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Abstract

Physics-informed Neural Networks (PINNs) have been shown to be effective in solving partial 

differential equations by capturing the physics induced constraints as a part of the training loss 

function. This paper shows that a PINN can be sensitive to errors in training data and overfit 

itself in dynamically propagating these errors over the domain of the solution of the PDE. It 

also shows how physical regularizations based on continuity criteria and conservation laws fail 

to address this issue and rather introduce problems of their own causing the deep network to 

converge to a physics-obeying local minimum instead of the global minimum. We introduce 

Gaussian Process (GP) based smoothing that recovers the performance of a PINN and promises a 

robust architecture against noise/errors in measurements. Additionally, we illustrate an inexpensive 

method of quantifying the evolution of uncertainty based on the variance estimation of GPs on 

boundary data. Robust PINN performance is also shown to be achievable by choice of sparse 

sets of inducing points based on sparsely induced GPs. We demonstrate the performance of our 

proposed methods and compare the results from existing benchmark models in literature for 

time-dependent Schrödinger and Burgers’ equations.
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1. Introduction

Neural Networks (NNs) are finding ubiquitous applications in fundamental sciences. Their 

abilities to perform classification and regression over large and complicated datasets are 

making them extremely useful for a variety of purposes, including modeling molecular 

dynamics modeling, nonlinear dynamical system design and control, and other many 

body interactions [1, 2, 3]. In many cases, these important problems in physics and 

engineering are posed in terms of static and time dependent partial differential equations 

‡ corresponding author: avroy@illinois.edu. 

HHS Public Access
Author manuscript
Mach Learn Sci Technol. Author manuscript; available in PMC 2024 March 01.

Published in final edited form as:
Mach Learn Sci Technol. 2023 March 01; 4(1): 015013. doi:10.1088/2632-2153/acb416.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(PDEs). Analytical solutions to PDEs are scarce. Moreover, PDEs are difficult to solve and 

require computationally intensive, and highly pre-conditioned numerical linear solvers [4]. 

Popular discretization methods, Finite Difference Method (FDM), and even Finite Element 

Method (FEM) are used to obtain point wise or piece-wise linear estimates over a fine 

grid or meshed domains of interest [5]. Although NN-based approximations to differential 

equations have been explored for some time [6, 7, 8], interest in such approaches have 

been reinvigorated recently due to significant improvement in computational platforms that 

support fast forward and backward gradient propagation utilizing automatic differentiation 

[9]. Rapid progress has been seen in NN-assisted solutions of Ordinary Differential 

Equations (ODEs) [10]. Novel architectures like NeuralODEs [11] have been proposed to 

harness the power of blackbox ODE solvers in conjunction with continuous-depth residual 

Neural Networks (Resnets) using the method of adjoints [12], while models like ODE2VAEs 

use variational auto-encoder architectures to learn functions and derivatives via latent space 

embeddings similar to Cauchy boundary conditions [13].

Solving PDEs using NNs has also seen significant attention by the development of Physics 

Informed Neural Networks (PINNs) [14]. Trained PINNs have been shown to be effective 

in solving time dependent partial differential equations for a given set of Cauchy boundary 

conditions over a finite spatio-temporal domain. They exploit a deep neural network’s 

ability as universal function approximators [15, 16]. Many variants of the trainable PINN 

architecture have been explored to exploit structure, quality and speed of convergence, and 

dimensional scalability [17, 18, 19, 20, 21, 22, 23]. However, one of the least explored 

areas is the robustness of trainable PINNs for various noisy data scenarios and conditions. 

While most PINN architectures in literature assume perfectly known boundary data, in 

many practical applications, this data comes from regulated and calibrated measurement 

processes and is subject to uncertainties or errors pertaining to the limitations of the 

measurement system or the stochastic nature of the physical processes themselves. Most 

PINN architectures utilize a finite and small collection of training data on the domain 

boundary. Given the typical small size of this training data and NNs ability to capture 

arbitrary non-linearity, vanilla PINNs can often propagate these errors or uncertainties in an 

unstable fashion. Such unregulated error propagation can significantly limit the applicability 

of PINNs as industrial strength numerical approximators of PDEs.

In this paper, we extensively investigate the problem of error propagation in PINNs. In 

Section 2 we introspect the architecture of a PINN, and how it responds when data on 

the initial timeslice is corrupted with noise. The notion of PINN robustness is thus tied 

to the PINNs ability to preserve solution features under such noisy perturbations. We 

analyze examples of learning time-varying non-linear Schrödinger, and the non-convective 

fluid flow Burgers’ equations. We further show the impact of introducing regularization 

based on continuity criteria inspired from conservative PINN (cPINN) architectures [19, 

22] through attempts to satisfy conservation laws. In Section 3 we provide details of a 

Gaussian Process smoothed PINN (GP-smoothed PINN), and its sparse variant and compare 

its performance against most typical and popular PINN architectures. We demonstrate how 

these twin GP-smoothed PINNs recover the intended solution and can outperform methods 

realizing continuity or conservation regularizers 24] as well as better possess the ability to 

control uncertainty propagation compared to uncertainty quantification methods proposed 
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for example in [20]. We briefly examine the efficiency role of sparse inducing points and 

also demonstrate the importance and choice of various kernels for achieving best model 

selection in Gaussian process training to prevent data driven under- or overfitting.

2. Robustness of PINNs

In this section, we review the PINN and cPINN architectures and explain with different 

examples how such models fail to capture the essence of robustness. We also investigate 

multiple physics-inspired regularization schemes and identify their limitations in addressing 

the issue of robustness for usual PINN architectures.

2.1. Review of PINN Architectures

A partial differential equation that determines spatio-temporal evolution of a set of scalar 

(real or complex) fields, collectively represented by u x , can be expressed as

N u x , f x = 0 (1)

where x  defines a n dimensional spatial or saptio-temporal coordinate system, defined on 

the domain x ∈ D ⊂ ℝn .  N represnts a set of known, finite-order, differential operators and 

f x  is the source function, usually known as analytical expression in problems intended to 

solve a forward PDE problem. Eq. 1 is subject to a set of boundary conditions,

ℬ u x ∈ ∂D = 0 (2)

The general idea of a PINN [14] is to obtain an approximation of the field u x ≈ u x  by a 

deep neural network that can solve the system of equations 1, subject to 2.

u x = NNθ x ; UB, UC, UD (3)

where,

• UB = x i
b, ℬ u x i

b

i = 1

Nb
 represents a set of samples on the domain boundary ∂D,

• UC = x i
c, f x i

c

i = 1

Nc
 is a set of measurements that enforces the PDE physics of 

Eq. 1 on the neural net (Eq. 3), and

• UD = x i
d, u x i

d

i = 1

Nd
 is a set of direct measurements. Although, UD is not 

necessary for training a plain PINN as in Ref. [14], they are often used for 

training networks for targeted simulation.

