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Abstract

The analysis of longitudinal data from electronic health records (EHR) has the potential to 

improve clinical diagnoses and enable personalized medicine, motivating efforts to identify 

disease subtypes from patient comorbidity information. Here, we introduce an age-dependent 

topic modelling (ATM) method that provides a low-rank representation of longitudinal records of 

hundreds of distinct diseases in large EHR data sets. We applied ATM to 282,957 UK Biobank 

samples, identifying 52 diseases with heterogeneous comorbidity profiles; analyses of 211,908 All 

of Us samples produced concordant results. We defined subtypes of the 52 heterogeneous diseases 

based on their comorbidity profiles and compared genetic risk across disease subtypes using 

polygenic risk scores (PRS), identifying 18 disease subtypes whose PRS differed significantly 

from other subtypes of the same disease. We further identified specific genetic variants with 

subtype-dependent effects on disease risk. In conclusion, ATM identifies disease subtypes with 

differential genome-wide and locus-specific genetic risk profiles.

Introduction

Longitudinal electronic health record (EHR) data, encompassing diagnoses across hundreds 

of distinct diseases, offers immense potential to improve clinical diagnoses and enable 

personalised medicine1. Despite intense interest in both the genetic relationships between 

distinct diseases2–11 and the genetic relationships between biological subtypes of 

disease12–15, there has been limited progress on classifying disease phenotypes into groups 

of diseases with frequent co-occurrences (comorbidities) and leveraging comorbidities to 

identify disease subtypes. Low-rank modelling has appealing theoretical properties16,17 

and has produced promising applications18–24 to infer meaningful representations of high-

dimensional data. In particular, low-rank representation is an appealing way to summarize 

data across hundreds of distinct diseases25–27, providing the potential to identify patient-

level comorbidity patterns and distinguish disease subtypes. The biological differentiation of 

disease subtypes inferred from EHR data could be validated by comparing genetic profiles 

across subtypes, which is possible with emerging data sets that link genetic data with EHR 

data28–31.

Previous studies have used low-rank representation to identify shared genetic 

components25–27 across multiple distinct diseases, identifying relationships between 

diseases and generating valuable biological insights. However, age at diagnosis information 

in longitudinal EHR data has the potential to improve such efforts. For example, 

a recent study used longitudinal disease trajectories to identify disease pairs with 
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statistically significant directionality32, suggesting that age information could be leveraged 

to infer comorbidity profiles that capture temporal information. In addition, patient-level 

comorbidity information could potentially be leveraged to identify biological subtypes 

of disease, complementing its application to increase power for identifying genetic 

associations12 and to cluster disease-associated variants into biological pathways8; disease 

subtypes are fundamental to disease etiology14,33–36.

Here, we propose an age-dependent topic modelling (ATM) method to provide a low-rank 

representation of longitudinal disease records. ATM learns, and assigns to each individual, 

topic weights for several disease topics, each of which reflects a set of diseases that tend 

to co-occur within individuals as a function of age. We applied ATM to 1.7 million disease 

diagnoses spanning 348 diseases in UK Biobank, inferring 10 disease topics; we validated 

ATM in All of Us. We identified 52 diseases with heterogeneous comorbidity profiles that 

enabled us to define disease subtypes. We used genetic data to validate the disease subtypes, 

showing that they exhibit differential genome-wide and locus-specific genetic risk profiles.

Results

Overview of methods

We propose an age-dependent topic modelling (ATM) model, which provides a low-rank 

representation of longitudinal records of hundreds of distinct diseases in large EHR data 

sets (Fig. 1 and Methods). The model assigns to each individual topic weights for several 

disease topics; each disease topic reflects a set of diseases that tend to co-occur as a function 

of age, quantified by age-dependent topic loadings for each disease. The model assumes 

that, for each disease diagnosis, a topic is sampled based on the individual’s topic weights 

(which sum to 1 across topics, for a given individual), and a disease is sampled based on 

the individual’s age and the age-dependent topic loadings (which sum to 1 across diseases, 

for a given topic at a given age). The model generalizes the latent dirichlet allocation (LDA) 

model37,38 by allowing topic loadings for each topic to vary with age (Supplementary Note 

and Extended Data Fig. 1).

