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Abstract

Background: Artificial intelligence (AI) applications based on advanced deep learning methods 

in image recognition tasks can increase efficiency in the monitoring of medication adherence 

through automation. AI has sparsely been evaluated for the monitoring of medication adherence in 

clinical settings. However, AI has the potential to transform the way health care is delivered even 

in limited-resource settings such as Africa.
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Objective: We aimed to pilot the development of a deep learning model for simple binary 

classification and confirmation of proper medication adherence to enhance efficiency in the use of 

video monitoring of patients in tuberculosis treatment.

Methods: We used a secondary data set of 861 video images of medication intake that 

were collected from consenting adult patients with tuberculosis in an institutional review board–

approved study evaluating video-observed therapy in Uganda. The video images were processed 

through a series of steps to prepare them for use in a training model. First, we annotated videos 

using a specific protocol to eliminate those with poor quality. After the initial annotation step, 

497 videos had sufficient quality for training the models. Among them, 405 were positive 

samples, whereas 92 were negative samples. With some preprocessing techniques, we obtained 

160 frames with a size of 224 × 224 in each video. We used a deep learning framework that 

leveraged 4 convolutional neural networks models to extract visual features from the video frames 

and automatically perform binary classification of adherence or nonadherence. We evaluated the 

diagnostic properties of the different models using sensitivity, specificity, F1-score, and precision. 

The area under the curve (AUC) was used to assess the discriminative performance and the speed 

per video review as a metric for model efficiency. We conducted a 5-fold internal cross-validation 

to determine the diagnostic and discriminative performance of the models. We did not conduct 

external validation due to a lack of publicly available data sets with specific medication intake 

video frames.

Results: Diagnostic properties and discriminative performance from internal cross-validation 

were moderate to high in the binary classification tasks with 4 selected automated deep learning 

models. The sensitivity ranged from 92.8 to 95.8%, specificity from 43.5 to 55.4%, F1-score from 

0.91 to 0.92, precision from 88% to 90.1%, and AUC from 0.78 to 0.85. The 3D ResNet model 

had the highest precision, AUC, and speed.

Conclusions: All 4 deep learning models showed comparable diagnostic properties and 

discriminative performance. The findings serve as a reasonable proof of concept to support the 

potential application of AI in the binary classification of video frames to predict medication 

adherence.
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Introduction

Tuberculosis (TB) is a leading cause of death worldwide, with an estimated 10.6 million 

new cases of the disease and 1.7 million patients dying in 2021 [1]. The global End TB 
strategy set goals to eliminate disease, deaths, and burden by 2030 [2], but these could be out 

of reach if critical gaps in diagnosis, treatment, and care are not addressed. Medication 

adherence, defined as the extent to which a person’s behavior regarding medication 

corresponds with agreed recommendations from a health care provider, is one of the barriers 

to TB control [3]. It is estimated that 33% to 50% of patients who start treatment become 

nonadherent to their prescribed medication regimens [4,5]. Nonadherence is associated with 

the emergence of drug resistance, prolonged infectiousness, treatment failure, and death, 
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especially in the context of TB and HIV coinfection [6,7]. The existing interventions to 

mitigate poor medication adherence have limited effectiveness for a variety of reasons [5]. In 

Africa, a high patient load coupled with a severe shortage of health workers hampers proper 

monitoring and support of patients on TB treatment [8]. Digital adherence technologies 

have rapidly emerged as tools for improving the delivery of care in a variety of health 

care settings [2,9]. In 2017, the World Health Organization endorsed the use of video-based 

directly observed therapy (VDOT) as a suitable alternative to directly observed therapy 

for monitoring TB treatment and published guidance on its implementation [10]. VDOT 

overcomes geographic barriers because it enables the health providers to view patients’ 

medication intake activity remotely, especially in the hard-to-reach populations [11–13]. 

It also enhances autonomy since patients can choose when and where they take their TB 

medications [14–16]. The limitation with asynchronous VDOT is the repetitive manual task 

of reviewing videos and confirming daily adherence [17]. Moreover, such classification tasks 

are accomplished by following a prespecified protocol [18]. In the face of high patient 

workloads, repetitive manual tasks could lead to inaccurate assessment and human fatigue. 

High workload is a recognized occupational stressor that has implications for the quality 

of care and patient outcomes [19]. The automation of routine processes is a well-known 

solution to increase efficiency in daily workflows. Therefore, more advanced tools such as 

artificial intelligence (AI) can be integrated with digital adherence technologies to accelerate 

widespread adoption and impact [20,21].