The parameters of the deep network θ  in Eq. 27 are obtained by minimization of the loss 

function,
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θ* = argmin
θ

ℒPINN (4)

where the loss function can be decomposed as,

ℒPINN = αBCℒBC + αPDEℒPDE + αDℒD (5)

Here, ℒBC is the MSE loss calculated over UB, enforcing the NN to approximate the 

boundary condition,

ℒBC = 1
Nb i

ℬ u x i
b 2

(6)

ℒPDE is the MSE loss calculated over UC, enforcing the physics on the NN,

ℒPDE = 1
Nc i

N u x i
c , f x i

c 2
(7)

and finally, ℒD, if employed, determines the loss with respect to observation,

ℒD = 1
Nd i

u x i
d − u x i

d 2
(8)

The α  parameters in Eq. 5 are penalty parameters that determine the relative strength of the 

regularizing terms in the loss function. Authors in [14] assign α = 1 identically, but alternate 

choices have been explored in other works [24, 25].

2.1.1. Conservative PINNs (cPINNs)—Variations of PINN architectures have been 

explored in a number of recent works. For example, authors in [21] explore a multi-staged 

PDE solver for a long range solution and Ref. [19] introduces adaptive, hyperparameterized 

activation functions that would accelerate the convergence of such networks.

Although the training of PINNs doesn’t strictly require a discretized grid of evaluation 

points as often required by traditional numerical techniques like finite difference method and 

finite element methods, they can certainly benefit from such grid structures by parallelizing 

the training of PINNs over a collection of subdomains. Hence, the domain of integration and 

its boundary are divided into subdomains, i.e.

D =
i = 1

K
di,   ∂D =

i = 1

K
∂di,  u =

i = 1

K
ui (9)

An additional benefit to such parallelized structure is to include flux continuity at subdomain 

boundaries in the loss function, providing additional safeguard against error propagation. In 

other words, the loss function in Eqn. 5 is modified as
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ℒcPINN  =
j = 1

d
ℒPINN 

j + αIℒI
j (10)

where ℒPINN 
j  is the PINN loss for the j-th subdomain as defined in Eq. 5. The other term, 

ℒI
j acts as a regularizer that enforces functional and flux continuity at the interface of j-th 

subdomain interface.

ℒI
j = 1

NIj i = 1

NIj

uj x i
j − uj + 1 x i

j 2 + ∇uj x i
j ⋅ ni

j − ∇uj + 1 x i
j ⋅ ni

j + 1 2
(11)

here, x i
j

 is a collection of points on the interface of j-th and j + 1-th subdomains and ni
j is 

the unit vector normal to the interface of j-th subdomain at the location of x i
j
.

Figure 1 shows a schematic representation of the different spatio-temporal regions that 

contribute to evaluating the loss function in Eqn. 5 along with a generic architecture for such 

models.

2.2. Error Propagation Through PINNs

An NN can approximate non-linear functions with increasing degrees of accuracy. It is 

typically expected in the case of a PINN that Nb ≪ Nc i.e. the size of the training data 

on the domain boundary is usually much smaller than the size of the physicsenforcing 

collocation points. This unavoidable feature of PINNs make them susceptible to overfitting 

on the boundary and eventually propagate those errors across the domain. In the following 

subsections, we investigate the physical nature of error propagation through PINNs and 

the impact of different regularizations on training the PINN architecture. We will use two 

popular examples that have been widely used in the literature to illustrate this issue of error 

propagation.

2.2.1. Nonlinear Schrödinger equation—We consider the example considered in 

Ref. [14] of a nonlinear Schrödinger partial differential equation which describes the spatio-

temporal evolution of a 1D complex field ℎ x, t = u x, t + iv x, t  as

i∂ℎ
∂t + 1

2
∂2ℎ
∂x2 + ℎ

2
ℎ = 0 (12)

which can also be interpreted as a set of coupled partial differential equations given as

− ∂v
∂t + 1

2
∂2u
∂x2 + u2 + v2 u   = 0

∂u
∂t + 1

2
∂2v
∂x2 + u2 + v2 v   = 0

(13)
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The domain boundary is defined as x, t ∈ − 5,5 × 0, π
2 . The boundary conditions can be 

classified as

i. Initial condition; the known value of the field on the initial time slice given 

as a collection of measurements xj, ℎ xj, 0 j = 0
Nb, t . Unbeknownst to the NN, these 

measurements are taken from the analytical solutions with possible sources of 

additive corruption-

u xj, 0 = 2sech xj + Θuϵi
u

v xj, 0 = Θvϵi
v (14)

where ϵu, ϵv are randomly chosen from a normal distribution with N 0, σ2 . The 

parameters Θu and Θv represent acceptance of errors which are set to 0 (1) for 

error-free (error-inclusive) initial conditions.

ii. Periodic boundary condition on spatial slices enforced on a discretized spatial 

boundary. A total of Nb, s points are chosen to enforce the following spatial 

boundary conditions

ℎ + 5, t   = ℎ − 5, t
∂ℎ
∂x + 5, t   = ∂ℎ

∂x − 5, t (15)

The loss function is constructed according to Eqn. 5 with α = 1.0. To set the benchmark 

for the performance of a PINN for this problem, we solved for the PDE with error-free 

boundary data Θu = Θv = 0 . We train a fully connected MLP with 6 hidden layers and 70 

nodes per layer, with two inputs corresponding to the space and time coordinate and two 

outputs corresponding to the real and imaginary parts of the complex field. The MLP was 

trained for Nb = 100 points on the domain boundary, 50 of which were taken from uniformly 

sampling the space coordinate x  on the initial timeslice to impose the initial condition in 

Eq. 14, and the 50 points were taken on from a uniform distribution on the time coordinate 

to impose the periodic boundary condition in Eq. 15. A fine grid of Nc = 20000 collocation 

points was chosen to impose the physics of the PDE.