We developed a method to fit this model that addresses several challenges inherent 

to large EHR data sets; the method estimates topic weights for each individual, topic 

loadings for each disease, and posterior diagnosis-specific topic probabilities for each 

disease diagnosis. First, we derived a scalable deterministic method that uses numerical 

approximation approaches to fit the parameters of the model, addressing the challenge 

of computational cost. Second, we used the prediction odds ratio39 to compare model 

structures (e.g. number of topics and parametric form of topic loadings as a function of 

age), addressing the challenge of appropriate model selection; roughly, the prediction odds 

ratio quantifies the accuracy of correctly predicting disease diagnoses in held-out individuals 

using comorbidity information, compared to a predictor based only on prevalence (see 

Methods and Supplementary Table 1). Third, we employed collapsed variational inference40, 

addressing the challenge of sparsity in the data (e.g. in UK Biobank data, the average patient 

has diagnoses for 6 of 348 diseases analyzed); collapsed variational inference outperformed 

mean-field variational inference37 in empirical data. Further details are provided in the 
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Methods section and Supplementary Note; we have publicly released open-source software 

implementing the method (see Code Availability).

We applied ATM to longitudinal records of UK Biobank29 (282,957 individuals with 

1,726,144 disease diagnoses spanning 348 diseases; the targeted individuals are those 

diagnosed with at least two of the 348 diseases studied) and All of Us30 (211,908 individuals 

with 3,098,771 disease diagnoses spanning 233 of the 348 diseases). Each disease diagnosis 

has an associated age-at-diagnosis, defined as the earliest age of reported diagnosis of the 

disease in that individual; we caution that age at diagnosis may differ from age at disease 

onset (see Discussion). ATM does not use genetic data, but we used genetic data to validate 

the inferred topics (Methods).

Simulations

We performed simulations to compare ATM with latent dirichlet allocation (LDA)37,38, a 

simpler topic modelling approach that does not model age. Choices of simulation parameters 

that resemble real data are described in Supplementary Note. We assigned each disease 

diagnosis to one of two subtypes for the target disease based on age and other subtype 

differences, considering high, medium, or low age-dependent effects by specifying an 

average difference of 20, 10, or 5 years respectively in age at diagnosis for the two subtypes. 

For each level of age-dependent effects, we varied the proportion of diagnoses belonging 

to the first subtype (i.e. the subtype that has an earlier average age-at-diagnosis) from 

10–50%. Our primary metric for evaluating the LDA and ATM methods is the area under 

the precision-recall curve (AUPRC)41 metric, where precision is defined as the proportion 

of disease diagnoses that a given method assigned to the first subtype that were assigned 

correctly, and recall is defined as the proportion of disease diagnoses truly belonging 

to the first subtype that were assigned correctly. We discretized the subtype assigned to 

each disease diagnosis by a given method by assigning the subtype with higher inferred 

probability. We used AUPRC (instead of prediction odds ratio) in our simulations because 

the underlying truth is known. Further details and justifications of metrics used in this study 

are provided in the Methods, Supplementary Note, and Supplementary Table 1.

In simulations with high age-dependent effects, ATM attained much higher AUPRC than 

LDA across all values of subtype sample size proportion (AUPRC difference: 24%–42%), 

with both methods performing better at more balanced ratios (Fig. 2 and Supplementary 

Table 2). Accordingly, ATM attained both higher precision and higher recall than LDA 

(Supplementary Fig. 1). Results were qualitatively similar when using the second subtype 

as the classification target (Supplementary Fig. 2). In simulations with medium or low age-

dependent effects, ATM continued to outperform LDA, but with smaller differences between 

the methods. In simulations without age-dependent effects, ATM slightly underperformed 

Code availability
Open-source software implementing the ATM method is available at https://github.com/Xilin-Jiang/ATM. BOLT-LMM 2.3 is available 
at https://alkesgroup.broadinstitute.org/BOLT-LMM/. Heritability and genetic correlation analysis were performed using LDSC, which 
is available at https://github.com/bulik/ldsc. PLINK v1.9, which was used for FST and association tests, is available at https://
www.cog-genomics.org/plink/. All code generated in this study is available at https://zenodo.org/record/8304651 (DOI: 10.5281/
zenodo.8304651).
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LDA (Supplementary Fig. 3a). Three secondary analyses are described in the Supplementary 

Note and Supplementary Figures 3 and 4.