AI applications have the potential to transform health care in several clinical practice areas, 

primarily medical imaging [22]. First, AI tools can increase productivity and the efficiency 

of care delivery by streamlining workflows in the health care systems [23]. Second, AI 

can help improve the experience of health care workers, enabling them to spend more time 

in direct patient care and reducing stress-related burnout [19]. Third, AI can support the 

faster delivery of care, by enhancing clinical decision-making, helping health care systems 

manage population health more proactively, and allocating resources to where they can 

have the largest impact [24]. Modern computer vision techniques powered by deep learning 

convolutional neural networks (DCNNs) can be applied to medical imaging, medical videos, 

and clinical deployment [25]. Deep learning techniques that process raw data to perform 

classification or detection tasks can make digital adherence monitoring in TB control more 

effective and efficient. DCNNs are state-of-the-art machine learning algorithms that have 

the ability to learn from input data to recognize intricate activities and patterns [26]. These 

characteristics make DCNNs powerful tools for recognition, classification, and prediction. 

Moreover, the features discovered by the models are not predetermined by human experts 

but rather by the patterns they learn from input data [27,28]. This concept can be applied to 

patterns in the videos of medication intake. However, the development and implementation 

of deep learning methods in health care remain largely limited because of a lack of access 

to large, well-curated, and labeled data sets. Additionally, specific technical knowledge, 

skills, and expertise required to develop deep learning models are often uncommon among 

health care professionals [27]. The goal of our pilot was to conduct a proof of concept for 

the development of an AI system that can perform routine classification tasks applicable 

to medication adherence. We expect that this initial step will be the basis for further 
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development and validation of AI tools that will be used across treatments in chronic 

diseases in a variety of clinical settings.

Methods

Study Design, Population, and Data Sources

In this pilot study, a multidisciplinary team consisting of a physician scientist with expertise 

in TB medication adherence; 2 computer scientists with expertise in machine learning, 

computer vision, and deep learning models; and 3 graduate students in computer science 

evaluated the technical feasibility of applying AI to analyze a raw data set of videos from 

patients with TB taking medications. We used a secondary data set of 861 self-recorded 

medication intake videos collected as part of a pilot VDOT study of 51 patients with TB. 

The pilot study was conducted in Uganda.

Ethical Approval

The study was approved by the Institutional Review Board Office of Research, University 

of Georgia (number PROJECT00002406) and the Makerere University Higher Degrees, 

Research and Ethics Committee in Uganda (number 756).

Patient Recruitment and Enrollment

A cohort of adult male and female patients aged 18–65 years with a confirmed diagnosis of 

TB attending public clinics in Kampala, Uganda, were enrolled in VDOT pilot studies from 

July 2018 to December 2020. The study evaluated the effectiveness of VDOT in monitoring 

adherence where daily medication intake videos were collected with the patients’ written 

consent. Further details on the eligibility criteria and sociodemographic characteristics of the 

patients contributing to the video data sets are published elsewhere [16].

Process of Annotation and Labeling of Medication Videos

First, a team of 3 trained video annotators with a computer science background evaluated 

the videos in the primary medication intake data set to create a new medication intake video 

data set. Using a systematic iterative process of review and discussions, the research team 

developed a protocol for video annotation de novo, since no specific protocols existed for 

medication videos. The team included the 3 trained student annotators, a senior computer 

scientist, and a physician with expertise in medication adherence. The protocol was 

summarized into 3 basic rules that guided labeling videos as positive—actual medication 

ingestion activity, negative—no medication intake activities, or ambiguous—if no pills were 

seen but there was a blurry image of a face, as described in Table 1. We used the de novo 

standardized protocol for labeling videos. To control the quality of the annotation, we only 

considered videos where there was complete agreement of the classification across the 3 

annotators to create the final video data set for model training and evaluation. After the 

annotation process, out of 861 videos, we kept 497 videos, which consisted of 405 (47%) 

positive videos and 92 (10%) negative videos. The sex and class distribution of videos 

that were kept in the final data set was as follows: of the 405 positive videos from 51 

patients, 248 (61.2%) were from 28 male patients and 157 (38.7%) videos were from 23 

female patients. Only 36 patients produced 92 negative videos; 48 (52%) were from 19 
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male patients, and 44 (48%) were from 17 female patients. The average distribution was 

8 positive videos and 2 negative videos per patient. The outcome of this process resulted 

in the medication intake video data set that was used as a training data set for the deep 

learning model. Second, we divided the data set into training and validation subsets to assess 

the performance of our deep learning framework and baselines on medication adherence 

recognition. Furthermore, we analyzed the influence of different deep learning architectures 

in our framework on medication adherence recognition, classification, and prediction. It is 

important to note that the video annotation process is only required to construct the data 

set for model training and evaluation of this study. Once the deep learning model is trained, 

we do not need manual annotations anymore for the new videos, when using the proposed 

methods in practice.

