele
frequencies differ.13 – 15
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Novel methodological approaches for the analysis of LD in family data include a class of
variance component approaches and what are termed family-based association tests (FBATs).
Fulker first proposed a test for both between-family association (or, more appropriately,
‘among-family’, as we typically expect more than two families), which models the phenotypic
means given the marker locus genotypes, and within-family association (linkage) by using
identity-by-descent status in modelling the sib-pair variance–covariance structure.16 It was
shown that the within-family component provides an estimate of the additive genetic effect
unaffected by population stratification. Sham et al.17 extended this method to incorporate larger
sibships, dominance variance and multi-allelic markers. It was further extended to sibships
with or without parental genotypes, and to multi-generational pedigree data by Abecasis et al.
18 FBAT is a unified approach to family-based tests of association that ‘compares tests for
association to their conditional distributions given the minimal sufficient statistics under the
null hypothesis for the genetic model, sampling plan and population admixture’,19 in two steps:
(1) building a test statistic that is sensitive to the co-variation of the trait and marker; and (2)
finding the distribution of the test statistic under the null hypothesis. Broadly speaking, the test
statistic is the ‘covariance between a function of the genotype and a function of the trait’,20
the dependent variable being the offspring genotype. While the first step gives great flexibility
in the choice of test statistic, the second is designed to ensure correct type I error rates (ie
validity), regardless of population admixture, genetic model or ascertainment scheme.21 These
approaches are broad, in that they can handle different genetic models, different family
structures (including extended pedigrees) and disease phenotypes (qualitative or quantitative,
single or multiple). As with the original TDT, however, only heterozygous parents are
informative in this framework; non-family data cannot be included and, in the case of FBAT,
even if one does have a random sample, the effect size of the allele of interest is not estimated.
This can lead to a dramatic loss of effective sample size and therefore potential power and/or
precision when compared with an unconditional method such as that presented here and
demonstrated in our previous work.22 Other methods more robust to these particular
limitations have been recently proposed for assessing quantitative traits in family-based
samples23 and binary traits in case-control samples, including related individuals.24,25
Neither of these methods, however, includes an ascertainment correction (central to pooling
family and case-control samples), nor do they estimate family or cluster effects. Further, the
former does not allow for the inclusion of case-control data and the latter does not allow for
the inclusion of covariates.

Based on the limitations of the existing strategies for testing LD, we present an alternative two-
stage family-based association test in which we combine attributes of two existing methods,
first to test whether population stratification is present and then appropriately test for and
estimate the effect of, LD of a marker to a continuous trait. We further offer extensions of this
method that can be applied to binary traits and hence allow an analysis of case-control data
together with family data. We illustrate the power of this method for various sample sizes and
structures, specifically for joint family and population-based samples that cannot be analysed
by existing methods. We also extend this method to allow for the accurate estimation of
association parameters and residual variance components from ascertained family data, and
demonstrate, via simulation, that this method is effective in controlling ascertainment bias.

Methods
Continuous traits

The framework on which our approach is built was first described by George and Elston26 and
Elston et al.27 in the special context of a randomly selected family sample with a measurable,
quantitative trait of interest. For any individual i, with continuous trait (or, as we will later
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discuss, liability) yi, jth covariate values cji and a genotype indicator zi, we can construct a
regression model of the form:

(1)

in which the number of A1 alleles, along with other covariates, is a predictor of phenotype. In
this model, zi is coded such that the allelic effect of substituting A2 for A1 is . The random

components include pi, a random polygenic effect, fi and , random nuclear family effects,
mi, a random marital effect, si, a random sibship effect and εi, a random residual individual
effect. In addition, the generalised power transformation (h),28 applied to both the trait and its
predictors, when simultaneously estimated under a model that assumes normality of the
residuals, helps assure both linearity and normality, thus making the model robust to non-
independence (as can be the case in large pedigrees). There are two random nuclear family