Figure 2 shows the evolution of the complex field in the Schrödinger equation as evaluated 

by a vanilla PINN at four different timeslices, taken at t = 0,0.39,0.78,1.37. The performance 

of the PINN for error-free data on the initial timeslice is shown in Figures 2(a)-(d). We 

use the same architecture to repeat the exercise while training on corrupted data on initial 

timeslice by letting Θu = Θv = 1 and additive errors generated by drawing samples from 

zero-mean Gaussian distribution with σ = 0.1. The performance of the PINN in evaluating 

the complex field magnitude at the same time instances is shown in Figures 2(e)-(h). The 

effect of introducing corrupted data on initial timeslice becomes evident when comparing 

Figures 2(a)-(d) with Figures 2(e)-(h). The PINN tends to overfit on the initial timeslice and 

eventually propagates these errors on the following timeslices.
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2.2.2. Burgers’ Equation—We consider the Burgers’ equation in one spatial dimension 

with Dirchlet boundary conditions as a second example. Widely used in fluid dynamics and 

nonlinear acoustics, this nonlinear PDE has been widely studied as a benchmark example in 

the PINN literature [14, 20]. The PDE and the boundary conditions for 1D Burgers’ equation 

are given as :

∂u
∂t + u ∂u

∂x = ν ∂2u
∂x2 (16)

u − 1, t = u 1, t = 0 (17)

u x, 0 = − sin πx + Θuϵu (18)

where the domain boundary is given as x, t ∈ − 1,1 × 0,1 . To set the benchmark for 

this probelm, we solve Eqn. 16 subject to boundary conditions in Eqns. 17 and 18 with 

ν = 0.01
π  using a PINN without noise Θu = 0  in the initial data. We used an MLP with 4 

hidden layers, each with 40 nodes. We trained with Nc = 10000 collocation points to enforce 

the physics (Eqn. 16) and Nb = 150 points on the boundary, 50 points for enforcing the 

initial condition in Eqn 18 and 50 points on each of the spatial boundaries at x = − 1,1
to enforce each of the Dirichlet conditions in Eqn. 17. The loss function is constructed 

according to Eq. 5 with α = 1.0. Figure 3(a)-(d) shows the evolution of the field u x, t  in 

the Burgers’ equation as evaluated by a vanilla PINN at four different timeslices, taken at 

t = 0,0.25,0.50,1.0.

Next, we repeat the exercise for Burgers’ equation by introducing additive corruption with 

Θu = 1 and σ = 0.5. Figures 3(e)-(h) show the corresponding line shapes of the Burgers’ 

field for the aforementioned timestamps. Similar to what was found for the Schrödinger 

Equation, the vanilla PINN architecture fails to auto-correct for the corruption in initial data 

and ends up overfitting on the initial timeslice and eventually propagates these errors to later 

timeslices.

2.3. Regularization of PINNs

Both Figures 2 and 3 show a PINN’s inherent inability to self-correct when trained with 

error-corrupted data on the initial timeslice. The PINN rather learns to overfit on the initial 

timeslice and eventually propagates the initial errors to later timeslices. This propagation of 

error to later timeslices is a direct consequence of having no regularization in the loss term 

in Eqn. 5 to constrain overfitting at the domain boundary.

In principle, this is not very different from overfitting in classic regression problems with a 

high degree polynomial or introduction of bias in an un-regularized regression by outliers. 

This naively indicates that additional regularization might be useful to limit the propagation 

of errors. However, our investigations indicates that some of the most physically intuitive 

choices for regularizing constraints have little impact on error propagation and boundary 

overfitting.
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We consider two unique choices of regularizers. First, inspired by the cPINN architecture, 

we impose the constraint of functional and flux continuity at arbitrary spatio-temporal 

boundaries to constrain the PDE solution. Second, we explore the possibility of using 

physical conservation laws as additional sources of regularization. In the following 

subsections, we explore the impact of using such regularization schemes in training PINNs 

with corrupted boundary data.

2.3.1. Functional and flux continuity at subdomain interfaces—The cPINN 

architecture inspires a useful regularization that imposes continuity of the field and its 

flux across domain boundaries. From a physics standpoint, these regularizations can be 

thought of as additional conservation laws that ensures continuity and differentiability of a 

field across subdomains. In this subsection, we explore the impact of including this term 

in the training loss function in Eqn. 10 in controlling propagation of uncorrelated errors at 

sampling points on the initial timeslice.

One immediate concern is that the convergence of the cPINN is susceptible to exact choices 

of how many subdomains are chosen and where those boundaries are located. Based on 

the location of the subdomain boundaries, the cPINN’s capacity to converge to the global 

minimum of the training loss function, can be significantly impacted. To illustrate this, we 

compare the performance of cPINNs in solving the Schrödinger equation with two and 

three equal spatial subdomains trained on error-free boundary data. The results are shown 

in Figure 4. Evidently, a three subdomain cPINN better recovers the analytical solution. 

However, the failure of a two subdomain cPINN, to capture the solution of a PDE even 

for error-free boundary data is intriguing. This observation yields a deeper insight to the 

impact of adding additional regularizers with the PINN loss function in Eqn. 5. As can 

be seen in Figure 4(a), the two subdomain cPINN moderately deviates from the analytical 

solution on the initial timeslice at the expense of converging to the local minima introduced 

by the inclusion of the interface loss. Figure 5 shows how the PINNs trained on different 

subdomains converge to identical functional and flux values at the subdomain boundary 

but eventually experiences large deviations from the analytical solution which requires 
∂u
∂x x, 0 = ∂v

∂x x, 0 = 0. It is apparent that choice of subdomain boundary at x = 0 plays an 

important role in causing such deviating solutions. As the real and imaginary fields reach 

local extrema at x = 0 for all values of t, even small deviations in estimating the local 

gradients at the interface can create a cascading effect in the evaluation of the complex field 

across subdomain boundaries as we can see in Figures 5.

The result of such instabilities in convergence, is evidential consequence of such 

cPINN-inspired regularizations and the architecture’s failure to be robust to such noisy 

perturbations. As also shown in Figure 6, regularization of functional and flux continuity at 

subdomain boundaries does not provide the necessary safeguard to ensure robustness.

When we repeat the same set of exercises for the Burgers’ equation, we see very 

similar results, as shown in Figures 7. Similar to what we have seen for the Schrödinger 

equation, placing the subdomain boundaries at functionally critical points can destabilize 

and deteriorate the quality of the solution learned by the deep network. It can be seen 
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in Figures 7(a)-(d) from the deviation of the Burgers’ field’s predicted behavior at later 

timeslices even without any error introduced on the initial timeslice when two subdomains 

are considered with an interface at x = 0. However, the function is almost identically 

recovered when the data is perfect on the initial timelice with three subdomains as shown 

in Figures 7(e)-(h). This tendency of a PINN-like architecture to converge to a local minima 

instead of the global minima almost infallibly deteriorates the quality of convergence when 

error is introduced on the initial timeslice, and thus the solution departs significantly from 

its ideal behavior. This is apparent in both the two subdomain (Figures 7(i)-(l)) and the three 

subdomain cPINNs (Figures 7(m)-(p)).

2.3.2. Conservation law constraints—Physical laws are often subject to a number 

of conservation laws. While in many cases these conservation laws emerge as direct 

consequences of the mathematical structure of the PDE, explicitly enforcing such 

conservation laws will back-propagate additional constraining gradients for the NN 

hyperparameters. We can explicitly include these conservation laws into the loss function.