Preprocessing of the Annotated Medication Intake Videos

Before we used AI tools to analyze the medication adherence of the patients, some 

techniques were implemented to preprocess the videos. The video-preprocessing stage was 

divided into 3 parts. In the first part, each video was converted to the mp4 format since 

the mp4 format is more convenient to process than the original format of the raw videos. 

Next, we adopted FFmpeg, a leading multimedia framework, to extract the video frames 

from each video with the mp4 format. Nevertheless, not all the video frames were relevant 

to the medication adherence, and the number of the video frames for each video was quite 

different, which also posed a problem in our study. In the end, we manually extracted the 

same number of key video frames that were the most relevant to medication adherence. 

These video frames constituted the final data set for our AI experiments.

Model Development: Deep Learning Framework

Our deep learning framework for recognizing medication intake activities consisted of 2 

parts: first, convolutional neural networks (CNNs) were used to extract visual features from 

medication intake videos; and second, support vector machine (SVM) [29] was adopted 

as a classifier to generate prediction scores for videos as shown in Figure 1. In particular, 

inspired by the huge success of deep learning models in image and video analysis, we used 

2D CNN and 3D CNN models to extract the high-dimensional, spatiotemporal features from 

input videos. These models were pretrained on large-scale, labeled image or video data sets. 

Then, the SVM, an effective classifier, was trained to classify the extracted high-dimensional 

features. Our framework consisted of DCNNs pretrained with external data sets: Inception-

v4 [30]; 3D ResNet, designed for lower complexity structure with so-called skip residual 

connections [31]; 3D ResNext [32]; and Inflated 3D [33]. These DCNNs are extensively 

used by the computer science community for extracting features from images and videos 

[34]. Specifically, Inception-v4 is pretrained on the ImageNet data set [35]. 3D ResNet, 3D 

ResNext, and Inflated 3D are pretrained on the Kinetics data set [36,37]. Besides, the sizes 

of the feature vectors from each model are different. For instance, the length of the feature 

vector generated from Inception-v4 is 1536, whereas the length of the feature vector is 2048 

from 3D ResNet and 3D ResNext. The details of the feature length are illustrated in Table 2. 

In the training stage, we trained the SVM with features extracted by the pretrained DCNNs 

from the training data set. In the testing stage, our trained model, which consists of a DCNN 

and SVM, generated prediction scores for videos from the testing data set to recognize the 
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medication adherence. The generated prediction score is a decimal number between 0 and 

1, which can be interpreted as the probability that the video represents a patient correctly 

ingesting their medication.

These DCNN models are designed primarily to extract the feature from images, but they 

cannot deal with videos directly, due to the 3D structure of video data. To tackle this 

problem, various 3D CNN models have been developed, in which the 2D convolution 

operation is extended to 3D convolution operation. The 3D ResNet and 3D ResNext used in 

our study are built on the 2D CNN model ResNet [31] that introduces the idea of residual 

connections. Figure 2 illustrates the building blocks of the ResNet, 3D ResNet, and 3D 

ResNext. All 3 blocks consist of 3 convolution layers followed by batch normalization [32], 

rectified linear unit [33], and identity mapping [31]. The major difference is that the 2D 

convolution kernels (1 × 1 and 3 × 3) in ResNet are modified to 3D convolution kernels (1 × 

1 × 1 and 3 × 3 × 3) in 3D ResNet and 3D ResNext. Compared to 3D ResNet, 3D ResNext 

introduces the group convolutions in the second layer of the block, which divides the feature 

maps into small groups. In practice, 3D ResNet and 3D ResNext are typically composed of 

multiple layers [30,31].

