Skip to main content
. Author manuscript; available in PMC: 2024 Mar 8.
Published in final edited form as: JMIR AI. 2023 Feb 23;2(1):e40167. doi: 10.2196/40167

Table 3.

Performance of the proposed deep learning framework under different convolution neural networks and histogram of oriented gradient (HOG).

Feature extractor Sensitivity, mean (SD) Specificity, mean (SD) Precision, mean (SD) F1-score, mean (SD) AUCa, mean (SD)
HOG 90.77 (2.62) 27.35 (8.98) 85.03 (1.86) 87.77 (1.41) 0.65 (0.06)
Inception-v4 92.54 (3.53) 43.70 (8.64) 87.91 (1.95) 90.12 (1.90) 0.80 (0.05)
3D ResNet 94.57b (2.61) 54.57 (6.46) 90.20 (1.81) 92.30 (1.44) 0.87 (0.04)
3D ResNext 94.17 (2.67) 51.74 (7.33) 89.62 (2.21) 91.81 (1.82) 0.85 (0.05)
Inflated 3D 92.94 (3.47) 49.78 (8.00) 89.08 (1.85) 90.94 (2.24) 0.82 (0.06)
a

AUC: area under the curve.

b

Italicized numbers represent the best result under each metric.