effects fi and  in model (1) because each individual is potentially a member of two different
nuclear families, one in which we include the individual’s parents and siblings and one in which
we include the individual’s spouse and children. All the random effects in the model are
assumed to be mutually independent and, after the transformation, normally distributed with

zero means and variances  and  such that:

 for families with more than two generations, and

 for families with only two generations. It is important to note
that the total variance V[h(yi)] is made the same for all individuals by adjusting the residual
variance  separately for each person (see Elston et al.27 for details). This model has recently
been further extended to allow for each person to have more than two nuclear family effects,
as can occur when there are half-sibships in the data, and other kinds of common environmental
cluster effects.

As currently implemented in the S.A.G.E. program ASSOC, the likelihood is maximised
numerically over all parameters, and standard errors are determined by numerical double
differentiation of the log likelihood. Also, p-values, based on the likelihood ratio or a Wald
test, can be calculated for the transformation parameters, any of the variance components and
any regression coefficients. They are two-sided for all transformation parameters and
regression coefficients, and one-sided for all variance components.

This method is meant to follow existing evidence of linkage because it does not control for
population stratification. With the growing popularity of genome-wide and candidate gene
association studies, however, there are likely to be many instances in which linkage is not
known a priori. For this reason, we suggest — rather than automatically resorting to
cumbersome genomic control methods or a less powerful TDT-type design — using a two-
stage procedure to (1) test for a stratification effect and then (2) test for allelic association. If
there is no stratification, then the association resulting from model (1) can be interpreted as
LD effects. If there is stratification, then one can use the same regression model framework to
perform a test like those mentioned above (TDT and FBAT) that conditions on parental
genotype.

To test for stratification, we use the same regression model outlined above, but with the addition
of transmitted and non-transmitted allele indicators (x1i and x2i) defined as:
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Thus, the regression equation (1) for the trait value yi is now defined as

(2)

where ηi is the random effect comprising all of the familial, sibling, marital, polygenic and
individual specific errors outlined above. George et al.29 gave details of how the indicator
variable x1i is constructed to form a TDT-type test by substituting it for zi in regression model
(1). We point out that, because it includes components of a TDT-type test, it requires family
data. The variable x2i is formed analogously for the other allele of an SNP. In the case of a
multi-allelic marker, all the other alleles can be pooled into a single allele for this purpose. To
test for a stratification effect, we first test the null hypothesis that the genotypic effect is half
the difference of the transmitted allele effects; that is, . If we do not reject this null
hypothesis at some liberal significance level such as p = 0.2, we infer that there is no evidence
of stratification, set β2 = β1 = 0 and estimate the allele A1 effect by . If there is any evidence
of stratification, we set δ = 0 and estimate the allele A1 effect by β2 − β1. Thus, once either
β2 = β1 or δ is set to 0, as appropriate, we return to a framework in which we simultaneously
estimate the effect of allele A1, the residual variance components and one or more
transformation parameters. We can use asymptotic results to obtain confidence intervals for
all parameter estimates in the usual way, and the method can be extended to estimate genotype
effects rather than allele effects. While other approaches like the principal component approach
proposed by Zhu et al.30 work well within this regression framework and are potentially more
informative when many SNPs are available, this new approach is a viable option, even if only
one or a few SNPs are typed (ie in the case of a candidate gene study).

Extension to binary traits
The generalised modulus power transformation mentioned above is fairly effective in inducing
approximate normality, but does, of course, assume a continuous trait distribution. In many
cases, continuous traits are not available to characterise complex diseases and only the presence
or absence of disease is available. Therefore, we propose the following algorithmic extension
of Zhu et al.31 Let

(3)

where  is the binary trait of interest, 1 represents affected individuals and 0 represent
unaffected, and μi0 represents an initial estimate of . Our aim here is to define a new trait
yi that, if μi were its expected value, would be approximately normally distributed with mean
0 and variance 1. We use the values of yi defined by equations (1) and (2) as the dependent
variable in a simple generalised linear regression model of the form

Gray-McGuire et al. Page 5

Hum Genomics. Author manuscript; available in PMC 2010 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

We have shown that the iterative maximisation procedure currently implemented in our
software (ASSOC) is quite robust to these initial estimates, regardless of family size or
misspecified analysis model.32 We do note, however, that the ease of maximisation and the
accuracy of estimates depend on both the sample size and the number of parameters estimated.
In general, we recommend at least 20 observations per parameter estimated to ensure accuracy
(which can be assessed based on standard errors we provide).