Apart from 3D ResNet and 3D ResNext, we also used Inception-v4 and Inflated 3D as 

our feature extractors. As a 2D CNN model, Inception-v4 is the fourth version of the 

Inception architecture network family. Compared to previous versions of the Inception 

family, Inception-v4 not only has a more uniformly simplified architecture and more 

inception modules but also absorbs the idea of residual connections from ResNet to form 

the new Inception block called residual inception blocks. Inflated 3D is another 3D CNN, 

which is built upon a 2D CNN from the Inception family. In our study, we compared 

the performance of one 2D CNN (Inception-v4) and three 3D CNNs (ie, 3D ResNet, 3D 

ResNext, and Inflated 3D). The 2D CNN treated each video as a set of video frames and 

generated a feature vector for each video frame, whereas 3D CNNs took video as a whole 

and generated a unified feature vector.

To better illustrate the effectiveness of deep learning models for medication adherence 

recognition, we used a traditional visual feature descriptor, histogram of oriented gradient 

(HOG) [38], as the replacement of the features extracted by DCNNs. HOG is a traditional 

descriptor that can generate handcrafted features directly from the images. The handcrafted 

feature was fed into the SVM for classification. In our pilot study, the SVM with HOG 

features was used as a baseline. Besides, we also investigated the average time of each 

method to extract features from the video frames, since efficiency is also an important 

indicator to evaluate the methods in practice.

Statistical Analysis

We adopted a 5-fold cross-validation strategy to evaluate the performance of our deep 

learning framework with different DCNNs as it is the recommended best practice for 

model validation [39]. We chose 5-fold cross-validation since it offers a good trade-off 

between efficiency and reliability, compared with alternative strategies such as leave-one-out 

cross-validation or random splits. In the experiments, we evaluated the performance of 

our framework from different aspects by using 5 metrics: the area under the receiver 
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operating characteristic (ROC) curve (AUC) and F1-score, which are primary evaluation 

metrics, and sensitivity (recall), specificity, and precision (positive predictive value), which 

are supplementary. The F1-score can be interpreted as the harmonic mean of precision 

and recall. We empirically set the threshold to 0.6 to neutralize the adverse effect of the 

imbalanced distribution of the data. For each given DCNN in our framework, we randomly 

split the data set into 5 subsets: 4 out of 5 subsets were used as the training data set, and the 

rest were adopted as the testing data set. We ran the 5-fold cross-validation 5 times. Each 

time, we randomly shuffled the order of the data before feeding the data into the model 

and reporting the mean values and SDs for each metric. Furthermore, another comparison 

experiment was implemented to show that our framework does not suffer from an overfitting 

problem with the high-dimensional features. Besides, we also drew the ROC curves to 

demonstrate the performance of different CNNs. We also evaluated the efficiency using 

speed in seconds as a metric defining the time required to extract features from the videos 

relevant to medications adherence. In addition, we noticed that metrics such as precision still 

have some limitations in the presence of class imbalance. This problem can be mitigated by 

adjusting the classification threshold.

Results

Performance in the Monitoring of Medication Adherence

3D ResNet achieved the best performance in the task of monitoring patient medication 

adherence activities as shown in Table 3. The performance of 3D ResNext was very close 

to that of 3D ResNet since they both have similar structure. Besides, the results also reveal 

that 3D CNN models had better performance than the 2D CNN model and traditional 

feature descriptor method. Specifically, the HOG method obtained the lowest values on all 

metrics. It is noted that 3D ResNet, 3D ResNext, and Inflated 3D are specifically designed 

for video feature extraction, whereas Inception-v4 is designed for image feature extraction. 

Overall, the performances of the 3D ResNet and 3D ResNext were very comparable in all 

the metrics. The 3D ResNet obtained the best results on the AUC, highlighting its advantage 

in the prediction of the medication adherence activity.

Assessing Overfitting of the Model

AI models usually suffer from the overfitting problem with high-dimensional features and 

limited number of training data. To further investigate whether high-dimensional features 

would cause the overfitting problem or not, we conducted additional experiments to give 

a better illustration. In this experiment, we used the pretrained 3D ResNet as the feature 

extractor and reduced the original feature dimension from 2048 to 256 with the principal 

component analysis method. The results are shown in Table 4. We observed that both of 

dimensions achieved similar performance, which confirmed that our framework was not 

affected much by the overfitting problem.

The ROC curves in Figure 3 were generated by plotting the true positive rate (sensitivity) 

against the false positive rate (specificity) at different threshold settings. The diagonal 

straight dashed line from (0,0) to (1,1) represents the performance of the random classifier. 