We conclude that ATM (which models age) assigns disease diagnoses to subtypes with 

higher accuracy than LDA (which does not model age) in simulations with age-dependent 

effects. We caution that our simulations largely represent a best-case scenario for ATM given 

that the generative model and inference model are very similar (although there are some 

differences, e.g. topic loadings were generated using a model different from the inference 

model), thus it is important to analyze empirical data to validate the method.

Age-dependent comorbidity profiles in the UK Biobank

We applied ATM to longitudinal hospital records of 282,957 individuals from the UK 

Biobank with an average record span of 28.6 years29. We used Phecode42 to define 

1,726,144 disease diagnoses spanning 348 diseases with at least 1,000 diagnoses each; 

the average individual had 6.1 disease diagnoses, and the average disease had a standard 

deviation of 8.5 years in age at diagnosis. The optimal inferred ATM model structure has 10 

topics and models age-dependent topic loadings for each disease as a spline function with 

one knot, based on optimizing prediction odds ratio (see below). We assigned names (and 

corresponding acronyms) to each of the 10 inferred topics based on the Phecode systems42 

assigned to diseases with high topic loadings (aggregated across ages) for that topic (Table 1 

and Supplementary Table 3).

Age-dependent topic loadings across all 10 topics and 348 diseases (stratified into Phecode 

systems), summarized as averages across age < 60 and age ≥ 60, are reported in Figure 3, 

Extended Data Figure 2, and Supplementary Table 4. Some topics such as NRI span diseases 

across the majority of Phecode systems, while other topics such as ARP are concentrated in 

a single Phecode system. Conversely, a single Phecode system may be split across multiple 

topics, e.g. diseases of the digestive system are split across UGI, LGI, and MDS. We 

note that topic loadings in diseases that span multiple topics are heavily age-dependent. 

For example, type 2 diabetes patients assigned to the CVD topic are associated with early 

onset of type 2 diabetes, whereas type 2 diabetes patients assigned to the MGND topic are 

associated with late onset of type 2 diabetes.

We performed seven secondary analyses to validate the integrity and reproducibility of 

inferred comorbidity topics. First, we fit ATM models with different model structures using 

80% training data, and computed their prediction odds ratios using 20% testing data. The 

ATM model structure with 10 topics and age-dependent topic loadings modelled as a spline 

function performed optimally (Supplementary Fig. 5; see Methods). Second, we confirmed 

that ATM (which models age) attained higher prediction odds ratios than LDA (which does 

not model age) across different values of the number of topics (Extended Data Fig. 3); 

for the optimal model with 10 topics, ATM attained an average prediction odds ratio of 

1.71, compared to a prediction odds ratio of 1.58 for LDA. Third, we compared the topic 

loadings by repeating the inference on female-only or male-only populations and observed 

no major discrepancies, except for genitourinary topics MGND and FGND (topic loading 

R2 (female vs. all) = 0.788, topic loading R2 (male vs. all) = 0.773; Extended Data Fig. 

4). Fourth, we verified that BMI, sex, Townsend deprivation index, and birth year explained 
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very little of the information in the inferred topics (Supplementary Table 3). Three additional 

secondary analyses are described in the Supplementary Note, Supplementary Figures 6–8, 

and Supplementary Table 1.

Disease topics capture known biology as well as the age-dependency of comorbidities for 

the same diseases. For example, early onset of essential hypertension is associated with 

the CVD topic43, which captures the established connection between lipid dysfunction 

(“hypercholesterolemia”) and cardiovascular diseases44, while later onset of essential 

hypertension is associated with the CER topic, which pertains to type 2 diabetes, obesity 

and COPD (Fig. 4a). Continuously varying age-dependent topic loadings for all 10 topics, 

restricted to diseases with high topic loadings, are reported in Supplementary Figure 9 and 

Supplementary Table 5. We note that most diseases have their topic loadings concentrated 

into a single topic (Fig. 4b, Supplementary Fig. 10a and Supplementary Table 4), and 

that most individuals have their topic weights concentrated into 1–2 topics (Fig. 4c and 

Supplementary Fig. 10b). For diseases spanning multiple topics (Extended Data Fig. 2 

and Supplementary Table 4), the assignment of type 2 diabetes patients to the CVD topic 

is consistent with known pathophysiology and epidemiology45,46 and has been shown in 

other comorbidity clustering studies, e.g. with the Beta Cell and Lipodystrophy subtypes 

described in ref. 35 and the severe insulin-deficient diabetes (SIDD) subtype described 

in ref. 14, which are characterized by early onset of type 2 diabetes and have multiple 

morbidities including hypercholesterolemia, hyperlipidemia, and cardiovascular diseases47. 