Because the likelihood that is maximised by this process is perhaps not a true likelihood (it is
a pseudo-likelihood, in that the estimates of the variance components may be based on incorrect
model assumptions), the variance–covariance matrix of the estimators obtained by double
differentiation of the likelihood may not equal the true variance matrix, even asymptotically.
We may therefore estimate the variance–covariance matrix using the robust sandwich
estimator,33

(5)

where Ĥ1 is the estimated Fisher information matrix, which we need not assume is correctly
specified, and Ĥ2 is the estimated outer product gradient expressed as

(6)

where, for the the kth pedigree, Σ ̂k is a diagonal matrix with elements μik(1 − μik), yk is the vector
of trait values for the kth pedigree, μk is the vector of means specific to the kth pedigree and

Dk, with transpose , is the matrix of first order partial derivatives of μk with respect to β
obtained assuming that the covariates are fixed:

(7)

In matrix (7), Nk is the number of persons in the kth pedigree, p is the total number of regression
coefficients in equation (4), including the intercept, and βj represents any one of them.

Combining case-control and family data
One of the benefits of the regression framework outlined above is the flexibility to include
families of any size or structure. This is vital, given, as mentioned above, that the magnitude
of the effects associated with any given gene for a common complex disease is likely to be
small. Certainly, provided we are only interested in hypothesis testing (we will discuss
parameter estimation later), unmatched case-control data can be easily included as single
person pedigrees with only an individual-specific variance. In this framework, however,
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matched case-control data can also be included by simply specifying the matched pairs as
members of the same cluster (a cluster, of course, being a special case of a pedigree). We
include in the model a cluster-specific variance component , such that ,
and then adjust the residual variance  so as to keep the total variance the same for all
individuals. This approach does not limit the case-control cluster size or composition, as does
conditional logistic regression.

Correcting for ascertainment
The underlying assumption of the method outlined above is that the sampling units (families,
individuals, case-control clusters) represent a random sample from the same population. This
is often not the case — particularly when families were sampled for a linkage study — and
cannot be the case for case-control samples. The sample association and variance component
estimates are thus not representative of the population values. We therefore present an
ascertainment correction specifically for family data (and briefly address an extension to case-
control data in the discussion).

Let the proband sampling frame (PSF) comprise those individuals who, regardless of
phenotype, could have allowed the family to be ascertained by reason of being in the catchment
area (the area from which the sample was collected). Then, let the ascertainment corrected
natural log (ln) likelihood be:

(8)

where L(P) is the final likelihood, L(PAll) is the likelihood for the whole sample on the
assumption of random sampling of families and L(PPSF) is the likelihood for the family
members in the PSF, similarly on the assumption of random sampling. (For single
ascertainment, only the probands are included in the PSF). Maximising this likelihood (8) leads
to consistent estimators of all the parameters.34

Power calculations for family data
To assess the power and type I error of our association analysis method as extended to binary
traits, as well as to verify the accuracy of both the association parameters and the residual
variance components for ascertained data, we simulated 2,000 replicates of samples of 1,000
individuals comprising either 200 nuclear families (two founders, three offspring) or 125
extended pedigrees (three founders, one of whom is a ‘marry-in’: three generations; one sibship
of size 3 in generation 2; one sibship of size 2 in generation 3). A continuous liability was
created according to the following linear model:

(9)

where i represents the ith individual; ai is the genotypic effect assigned based on an individual’s
major genotype defined as:

(10)
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where q is the allele frequency and  is locus-specific heritability, which we varied to have
values 0 (the null hypothesis), 0.0025, 0.0125, 0.025, 0.0375, 0.05 and 0.0625; γ is the
coefficient (set to 0.25) of the polygenic effect (or ‘polygenotype’) pi, generated from a N(0,1)
distribution for founders and for non-founders derived as  (polygenotype of the mother +
polygenotype of the father) + a randomly generated value from a ; δj is the coefficient
for the jth environmental effect which, in our examples were familial (F), sibling (S) and/or
marital (M) (set to 0 when not included in the model and to 0.25 otherwise); dji is the
environmental factor value assigned to all individuals within the same familial cluster and
distributed N(0,1) across such clusters, ε (set to 0.5) is the coefficient of the random effect; and
ei is generated separately for each individual from a N(0,1) distribution. The liability yi was
then transformed to a binary phenotype. First, a standardised liability was created as:

(11)

where yi is the continuous liability created as defined above and is a mixture of three normal
distributions with means equal to the genotypic effects of the three genotypes and a common
variance (specific to the variance component model as shown in Table 1), ȳ is the sample

mean, n is the total sample size, and  is the sample variance. This
transformation resulted in three distributions for the A1A1, A1A2, and A2A2 genotypes, with
means (a − (q2a − (1 − q)2a)), (0 − (q2a − (1 − q)2a)), and (−a − (q2a − (1 − q)2a)), respectively,
the whole mixture distribution having a variance of 1. Then, an individual was classified as
affected if zi > x, unaffected otherwise. For all simulations, x was fixed at 1.28, corresponding
to a disease prevalence of approximately 0.1. Thus, A1 is the ‘risk’ allele.

Creation of a random sample was achieved by simply collecting individuals (and thus their
entire pedigree) from the simulated population in the order in which they were encountered
until the desired sample size (1,000 individuals) was met. All replicates were analysed using
both the simulated correlation model and an ‘incorrect’ correlation model. For example, if data
were simulated to have both a familial and polygenic effect, they were analysed under a model
(denoted as FP) including both effects and one (denoted P) that included only a polygenic
effect. Names for all the models investigated are enumerated in Table 1.

Type I error was calculated as the number of replicates simulated under the null hypothesis
meeting a recommended cut-off point for genome-wide association studies by the Wellcome
Trust of α = 5 × 10−7.35 Power was calculated as the number of replicates meeting the same
criterion but simulated under the alternate hypothesis.

Sample size estimation for joint family and case-control data
In addition to the simulations outlined above, in order to demonstrate the usefulness of this
method for the joint analysis of family and population or case-control data, we analytically
estimated, for a combination of unrelated individuals (50 per cent cases, 50 per cent controls),
nuclear families and/or extended pedigrees, the number of individuals required to detect a given
effect size at a fixed type I error rate and power.

For these calculations, we classified families according to the number of founders and non-
founders (where unrelated individuals were simply one-founder pedigrees). Suppose there are
ni families of the ith type, each with nfi founders and nnfi non-founders. Let yjm be the trait value
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underlying liability for the mth individual in the jth family with polymorphic marker value gji,
and let αjm be a row vector whose elements are the intercept and effect of other covariates. Let
β be the regression coefficient on the polymorphic marker and define Zjm = yjm − αjm1 = β
(gjm − E(gjm)), where 1 is a column vector of unities. The three genotypes of the marker are
assumed to have the values (−2,1,1), (−1, −1,2) and (−1, 0, 1) for dominant, recessive and

additive modes of inheritance, respectively. Then, letting =
the inverse of the variance–covariance matrix for the ith-type family and assuming multivariate
normality, the log likelihood for 1 the ith-type family is

, giving the maximum likelihood
estimator

This is an extension of Nick et al.,36 who gave approximate results for exactly two founders
and a dominant mode of inheritance, and assumes the quantitative trait locus and marker
variants are in perfect LD. We derived var(β ̂) more generally for nfi founders, for both additive
and dominant inheritance, as well as for relative pair specific correlations. We also allowed
for incomplete LD by applying a 1/(0.8)-fold factor (equivalent to r2 = 0.8, D′ ≈ 0.9).