Ideally, all the ROC curves should lie above the straight dashed line. The further the curve 
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deviates from the diagonal line, the better the classifier is. The curves in Figure 3 can 

be divided into 3 groups. The first group representing 3D ResNet and 3D ResNext show 

that the 2 curves were the closest to the y-axis with the highest AUC. The second group 

consists of Inception-v4 and Inflated 3D, with AUCs of 0.78 and 0.80. The worst performing 

classifier was the traditional model HOG, which is very close to the diagonal line, and its 

AUC is only 0.60.

We also investigated the time efficiency of each method in our study and the results are 

illustrated in Table 5. The machine that ran the code consisted of 2 Intel E4208 CPUs 

and 1 P100 Tesla GPU. We evaluated the average time spent per video by each method to 

generate the relevant features. 3D ResNet was the fastest and took only 0.54 seconds to 

generate the features for each video, whereas HOG was the slowest, spending on average 

4.53 seconds—8 times longer to generate the handcrafted features from a single video, 

signifying its inferiority in efficiency. The speeds of 3D ResNext and Inflated 3D were 

relatively comparable, whereas Inception-v4 was slower than the other DCNNs. Overall, 

considering both the model’s accuracy and efficiency, 3D ResNet might be the better model 

because it has both high accuracy and efficiency of processing videos.

The class imbalance between positive and negative videos was pronounced in our data 

at a ratio of 405:92, respectively. To remedy the potential detrimental effect of the class 

imbalance in our data, we used a simple but effective method of adjusting the classification 

threshold [40]. We conducted experiments to illustrate how different threshold values 

affected the performance of our model. In the experiment, we used 3D ResNet as the feature 

extractor and chose 3 threshold values: 0.5, 0.6, and 0.7. Five-fold cross-validation with 

fixed splits was adopted as shown in Table 6. We see that higher threshold values would lead 

to higher specificity and precision values but slightly lower sensitivity and F1-score values. 

Adjusting the classification threshold helped to balance the sensitivity and specificity.

Discussion

Principal Finding

In this pilot project, we demonstrated a reasonable proof of concept that deep learning and 

AI techniques could be applied to advance support medication adherence monitoring. We 

tested 4 deep learning models and found that 3D ResNet performed best at an AUC of 0.84 

and a speed of 0.54 seconds per video review. The level of discriminatory accuracy obtained 

is comparable to other machine learning algorithms that have been shown to achieve a 

diagnostic accuracy ranging from 72.5% to 77.3% in clinical settings. This level is similar to 

or higher than the expert clinical accuracy of doctors [41]. Spatiotemporal models for action 

classification used in nonmedical fields have shown even better performance with an average 

accuracy of 90% [42]. A systematic review and meta-analysis of 69 studies comparing 

deep learning models against health care professionals concluded that both approaches were 

equivalent in diagnostic accuracy [43]. To our knowledge, this is the first pilot study to 

evaluate deep learning models for specific application to digital technologies and medication 

adherence in Africa.
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Our model results could be limited by the relatively pronounced class imbalance between 

positive and negative samples in the data. To address the class imbalance problem, we 

adjusted the classification thresholds for the 3D ResNet model to better balance the 

sensitivity and specificity. Specifically, we varied the thresholds at 0.5, 0.6, and 0.7 and 

found that across the range, sensitivity decreased slightly by 8% whereas specificity 

increased by 55%, thus improving the performance of the model. This means that by 

adjusting the classification threshold to 0.7, the model’s ability to correctly identify persons 

who are not taking medications could be achieved. The relatively high performance of the 

deep learning models signifies the power of AI tools that can be harnessed for medication 

monitoring in routine clinical care or drug efficacy trials. We also acknowledge that our 

current experimental settings may lead to issues such as overfitting and data leakage, which 

are possible limitations to our findings. This could be due to the high dimensionality 

of features extracted by deep learning models and the small set of patients used in our 

study. In addition, the stratification is performed at the video level, and thus, it is possible 

that the videos from the same patient may appear in both training and test phases during 

cross-validation. Ideally, there is need to perform evaluations with stratification at the patient 

level; this step will be a priority in our future work. This pilot study is a valuable initial 

step for building more robust models that have relevant applications suitable for the local 

African context where the medication intake videos were collected. In the era of COVID-19 

pandemic, the use of synchronous telehealth visits proved to be an extremely valuable care 

delivery approach when in-person provider-patient interactions were not possible [44,45]. 