For example, one of the major consequences of non-linear Schrödinger equation is global 

conservation of the squared absolute value of the complex Schrödinger field ℎ x, t 2

∫   ℎ x, t
2

dx = ∫   u x, t 2 + v x, t 2 dx = C (19)

where C is a constant. A number of other conserved quantities follow for the 1D nonlinear 

Schrödinger equation we are considering [26, 27, 28], which include:

∫   u ∂v
∂x + v ∂u

∂x dx (20)

∫   ∂ℎ
∂x

2
− ℎ

4
dx (21)

We can constrain the solution by explicitly including these conservation laws as regularizers 

in the loss function. For instance, the probability conservation law in Eqn. 19, along with the 

requirement of probability confinement within the spatially bounded region for the domain 

of Eqn. 12 requires that

0 = d
dt a

b

ℎ
2

dx = d
dt a

b

u2 + v2dx = 2
a

b

uut + vvtdx (22)

where a, b  is the spatial domain. We can approximate this integral using time-sliced 

collocation points:

a

b

uut + vvtdx ≈ b − a
nc, t i = 1

nc, t

u xi, t ut xi, t + v xi, t vt xi, t (23)

Bajaj et al. Page 9

Mach Learn Sci Technol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where nc, t represents the number of collocation points chosen over the spatial subdomain at 

timeslice t. We can define the conservation loss to be

ℒC = 1
Nt i = 0

Nt 1
nc, t j = 0

nc, t

u xj, ti ut xj, ti + v xj, ti vt xj, ti
2 (24)

We train a PINN with this conservative constraint on data appended with the loss function 

in Eqn. 5. As seen in Figure 8, the constrained PINN better represents the conservation 

laws, with the overall range for dispersion of cumulative probability effectively reduced with 

the inclusion of conservative constraints in the PINN loss function. However, the observed 

evolution of the field in Figure 9, obtained by applying this constraint does not result 

in superior accuracy. Errors are still propagated from the initial timeslice throughout the 

spatio-temporal domain.

As a second example of the implication of conservation laws as regularizers, we take the 

example of Cole-Hopf transformation [29, 30] for the Burgers’ equation. Based on proper 

mathematical wisdom developing analytical solutions to PDEs, methods like the Cole-Hopf 

transform have been found useful to convert one family of PDEs into another whose 

analytical solution is known and rather simple to compute. The Cole-Hopf transformation 

converts the nonlinear Burgers’ equation to a linear Heat equation. This transformation is 

defined by making the following change of variables:

u x, t = − 2ν ∂v
∂x x, t (25)

The transformed field v x, t  satisfies the heat equation ∂tv = ν∂xxv. The viscous case of the 

Burgers’ equation is for ν > 0 causing a non-linear dissipative shock for small values of ν. 

The inviscid case yields the equation having a non-linear hyperbolic conservation law. For 

our purpose, the conservation law for the modified field can be viewed as a regularizer to the 

conventional PINN loss function in Eqn. 5.

ℒCH =
i, j

vt xi, tj − νvxx xi, tj
2

(26)

In addition to using the Cole-Hopf loss term as a regularizer for a vanilla PINN architecture, 

we additionally consider including the continuity criteria for equally split two and three 

subdomains. Figure 10(a)-(d) shows the time evolution of the Burgers’ field u x, t  when 

the PINN is trained with the loss function including the Cole-Hopf term in Eqn. 26. The 

functional approximation obtained from the PINN is much smoother compared to what we 

have observed in our previous exploration of regularized evaluation of the solution to the 

Burgers’ equation (Figures 3 and 7). It can be directly traced back to the fact that the Cole-

Hopf transformed field is indeed an anti-derivative of the Burgers’ field and in the neural 

architecture when implemented as a discrete integration acts as a smoothing operation in 

somewhat canceling out the effect of the error. The smoothing operation however eventually 
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leads to underfitting and the evolution of the field at later timeslices is affected in a similar 

fashion.

Figure 10(e)-(h) [(i)-(l)] shows the results when we trained the Cole-Hopf regularized PINN 

with functional and flux continuity imposed at the interface of two [three] sub-domains. 

These results establish the inadequacy of the Cole-Hopf regularizer in establishing the 

robustness of the neural architecture and reinforces their tendency to converge to local 

minimum instead of reaching the intended global minimum.

3. Gaussian Process (GP) based Error Correction for PINNs

As the previous section illustrates, physics-inspired regularization alone does not eliminate 

propagation of errors in PINNs. In fact, application of such constraints forces the PINN to 

converge to a local minimum that satisfies the physics of conservation laws for overfitted 

boundary conditions and eventually propagates the overfitting across the spatio-temporal 

domain. In this section, we seek the explore alternate solution to this problem by using 

smoothing techniques that safeguard the quality of fit by cross-validated regulation of 

smoothed boundary data. The model of corruption considered in the PDE model for 

1D Schrödinger and Burgers’ equations is a ubiquitous approximation for many physics 

processes. In such processes, the spatial evolution of a local field is often expected to 

be smooth. When the physical data on domain boundary is subject to such errors, it is 

often convenient to model these measurements as a realization of a stochastic process. For 

instance, the initial condition in Eqn. 14 can be modeled by a pair of continuous stochastic 

processes, Ux, V x where the index representing the spatial coordinate of the PDE domain. The 

mean and covariance for such processes are given as

E Ui = 2sech x = xi
E V i = 0
Cov Ui, Uj = Cov V i, V j = σ2δij

To obtain a functional estimate of these stochastic processes, Gaussian Process Regression 

[31] is a powerful, nonparametric method. Given the set of samples on the initial timeslice, 

UB,the DNN structure in Eqn. 27 is replaced by,

u x = NNθ x ; ÛB, UC, UD (27)

where

ÛB = x i
b, ℬ û x i

b

i = 1

Nb
(28)

and

û x i
b = GP x i

b ∣ x i
b, u x i

b

i = 1

Nb
(29)
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represents the GP-predicted estimate of the boundary data. The choice of the kernel 

function, representing the pairwise covariance of observations is given as a sum of RBF 

and white noise kernels,

k xi, xj = Aexp −
x i − x j

2

2l2 + σ2δij (30)

where A, l, σ are hyperparameters obtained by maximizing the log-marginal likelihood.

Smoothing techniques are commonly applied in problems where robustness is a desired 

quality. Compared to other parametric smoothing techniques like fixed order polynominals 

or smoothing splines, GP regression has often been proved to be more robust against 

underfitting and overfitting [32, 33]. Robustness guarantees for GPs have been extensively 

explored in literature [34, 35]. GPs have also been explored in connection with physics-

inspired kernel building [36, 37] and found to be effective in predicting physical phenomena 

like phase transitions in quantum systems [38].