For these calculations, we made some simplifying but conservative assumptions. First, we
assumed that founder pairs have a correlation of 0 and that parent–offspring correlations
(ρpo) and sib–sib correlations (ρss) correspond to a residual heritability of 2 ρpo = 2 ρss and that
grandparent–grandchild pairs have a residual correlation of ρgg corresponding to a residual
heritability of 4 ρgg. We further assumed, for simplicity, that all persons with the same genotype
at the disease locus have the same disease risk and that LD between the locus and the closest
SNP, assuming the same allele frequencies at the two loci, is given by r2. Finally, we imposed
the type I error recommended for genome-wide association studies by the Wellcome Trust of
α = 5×10−7,35 and assumed a fixed power equivalent to a sample of 500 cases and 500 controls
(0.92 for an additive model and 0.86 for a dominant model), and a locus-specific heritability
of  — see equation (10) — of 0.05. We did this for samples of nuclear families only, extended
pedigrees only and mixtures of both, for various sample sizes, and then, demonstrated the
approximate linearity of the trend in sample size needed to detect the same effect given a fixed
power and type I error.
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Accuracy of association and variance component estimates
In addition to generating random family samples (RAND), we also generated a sample of singly
ascertained families (ASC) by assigning each family a probability of entering the sample based
on the number of affected members in the family: P(family enters sample)=Na/N, where Na is
the number of affected members in the family and N is the number of family members. Each
simulation output file was parsed and, if a family had an affected member, the above probability
was calculated and, based on the appropriate Bernoulli distribution, the family was either
ascertained or not until the desired sample size was met.

The accuracy of the locus-specific association parameter (β) and the polygenic and familial
variance components were assessed after the appropriate analysis (ie with ascertainment
correction if ASC and without if RAND) using the empirically found mean square error (MSE)
averaged over 100 replicates, each comprising 1,000 individuals from either 200 nuclear
families or 125 extended pedigrees. In all cases, the root mean square error (rMSE) compared
with the simulated value (Tables 2–4) is reported. As mentioned, the accuracy of estimates in
ascertained case-control samples was not addressed in this study, but is discussed below.

Results
Type I error and power in family data

Under both additive and dominant models, the association method we present for detecting
diallelic trait loci has stable type I error rates of less than 0.05 (mean = 0.0452) for the RAND
sample of both the nuclear families and extended pedigrees. The ASC sample had slightly
higher type I error rates for the nuclear family sample (0.0523) but not for the extended
pedigrees (0.0427). The power reached 100 per cent at a total heritability of 0.25
( ) for both the additive and dominant models in both the nuclear family sample and
the extended pedigrees, and there was virtually no power to detect a heritability of 0.01. The
power curves for the RAND and ASC samples were virtually identical, so for the sake of space
only the ASC curves are presented. The nuclear family sample (200 families, 1,000
individuals), outperformed the extended pedigree sample (125 families, 1,000 individuals)
under both models. Further, there was a steep decline in power between heritabilities of 0.15
( ) and 0.10 ( ) (Figure 1).

Sample size estimation in joint family and case-control data
To demonstrate the usefulness of family data in association analysis, as well as the usefulness
of combining samples from both linkage (family-based) and association (typically case-
control) studies, we evaluated the number of unrelated individuals that need to be added to an
existing family sample to be able to detect the same effect size as in a population-based sample
of 1,000 unrelated cases and 1,000 controls. Beginning with a collection of 125 extended
pedigrees or 200 nuclear families (samples that are quite prevalent), one can decrease the
number of unrelated samples needed to detect a given effect size ( ) by at minimum
close to 40 per cent and at maximum more than 50 per cent (Figure 2).