Our proof-of-concept study explores the use of AI to bolster the utility of asynchronous 

remote provider-provider interactions. The evolving capacity of digital technologies to store 

and analyze various types of data will continue to revolutionize health care delivery in both 

resource-limited and resource-rich countries.

There are some strengths of this pilot study. For example, this is the first study that 

attempted to build and evaluate deep learning models using video images of TB medication 

intake from Uganda and the rest of Africa. We also developed a preliminary protocol for the 

annotation of medication video that can be refined further for use in low-income countries. 

This protocol was generated through a systematic iterative process of reviewing, discussing, 

and refining among a team of 3 trained video annotators who were computer science 

graduate students supervised by an expert in the field. Our pilot work builds on the existing 

literature and aspiration to expand the use of AI in routine health care [43] and, specifically, 

medication adherence monitoring [3]. By examining the utility of AI-based models, we 

are taking steps toward accelerating the future scale-up of digital adherence technologies 

in remote medication monitoring in TB, HIV/AIDS, and other chronic health conditions. 

The study was limited to the evaluation of the technical feasibility of developing a deep 

learning model. We did not incorporate all the recommended methodological features for the 

clinical validation of AI performance in real-world practice [46]. Indeed, we acknowledge 

that comprehensive validation is a critical next step for this work.

We also plan to develop new methods and evaluation protocols for the class-imbalanced 

settings in our future work.
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It is worth noting that the same patient had multiple videos, which may introduce 

dependencies between images of the same patient and make the cross-validation less 

trustworthy. However, we clearly observed that the videos from the same patient had 

substantial differences in visual appearance. For example, some videos were recorded 

indoors whereas others were recorded outdoors, the same patient wore different clothes 

in different videos, and the viewpoints of video recording were also different. Furthermore, 

our method aimed to detect and understand the human medication adherence activities under 

a series of video frames. For instance, our model had to focus on specific key actions, 

for example, putting the pills into the mouth and drinking water, while trying to ignore 

the influence of the environment in the video frames. Although we used the video level 

to conduct the 5-fold cross-validation, the variance of the environment for videos from the 

same patient could present a challenge for our model to identify whether the patient has 

taken the pill or not.

Future Implications and Recommendations

Future work should be focused on improving the classification accuracy of deep learning 

models in medication adherence. First, there is a need for open-sourcing of large, labeled 

data sets with which to train the algorithms, especially in the African context. Second, 

additional techniques are needed to address class imbalance to improve the classification 

performance of deep learning models. Lastly, we propose to apply self-supervised learning 

methods, which provide a new way to pretrain DCNNs by exploiting pseudo-training labels 

that eliminates the time-consuming tasks of manual annotation. In our current deep learning 

framework, models are pretrained with external data sets, which may not be suitable 

for the extraction of visual features to classify medication adherence and nonadherence 

activities. All the neural network models showed comparable discriminative performance 

and diagnostic properties to state-of-the-art–performing deep learning algorithms. The 

findings serve as a reasonable proof of concept to support the potential utility of deep 

learning models in the binary classification of medication video frames to predict adherence. 

The success and widespread use of AI technologies will depend on data storage capacity, 

processing power, and other infrastructure capacities within health care systems [3]. 

Research is needed to evaluate the effectiveness of AI solutions in different patient groups 

and establish the barriers to widespread adoption of digital health technologies.

Conclusions

Our findings in this pilot study show the potential application of pretrained deep learning 

models and AI for the classification of medication adherence based on a unique video 

data set drawn in the African setting. The 3D ResNet model showed the best performance 

in relation to speed and discriminatory performance. Further development of AI tools to 

improve the monitoring of medication adherence could advance this field in public health, 

especially in low-resource settings.
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Figure 1. 
Illustration of deep learning framework with feature extractor CNNs and classifier SVM. 

Different grey colors represent labeled videos, and black color denotes unlabeled videos. 

CNN: convolution neural network; SVM: support vector machine.
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Figure 2. 
Illustration of the building block of (a) ResNet, (b) 3D ResNet, and (c) 3D ResNext. BN: 

batch normalization; conv: convolution; F: number of feature channels; ReLu: rectified 

linear unit.
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Figure 3. 
Receiver operator curves for monitoring the medication adherence from models in our 

framework. AUC: area under the curve; HOG: histogram of oriented gradient.
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