Using a GP-smoothing on the boundary data allows for the PDE solver to regain its 

performance by training itself over the smoothed data on initial timeslice. Compared 

to other approaches [39, 40, 41] that employ Gaussian Processes to solve differential 

equations, our method uniquely harnesses the smoothing interpolating functionality of a 

GP while exploiting the universal approximator feature of a neural network. While Gaussian 

Processes with a proper choice of a kernel can be very useful in approximating smooth 

analytical solutions, their o n3  complexity makes them infeasible for optimizing such 

solutions over a large set of collocation points and such complexity grows significantly 

with high dimensional problems. However, restricting their use on the domain boundary 

reduces the complexity by an order of magnitude while almost identically recovering the 

analytical solution. Figure 11 shows the performance of a GP-smoothed PINN in solving the 

Schrödinger equation, where the DNN can recover the analytical form despite corruption in 

initial data.

Since the loss function in Eq. 5 is not a direct metric of validating the performance of the the 

PINN, the validation loss is measured in terms of mean squared error (MSE) loss compared 

with respect to the analytical solution. In Fig. 12, we compare the evolution of the loss 

function during training and the validation MSE loss. It can be seen that GP-smoothed PINN 

performs almost as well as error-free PINN, and significantly better than a PINN trained 

with corrupted boundary data but no smoothing.

3.1. Kernel Selection for Gaussian Processes

The choice of kernel for fitting a GP to the boundary data is very important- improper 

choices can lead to underfitting or overfitting and eventually propagate large errors through 

the PINN architecture. In order to make the best choice for a kernel, we explored a k-fold 

cross-validation technique on the initial time-slice data for the 1D Schrödinger Equation. 

The dataset on initial boundary is split into k equal subsets where k − 1 of them are used 

for training and and one subset is kept aside for validation. Training and validation data are 
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used to optimize the GP hyperparameters. We examine the performance of the optimized 

Gaussian Processes for using the RBF kernel, the Matèrn kernel [31] with ν = 0.1,1.5, and 

4.0, and the Rational Quadratic (RQ) kernel [31]. Each kernel is appended with a localized 

white noise kernel. The average training and validation MSE losses, measured with respect 

to a fixed set of noise-corrupted sampling points on the initial timeslice (Eqn. 14), with 

k = 10 for different choices of kernels are summarized in Table 1. It can be seen that RBF 

and RQ kernels have similar performance while the Matèrn kernels tend to overfit.

3.2. Evolution of Measurement Uncertainty

While a generic PINN fails to recover the physics-motivated evolution of noisy boundary 

data following a PDE, a GP-smoothed PINN not only can recover the physical evolution 

but also provide a controlled estimate of uncertainty at every point in the spatio-temporal 

domain. The uncertainty evaluated by a GP-smoothed PINN is obtained by evaluating the 

deviation in the NN parameters for ±1σ variation of the training data on domain boundary

u x ± δu x = NNθ ± δθ x ; ÛB
±, UC, UD (31)

where

ÛB
± = x i

b, ℬ û x i
b ± δû x i

b

i = 1

Nb
(32)

The uncertainty associated with the boundary data, δû is obtained from the covariance 

estimate of the optimized GP. The deviation of the NN parameters, δθ can be obtained from 

minimizing the loss function evaluated with ÛB
±
.

θ ± δθ * = argmin
θ

ℒPINN θ; ÛB
±

(33)

Analytical estimate of δθ* is a computationally intractable task since it requires inversion of 

the very large Hessian matrix ∂2U
∂θ2 . However, a rather inexpensive technique is to start with 

a PINN architecture with parameters θ already optimized for the mean value of the boundary 

data ÛB and re-train the network with the modified boundary data. This reoptimization 

converges more quickly and provides an estimate of evolution of uncertainty at all points 

of the space-time domain. The evolution of uncertainty for a GP-smoothed PINN evaluated 

solution of Eqn. 12 is shown in Figure 11. The network was re-trained for an additional 1000 

iterations to optimize for the uncertainty bands. In general, the number of additional required 

to converge for estimating the uncertainty bands depends on the size of the corrupting error, 

which can be quantitatively estimated from the optimized value of the σ parameter in Eqn. 

29.
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3.3. Sparse GP (SGP) based Error Correction

GP-based smoothing can provide robustness for PINNs as shown in the previous section. 

However, optimizing a GP is an expensive process with a complexity of o n3 , with n being 

the number of points considered to optimize the GP. Even though we are restricting the 

GPs to be optimized only over the domain boundary, this can be still be a major bottleneck 

for our method for high dimensional problems. As the dimension of domain boundary 

∂D ⊂ ℝd − 1 increases, it will require more and more points on the boundary to satisfy the 

boundary condition. Sparse Gaussian Processes have been extensively studied in literature to 

significantly reduce the complexity for high dimensional problems. A multitude of variants 

of sparsity inducing GPs have found their applications in the context of sample efficient 

reinforcement learning [42], deep kriging with big data [43], and variational learning of GPs 

[44]. We consider a hybrid approach for sparsity inducing smoothing GP on the domain 

boundary following the algorithm suggested in Ref. [45] to obtain inexpensive selection 

of inducing points (IPs). Originally designed for Sparse Variational GPs (SVGPs), this 

algorithm is effective in the context of our problem of selecting a smaller subset of IPs on 

the domain boundary.

The SGP algorithm we use is explained in algorithm. The sparsity optimizations for GP is 

done in two steps. In the first step, a small number of data points n0  are randomly taken 

to optimize the GP hyperparameters. In the second step, additional IPs are chosen from the 

data based on the kernel distance between the new IP candidate z  and the already selected 

set of IPs X0 . The new IP candidate is included in X0 if the Algorithm 1 Selection of IPs 

for SGP kernel distance between z and all existing IPs is smaller than some predefined 

threshold ρ . To reduce the complexity of this approach, iterative re-optimization of the 

kernel hyperparameters is avoided and only after the desired set of IPs have been chosen, 

the the GP hyperparameters are finally reoptimized to smooth the corrupted dataset on the 

domain boundary. The total number of IPs chosen is bounded by M ≤ Nb, t. Figure 13 shows 

how sparse GPs can be almost equally useful in recovering the Schrödinger field dynamics. 

When the number of IPs is set too low, e.g. only 10 IPs for both u x, 0  and v x, 0 , the 

recovery of physical dynamics is not as satisfactory. However, with a somewhat larger set 

of IPs including 29 and 20 IPs for u x, 0  and v x, 0  respectively, the PINN’s performance 

improves significantly and becomes comparable to that of the full GP-smoothed PINN 

shown in Figure 11.