Note that the equivalence of samples is shown, assuming (1) a common minor allele frequency
(q = 0.5), for which the family data are not as informative as are the case-control data, and (2)
an allele frequency under which the family sample is fairly informative (q = 0.1). As expected,
the nuclear family sample (assuming an additive model with q = 0.5) requires the fewest
additional unrelated individuals to detect a given effect, and the extended pedigree sample
(assuming a dominant model with q = 0.5) requires the most additional unrelated individuals.
The extended pedigree sample, under a dominant model with q = 0.5 or 0.1, performed
similarly, as did the nuclear family sample under a dominant model with q = 0.5 or 0.1. The
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extended pedigree and nuclear family samples (assuming an additive model) require
approximately the same number of additional unrelated persons to detect the given effect size.

In addition to providing the number of additional individuals necessary to detect a fixed effect
size given a sample of nuclear or extended pedigrees, we further provide this information given
a sample comprising varying proportions of nuclear and extended pedigrees. We found that,
for the additive and dominant models, regardless of the allele frequency, the samples that
contained 30 per cent extended pedigrees and 70 per cent nuclear families (30:70) required the
fewest additional unrelated individuals (of the three mixtures examined) to attain the same
power. For the model in which dominance and additive variance were equal (Add = Dom) with
allele frequency 0.5, the sample with equal frequency of nuclear and extended pedigrees
(50:50) and the sample that is 70 per cent extended and 30 per cent nuclear (70:30) require
similar sample sizes except in the extreme cases where there are very few to no unrelated
individuals (Figure 3). The results for the Add = Dom model with q = 0.1 are similar to those
for the model with q = 0.5, except that the divergence of the 50:50 and 70:30 samples is not
as large as in the previous case (Figure 4). The additive model indicates the least difference in
the three sample types (Figure 5); for example, a sample of 140 nuclear families and 38
extended pedigrees requires 500 additional individuals to achieve the same power and type I
error as 100 nuclear families, 63 extended pedigrees and 625 additional unrelated persons.

Estimation using family samples
Accuracy of the association parameter—The estimates of the association parameter
(expressed as the ln odds of two copies of the disease allele versus one copy) were, on average,
2.615 for the nuclear family sample and 2.636 for the extended family sample — not too
dissimilar to the simulated value of 2.48. The RAND and ASC samples had similar averages
of 2.648 and 2.603, respectively. Note that we purposely generated the data under a (probit)
model different from the (logit) model used to analyse the data, to illustrate the robustness of
the analysis model, and that the accuracy of the ascertainment correction is seen in the small
difference in parameter estimates between the RAND and ASC samples. The average estimate
for the ascertained extended families (2.633) was overestimated by a factor of 1.06, a slightly
larger deviation from the simulated value than seen in the nuclear family samples, which had
an average of 2.573 — only 1.03 times the simulated value (and the closest to it). The rMSE
averaged over all models was 0.210 and all estimates were within a factor of 1.15 of the
simulated value (Table 2).

Results were similar for estimates comparing the odds of two disease susceptibility alleles to
no susceptibility alleles, on average 5.251 — again, not too dissimilar to the simulated value
of 5.616. The RAND samples had an average of 5.296 and the ASC samples almost the same
(5.206). Nuclear (NUC) families had the estimate 5.230 and extended families 5.273. In these
cases, the random nuclear family samples were the closest to the simulated value. The average
rMSE was 0.351 and all estimates were within a factor of 0.88 of the simulated value (Table
3). Notice that for these comparisons the effect was always under- rather than overestimated,
whereas in the previous comparisons they were overestimates.