Algorithm 1 Selection of IPs for SGP

 procedure IPSelect n0, M, X, y, ρ
  Randomly Select X0, y0 From X, y with X0 = y0 = n0

  k* = argmaxlogp y0 ∣ GP k, X0, y0

  forz ∈ X − X0 do

   ifmax k* z, x0 ∣ x0 ∈ X0 < ρthen

    X0 X0 ∪ z
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    if X0 = Mthen

     break

  returnX0

Table 2 summarizes the validation MSE obtained with different models and compare them 

with the benchmark model of a vanilla PINN with no errors. While the performance of a 

PINN significantly deteriorates with the introduction of even modest errors with σ = 0.1, 

both GP-smoothed PINN and SVGP-smoothed PINN perform similar to the benchmark 

model.

We demonstrate the effectiveness of GP and SGP smoothing in recovering the physical field 

dynamics for 1D Burgers’ equation in Figures 14(a)–(d) and Figures 14(e)–(h). The SGP 

employed 41 IPs on the initial timeslice and shows remarkable performance recovery. We 

also compare the results from the UQ-PINN architecture proposed in Ref. [20] and both GP 

and SGP smoothed PINNs perform noticeably better than the solution obtained from the 

UQ-PINN architecture. Table 3 summarizes the validation MSE loss obtained from different 

PINN architectures and it can be seen that both GP and SGP smoothed recover a similar 

level of accuracy as observed by the error-free PINN.

4. Additional Examples

To demonstrate the effectiveness of GP and SGP smoothing for higher dimensional PDEs, 

we consider a couple of 2D PDEs in this section.

4.1. 2D Heat Equation

The 2D heat equation and the corresponding spatio-temporal boundary conditions are given 

as:

∂u
∂t = ∂2u

∂x2 + ∂2u
∂y2 (34)

u x, y, 0 = 3sin πx sin πy + sin 3πx sin πy + Θuϵu (35)

u 0, y, t = u 1, y, t = u x, 0, t = u x, 1, t = 0 (36)

where the domain boundary is given as x, y, t ∈ 0,1 × 0,1 × 0,0.1  and Θu is the acceptance 

function for the noise term in the initial condition. The analytical solution to this equation 

is given as u x, y, t = 3sin πx sin πy e−2π2t2 + sin 3πx sin πy e−10π2t2. An MLP with four 

hidden layers, each with 256 nodes, has been used. The physics is enforced with Nc = 50000
collocation points. 64 points are chosen on each of the four spatial boundaries and 1024 

points on the initial timeslice for the initial condition, giving a total of Nb = 1280 points on 

the spatio-temporal boundary. Like the previous examples, the loss function is constructed 
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according to Eq. 5 with α = 1.0. For the SGP process, the IPs are chosen from the pool 

of 1024 points on the initial time slice according to Algorithm 1 with the number of IPs 

bounded by M = 768. The models are trained for 20000 epochs with ADAM optimizer with 

a learning rate of 10−3.

As shown in Figure 15. GP-smoothing recovers the performance of the error-free PINN and 

SGP also considerably brings down the MSE when compared to that of the PINN trained 

with noisy data without any smoothing applied. We can see the initial condition each PINN 

architecture is trained with along with the point-wise error estimate in the PINN’s solution 

for different models. The smoothing effect on the initial timeslice can be seen in Figure 16, 

where we can see that while the noisy initial condition almost completely obliterates the 

distributive feature of u x, t = 0 , smoothing with GP or SGP allows its significant recovery. 

This translates into better convergence to actual solution for the latter couple of models on 

both initial and latter timeslices (Figure 17).

4.2. D Burgers’ Equation

The two dimensional Burgers’ equation is given by the following pair of PDEs-

∂u
∂t + u ∂u

∂x + v∂u
∂y = ν ∂2u

∂x2 + ∂2u
∂y2

∂v
∂t + u ∂v

∂x + v∂v
∂y = ν ∂2v

∂x2 + ∂2v
∂y2

(37)

where we consider ν = 0.01
π  and train the network to learn the following analytical solution 

[46, 47]-

u x, y, t = 3
4 − 1

4 1 + exp −t − 4x + 4y
32ν

(38)

v x, y, t = 3
4 + 1

4 1 + exp −t − 4x + 4y
32ν

(39)

The domain boundary is chosen as x, y, t ∈ 0,1 × 0,1 × 0,1 . The network is trained 

with the initial condition sampled from the functions u x, y, 0 + Θuϵu and v x, y, 0 + Θvϵv

respectively for u and v where Θu and Θv are the acceptance functions for the noise terms 

in the initial condition. The spatial boundary conditions are obtained from plugging in the 

boundary coordinates in the analytical solution given in Equations 38 and 39 . An MLP 

with four hidden layers, each with 256 nodes, has been used to simultaneously predict 

the two fields. The physics is enforced with Nc = 50000 collocation points. We choose 64 

points on each of the four spatial boundaries and 1024 points on the initial timeslice to 

enforce the spatio-temporal boundary condition with a total Nb = 1280 measurements. The 

choice of loss function and optimizer follows the example of the previous examples. A 
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pool of 1024 uniformly sampled points on the initial timeslice are used for SGP and IPs 

are chosen according to Algorithm 1 with the number of IPs bounded by M = 768. The 

resulting performances of the four models after training for 20000 epochs are shown in 

Figure 18. As we can see from the accompanying table in Figure 18, the noise-free PINN 

replicates the analytical solution almost perfectly and when error is introduced, similar 

level of performance cannot be retrieved. However, the MSE is noticably reduced by the 

smoothing performed by GP and SGP.

One of the noticeable aspects of the 2D Burgers’ equations is the presence of a shockwave 

front at 4y − 4x = t around where both fields experience rather sharp, yet continuous 

gradients. We show the exact initial condition used to train the noise-free PINN in Figures 

19a and 19i. When corrupted with noise and left unsmoothened, the shockwave feature is 

almost completely lost and as can be seen from Figure 20 (third column from the left), the 

network struggles to retrieve the shockwave front for latter timeslices as well. On the other 

hand, while GP and SGP to some extent recovers the initial field distributions, the gradients 

near the shockwave front are oversmoothed. It should be noted that this oversmoothing 

is not due to some limitation of GP or SGP itself, but rather the choice of samples used 

to train these processes. Being agnostic to the physical distribution, the enforcing points 

on the initial timeslice are uniformly sampled, which led to an under-representation of 

sharp gradients near the shockwave front. As a consequence to the missing perception 

of sharpness around the shockwave front, the GP-PINN and SGP-PINN accumulate their 

largest deviations in the latter timeslices around the shockwave front, as seen in Figure 20 

(fourth and fifth columns from the left). The opposite signs of the errors on the two sides 

of the shockwave front represent that the PINN-reconstructed solution after GP or SGP 

smoothing has a more smoothly shifting wavefront.

5. Conclusion

As it often happens, measurements associated physical processes are subject to errors. 

When these measurements are used to learn the evolution of a system respecting some 

underlying physics dictated by a PDE using NNs, these errors can significantly distort 

the predicted behavior via nonlinear propagation of errors. In this paper, we explored the 

behavior of a PINN when it is trained with noise-corrupted datasets. Our work shows 

that deep PDE-solvers can be subject to overfitting and dynamically propagating errors 

observed on the domain boundaries even when physics-inspired regularizers are introduced 

to constrain the solution. To circumvent this issue, we proposed GP-smoothed deep network 

that can help recover the system’s behavior over a finite space-time domain while providing 

a controlled prediction and bounded uncertainty. We further showed that the computational 

complexity of fitting a Gaussian Process can be significantly reduced by incorporating 

sparsely choosing inducing points for sparse GPs. This opens up opportunities to explore 

uncertainty propagation in predictive estimation using cPINNs or cPINN-like architectures 

as well as learning an optimal policy of selecting sparsely chosen inducing points.
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Figure 1. 
A visualization of the domains of (a) a PINN and (b) a cPINN with boundary points (∙), 

collocation points (×), and interface points (∎) for a spatio-temporal domain with one spatial 

dimension. Figure (c) shows the model architecture diagram of a PINN for a generic n + 1
dimensional spatio-temporal domain solving for a set of coupled fields u1, …, um.
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Figure 2. 
The PINN-evaluated solution for ℎ x, t  from the Schrödinger equation at different 

timeslices, t = 0,0.39,0.78,1.37, from left to right for error-free boundary data (top) and 

corrupted boundary data with (bottom). The additive errors on the boundary data are taken 

independently from samples of zero mean Gaussian distribution with σ = 0.1. The points 

marked with the blue cross (x) pointer in the leftmost set of plots indicate the samples on the 

initial timeslice used to train the PINN.
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Figure 3. 
The PINN-evaluated solution for u x, t  from the Burgers’ equation at different timeslices, 

t = 0,0.25,0.50,1.00, from left to right for error-free boundary data (top) and corrupted 

boundary data with (bottom). The additive errors on the boundary data are taken from 

independently samples of zero mean Gaussian distribution with σ = 0.5. The points marked 

with the blue cross (x) pointer in the leftmost set of plots indicate the samples on the initial 

timeslice used to train the PINN.
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Figure 4. 
The cPINN-evaluated ℎ x, t  for two (top row) and three (bottom row) equal subdomains 

at different timeslices, t = 0,0.39,0.78,1.37, from left to right when no error is introduced on 

initial time-slice. The points marked with the blue cross (x) pointer in the leftmost set of 

plots indicate the samples on the initial timeslice used to train the cPINN.
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Figure 5. 

The cPINN evaluated lineshape for ℎ x, t  (left), ∂u
∂x  (middle), and ∂v

∂x  (right) at the 

subdomain interface x = 0  for a two subdomain cPINN as a function of t. PINNO (PINN1) 

refers to the PINN trained to solve the PDE on a spatial boundary of −5 ≤ x ≤ 0  0 ≤ x ≤ 5 .
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Figure 6. 
The cPINN-evaluated ℎ x, t  for two (top row) and three (bottom row) subdomains at 

different timeslices, t = 0,0.39,0.78,1.37, from left to right when additive Gaussian errors with 

σ = 0.1 is introduced on initial time-slice. The points marked with the blue cross (x) pointer 

in the leftmost set of plots indicate the samples on the initial timeslice used to train the 

cPINN.
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Figure 7. 
cPINN-evaluated solution to Burgers’ equation with (a-d) two subdomains with no error, 

(e-h) three subdomains with no error, (i-l) two subdomains with error, and (m-p) three 

subdomains with error. The error on individual datapoints, whenever applied, have been 

taken from additive zero-mean Gaussian distribution with σ = 0.5.
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Figure 8. 
Plots of three of the conservation laws (Eqns. 19– 21) of the nonlinear Schrödinger equation 

for (a-c) a vanilla PINN and (d-f) a PINN constrained by the first conservation law. The 

PINNs were trained with initial data corrupted with σ = 0.1 Gaussian noise. The constrained 

PINN has better performance of conservation laws 1 and 3, while both PINNs satisfy 

conservation law 2 nearly exactly.
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Figure 9. 
The PINN-evaluated ℎ x, t  at different timeslices, t = 0,0.39,0.78,1.37, from left to right. 

In this case the PINN is constained by the Schrodinger equations first conservation law: 
d
dt∫ ℎ 2dx = 0. The training data on the initial timeslice is subject to measurement errors, 

modeled by a Gaussian random variable with zero mean and a standard deviation of σ = 0.1. 

The points marked with the blue cross (x) pointer in the leftmost set of plots indicate the 

samples on the initial timeslice used to train the PINN.
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Figure 10. 
The PINN-evaluated u x, t  at different timeslices, t = 0,0.25,0.5,1.0, from left to right when 

additive Gaussian errors with σ = 0.5 is introduced on initial time-slice for when additional 

regularization in terms of Cole-Hopf transformation is added to the loss function. A single 

domain PINN used for the top row while the middle and bottom rows show result from 2 

and 3 domain cPINNs respectively.
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Figure 11. 
The GP-smoothed PINN-evaluated ℎ x, t  at different timeslices, t = 0,0.39,0.78,1.37, from 

left to right. In this case the training data on the initial timeslice is subject to measurement 

errors, modeled by a Gaussian random variable with zero mean and a standard deviation of 

0.1. GP-based smoothing was used on initial timeslice before training the PINN. The points 

marked with the blue cross (x) pointer in the leftmost set of plots indicate the samples on 

the initial timeslice used to fit the GP. The grey band in the subsequent plots represents the 

uncertainty associated with the PINN-evaluated approximation of ℎ x, t .
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Figure 12. 
The training loss function from Eqn. 5(left) and the MSE validation loss from as a function 

of number of iterations for a PINN solving.
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Figure 13. 
The SGP-smoothed PINN-evaluated ℎ x, t  at different timeslices, t = 0,0.39,0.79,1.37, from 

left to right. In this case the training data on the initial timeslice is subject to measurement 

errors, modeled by a Gaussian random variable with zero mean and a standard deviation of 

0.1. SGP based smoothing was used on initial timeslice before training the PINN using 10 

inducing points for each u x, 0  and v x, 0  for the top row and 29 inducing points for u x, 0
and 20 for v x, 0  for the bottom row. The points marked with the blue cross (x) pointer 

in the leftmost set of plots indicate the samples on the initial timeslice used to train the 

PINN. The grey band in the subsequent plots represents the uncertainty associated with the 

PINN-evaluated approximation of ℎ x, t .
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Figure 14. 
The PINN-evaluated solution to Burgers’ equation when measurements on initial timeslice 

is corrupted with zero-mean, σ = 0.5 Gaussian noise for GP-smoothed PINN (top), SGP-

smoothed PINN (middle), and UQ-PINN 20] (bottom), at timeslices t = 0,0.25,0.51,1, from 

left to right. For the GP- and SGP-smoothed PINNs uncertainty bounds are calculated by 

retraining the PINN using the initial condition of the GP/SGP mean function plus or minus 

one standard deviation.
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Figure 15. 
The time evolution of the MSE loss for different models used in solving the 2D heat 

equation. Except the vanilla PINN (no error), all models were trained with data sampled 

from the initial timeslice corrupted with additive Gaussian noise with zero mean and σ = 1.0. 