Accuracy of the variance components—Overall, the rMSEs were, as might be expected,
smaller for the RAND samples than for the ASC samples. When comparing the estimated
values with the simulated proportions of variance (Table 4), the estimates from the RAND and
ASC samples yielded good estimates of the true simulated population values for the polygenic
and familial components, but the sibling and marital components were often over- or
underestimated in the ASC sample, depending on both model and family structure.
Specifically, sibling (S) and marital (M) components were consistently underestimated in the
SMP–SMP scenarios and overestimated in all other scenarios.
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The accuracy of the variance component estimates were affected by the sampling scheme, as
expected. The RAND samples resulted in estimates closest to the simulated population values,
but ASC samples yielded estimates reasonably reflective of the population values as well.

Discussion
The prediction of the future of genetic studies of complex disease is ever changing, but what
remains true is that we must have methods of analysis that are both powerful and flexible.
Whether searching for common genes with small effect or rare genes with large effect, we shall
need large samples that are likely to come only from combining family, population-based and
case-control data and we must have methods that analyse these combinations. In fact, the use
of family samples was recently highlighted by Visscher et al.,2 showing that including related
individuals results in only a small loss of power but large gains in terms of quality control,
flexibility of tests to be performed and ability to control for population stratification. Our results
support these assertions and we further recommend that association methods must account for
environmental covariates (which are certain to play a role in complex diseases) and must not
be restricted by, but rather be effective in controlling for, population stratification. These tools
will be powerful in aiding both genome-wide association and candidate gene studies.

We have present here a method to test and estimate the association between an allele or
genotype and a continuous or binary trait, as well as approaches to combining family and case-
control data that are powerful as well as robust to ascertainment. We also present a two-stage
procedure to determine the need for a test that is robust to stratification. A purist would argue
that a two-stage approach could affect type I error rate. The important thing to note, however,
is that this decision should be made on the basis of the significance, not the magnitude, of the
difference in the two estimates of marker effect, β2 − β1 versus , because a study whose
sample size is powered to detect a small effect will automatically be powered to detect the
small biases that stratification could induce.

We further present a method for correcting for ascertainment and accurately estimating
association parameters, as well as variance components, even in ascertained family data. Two
things should be pointed out, however. First, we examined only single ascertainment, when a
more complex scheme is used to collect families such that most of the sample is in the PSF
and/or the PSF is undefined, the estimates for the association parameter and the variance
components will reflect only the effect in the sample. Note, however, that the test for association
is still valid and it is only the parameter estimates that are affected. Secondly, when combining
data from a case-control sample and an ascertained family sample, for the parameter estimates
from this method to be reflective of the population from which the samples were drawn, certain
assumptions must be met: (1) the cases in the population-based data should have been
phenotyped in a manner similar to the cases in the family data; (2) there must be appropriate
correction for ascertainment; and (3) the non-cases or ‘controls’, although matched, should
apart from this also be a random sample — if they are a completely random sample from the
same population, it is possible to estimate a relative risk, while if they are a random sample of
those showing absence of the phenotype of interest, only an odds ratio can be estimated. If the
phenotype is sufficiently rare such that choosing controls based on absence of the trait of
interest is essentially the same as random sampling, then the relative risk and odds ratio will
be essentially the same. Because this is not the case for common complex diseases, we suggest
and will investigate further in future studies, two other ways of combining case-control and
family data for accurate estimation: (1) express the likelihood for the case-control data in terms
of odds ratios, which are functions of the parameters in the pedigree likelihood, and constrain
the maximum likelihood for them such that the marginal probability of disease, given a set of
regressors, is finite;37 and (2) multiply the likelihood by a factor that summarises any
information we have about the prevalence of disease independent of the sample data. This
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factor would be expressed as μR(1 − μ)N–R, where μ is the prevalence of the disease — expressed
as a function of the parameters in the full likelihood at particular values of the covariates in
the model — and R reflects our external information about the number of affected persons in
a population of size N. For example, if we have an estimate of μ, μ̂ and its standard error (s.e.),
we can estimate reasonable values for N and R by noting , and hence N = μ̂
(1 − μ̂)/(s.e.)2 and R = Nμ̂. It is known that constraining likelihood maximisation so that the
estimated disease prevalence is equal to its true prevalence can be equivalent to a correction
for single ascertainment.38 These two options offer simple solutions for ‘non-traditional’
samples and will be examined in future work.