MSE error evaluated over 50k points chosen over the entire spatio-temporal domain for the 

different models is given in the accompanying table.
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Figure 16. 
The initial condition at t = 0 for 2D heat equation for (a) error-free PINN, (b) noisy 

PINN without smoothing, (c) noisy PINN with GP smoothing, (d) noisy PINN with SGP 

smoothing. Except the vanilla PINN (no error), all models were trained with data sampled 

from the initial timeslice corrupted with additive Gaussian noise with zero mean and σ = 1.0. 

The figures in the bottom row show the error in PINN-evaluated solution at the initial 

timeslice for the corresponding architecture in the top row.
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Figure 17. 
The leftmost column shows the exact solution for 2D heat equation at t = 0.0368 (top row) 

and t = 0.0632 (bottom row). The remaining columns show the point-wise error in PINN-

evaluated solution for noise-free PINN (second column), noisy PINN without smoothing 

(third column), GP-PINN (fourth column), and SGP-PINN (final i.e. fifth column). Except 

the vanilla PINN (no error), all models were trained with data sampled from the initial 

timeslice corrupted with additive Gaussian noise with zero mean and σ = 1.0.
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Figure 18. 
The figure demonstrates the time evolution of the MSE loss for different models used in 

solving the 2D Burgers’ Equation. Except the vanilla PINN (no error), all models were 

trained with data sampled from the initial timeslice corrupted with additive Gaussian noise 

with zero mean and σ = 0.5. MSE error evaluated over 50k points chosen over the entire 

spatio-temporal domain for the different models is given in the accompanying table
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Figure 19. 
The initial condition u x, y, t = 0  for 2D Burgers’ equation for (a) errorfree PINN, (b) noisy 

PINN without smoothing, (c) noisy PINN with GP smoothing, (d) noisy PINN with SGP 

smoothing. The figures in the second row show the error in PINN-evaluated solution at the 

initial timeslice for the corresponding architecture in the top row. The final two rows show 

the equivalent distributions for the v x, y, t  field. Except the vanilla PINN (no error), all 

models were trained with data sampled from the initial timeslice corrupted with additive 

Gaussian noise with zero mean and σ = 0.5.
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Figure 20. 
The leftmost column shows the exact solution for 2D Burgers’ equation at t = 0.1579 (first 

and third row from top for x, y, t ) and t = 0.6316 (second and fourth row from top for 

v x, y, t ). The remaining columns show the point-wise error in PINN-evaluated solution for 

noise-free PINN (second column), noisy PINN without smoothing (third column), GP-PINN 

(fourth column), and SGP-PINN (final i.e. fifth column). Except the vanilla PINN (no error), 

all models were trained with data sampled from the initial timeslice corrupted with additive 

Gaussian noise with zero mean and σ = 0.5.
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Table 1.

Comparison of average training and validation MSE losses for training and validation data on the domain 

boundary as given in Eqn. 14 with σ = 0.1.

kernel MSE loss on training data MSE loss on validation data

RBF 0.00762 0.0110

Matèrn (ν = 0.1) 3.2 × 10−8 0.0465

Matèrn (ν = 1.5) 0.00598 0.0116

Matèrn (ν = 4.0) 0.00588 0.0126

Rational Quadratic 0.00721 0.0112
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Table 2.

Comparison of PINNs using different strategies for robustness to solve the 1D nonlinear Schrödinger equation. 

The introduction of error in the initial condition causes a significant increase in MSE for the standard PINN. 

GP-smoothing reduces the MSE to nearly as low as the PINN with no error. SGP-smoothing is also effective 

in reducing error and uses fewer inducing points (IPs). However, if the SGP does not have a sufficient number 

of IPs the error increases as seen when 10 IPs are used. Multiple domain cPINNs have worse performance. 

Results quoted for L1 and L2 regularizations are taken from the best performance observed over choices of 

λ ∈ 10−n
n = 1

5
.

Model MSE

PINN (no error) 0.0105

PINN (σ = 0.1) 0.0289

PINN (σ = 0.1, L1 regularization with λ = 10−4) 0.1613

PINN (σ = 0.1, L2 regularization with λ = 10−4) 0.2681

cPINN-2 (no error) 0.2745

cPINN-2 (σ = 0.1, no smoothing) 0.4782

cPINN-3 (no error) 0.0258

cPINN-3 (σ = 0.1, no smoothing) 0.4178

GP-smoothed PINN (σ = 0.1, 50 IPs for u and v) 0.0125

SGP-smoothed PINN (σ = 0.1, 10 IPs for u and v) 0.0231

SGP-smoothed PINN (σ = 0.1, 29 and 20 IPs for u and v) 0.0123
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Table 3.

Comparison of PINNs using different strategies for robustness to solve the 1D Burgers’ equation. The 

introduction of error in the initial condition causes a significant increase in MSE for the standard PINN. 

GP-smoothing reduces the MSE to nearly as low as the PINN with no error. SGP-smoothing is also effective 

in reducing error and uses fewer inducing points (IPs). Results quoted for L1 and L2 regularizations are taken 

from the best performance observed over choices of λ ∈ 10−n
n = 1

5
.

Model MSE

PINN (no error) 0.0116

PINN (σ = 0.5) 0.1982

PINN (σ = 0.1, L1 regularization with λ = 10−4) 0.0392

PINN (σ = 0.1, L2 regularization with λ = 10−4) 0.0293

PINN (σ = 0.5, Cole-Hopf regularizer) 0.1125

cPINN-2 (no error) 0.0161

cPINN-2 (σ = 0.5, no smoothing) 0.0834

cPINN-2 (σ = 0.5, Cole-Hopf regularizer) 0.0891

cPINN-3 (no error) 2.782e-5

cPINN-3 (σ = 0.5, no smoothing) 0.0854

cPINN-3 (σ = 0.5, Cole-Hopf regularizer) 0.0329

UQ-PINN [20] (σ = 0.5) 0.1248

GP-smoothed PINN (σ = 0.5, 50 IPs) 0.0384

SGP-smoothed PINN (σ = 0.5, 41 IPs) 0.0080
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