The general method described in this paper, which is currently being implemented in the
program package S.A.G.E., is more flexible than other TDT-type methods and more efficient
(in the practical sense) than genomic control methods. Further, we have shown the power of
this method for binary traits in various types of family, population-based and combined samples
at a constant type I error rate and, while we concede that a population-based sample could
sometimes detect a smaller effect size than the respective family-based samples, as mentioned
earlier, these scenarios assume the same degree of heterogeneity and sporadic cases in all
samples after correction for ascertainment. We know that this is not likely to be the case, as
family samples are designed to decrease greatly the number of sporadic cases and, at least to
some extent, reduce the amount of heterogeneity in the sample in a manner that makes
appropriate ascertainment correction difficult. Further, for most complex phenotypes, family
samples of at least the size examined here (and usually much larger) already exist and, as shown
in Figures 2 and 3, can drastically reduce the number of population-based samples needed to
detect even very small effects. Other benefits of family data, such as increased ability to assess
the effects of shared environment and parent-of-origin effects, to detect errors and many others
are beyond the scope of this paper, but must also be considered. Finally, while having to correct
for ascertainment is one of the reasons often cited for using population-based versus family
data, we have demonstrated that, in principle, our method can be used to estimate fairly
accurately the effect size of a given allele of interest for a given population, even if using an
ascertained sample. For situations where most of the sample is in the PSF (and hence likelihood
(8) contains little information), or the PSF is ill-defined, we suggest constraining the likelihood
to give an accurate estimate of the disease prevalence. Future investigation will determine the
accuracy of estimates obtained in this manner.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Power to detect association by both total and locus-specific heritability for nuclear families
(nuc fam) under an additive model (No Dom) and a model with 50 per cent additive and 50
per cent dominance variance (Add = Dom).
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Figure 2.
Number of unrelated case-control samples needed, in addition to a fixed sample of either
nuclear or extended pedigrees, to achieve a power of 92 per cent under an additive model (No
Dom) and 86 per cent under a model with 50 per cent additive and 50 per cent dominance
variance (Add = Dom). Values were generated for fixed sample sizes of both nuclear families
and extended pedigrees, as well as for allele frequencies of both 0.5 and 0.1.
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Figure 3.
Number of unrelated case-control samples needed, in addition to a fixed, mixed sample of
nuclear and extended pedigrees, to achieve a power of 86 per cent under a model with 50 per
cent additive and 50 per cent dominance variance (Add = Dom), assuming an allele frequency
of 0.5. Values were generated for samples that comprised 30 per cent nuclear families and 70
per cent extended pedigrees, 50 per cent and 50 per cent, and 30 per cent and 70 per cent,
respectively.
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Figure 4.
Number of unrelated case-control samples needed, in addition to a fixed, mixed sample of
nuclear and extended pedigrees, to achieve a power of 86 per cent under a model with 50 per
cent additive and 50 per cent dominance variance (Add = Dom), assuming an allele frequency
of 0.1. Values were generated for samples that comprised 30 per cent nuclear families and 70
per cent extended pedigrees, 50 per cent and 50 per cent, and 30 per cent and 70 per cent,
respectively.
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Figure 5.
Number of unrelated case-control samples needed, in addition to a fixed, mixed sample of
nuclear and extended pedigrees, to achieve a power of 92 per cent under as additive model (No
Dom), assuming an allele frequency of 0.1. Values were generated for samples that comprised
30 per cent nuclear families and 70 per cent extended pedigrees, 50 per cent and 50 per cent,
and 30 per cent and 70 per cent, respectively.
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