In addition, early-onset breast cancer and late-onset breast cancer are associated with 

different topics, e.g. NRI and FGND, consistent with known treatment effects for breast 

cancer patients that increase susceptibility to infections, especially bacterial pneumonias48 

and hypothyroidism49. We conclude that ATM identifies latent disease topics that robustly 

compress age-dependent comorbidity profiles and capture disease comorbidities both within 

and across Phecode systems.

Age-dependent comorbidity profiles in All of Us

To assess the transferability of inferred topics between cohorts, we applied ATM to 

longitudinal data from 211,908 All of Us samples30. We analyzed 3,098,771 diagnoses 

spanning 233 of the 348 diseases analyzed in UK Biobank for which data were available; 

the average individual had 14.6 disease diagnoses, and an average disease had a standard 

deviation of 14.0 years in age at diagnosis. The optimal model for All of Us included 13 

topics (Supplementary Figs. 11 and 12a,b and Supplementary Table 6); most diseases have 

their topic loadings concentrated into a single topic, and most individuals have their topic 

weights concentrated into 1–4 topics (Supplementary Fig. 13).

We assessed the concordance between each UK Biobank topic and each All of Us topic 

by computing the correlation between the respective topic loadings across the 233 diseases 

analyzed in both data sets (Fig. 5a,b, Supplementary Fig. 14, and Supplementary Table 

7). The median correlation between the ten UK Biobank topics and the most similar All 

of Us topic was 0.54, confirming qualitative alignment of topic loadings between All 

of Us and UK Biobank. For example, the topic loadings of CVD and CER topics were 

qualitatively similar to the most similar All of Us topics (Fig. 5a vs. Fig. 4a), even though 
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disease prevalences differ between the two cohorts (Supplementary Table 8). When using 

the optimal All of Us model (13 topics) to predict diagnoses in UK Biobank, we obtained 

a prediction odds ratio that was significantly larger than 1 (mean = 1.32; jackknife s.e. = 

0.0027; Supplementary Fig. 12c). Key differences between All of Us and UK Biobank data 

are described in the Supplementary Note.

For each of the 233 diseases, we assessed the concordance between UK Biobank and All 

of Us topic assignments for that disease by computing the correlation between UK Biobank 

topic assignments and All of Us topic assignments that were mapped to UK Biobank topics 

(by weighting by correlations between topics; Methods). The average correlation between 

UK Biobank and All of Us topic assignments for the same disease was 0.70 (vs. average 

correlation of 0.02 for different diseases) (Fig. 5c, Extended Data Fig. 5, and Supplementary 

Table 9). We conclude that ATM identifies latent disease topics from the All of Us cohort 

that align with topics from UK Biobank.

Comorbidity-based subtypes are genetically heterogeneous

We sought to define disease subtypes in UK Biobank data based on the topic weights 

of each patient and diagnosis-specific topic probabilities of each disease diagnosis. In 

some analyses, we used continuous-valued topic weights to model disease subtypes. In 

analyses that require discrete subtypes, we assigned a discrete topic assignment to each 

disease diagnosis based on its maximum diagnosis-specific topic probability, and inferred 

the comorbidity-derived subtype of each disease diagnosis based on the discrete topic 

assignment; we note that discretizing continuous data loses information (see Discussion). 

We restricted our disease subtype analyses to 52 diseases with at least 500 diagnoses 

assigned to each of two discrete subtypes; the average correlation between UK Biobank and 

All of Us disease subtypes (see above; same metric as Fig. 5c) was 0.64 for the 41 (of 52) 

diseases that were shared between the two cohorts (Table 2, Methods, Extended Data Fig. 2, 

Supplementary Fig. 12d, and Supplementary Table 11).

Age-dependent distributions of comorbidity-derived subtypes for four diseases (type 2 

diabetes, asthma, hypercholesterolemia, and essential hypertension) are reported in Figure 

6a and Supplementary Table 12; results for all 52 diseases are reported in Supplementary 

Figure 16 and Supplementary Table 12, and age-dependent distributions for the same four 

diseases in All of Us are reported in Supplementary Figure 17. The number of subtypes can 

be large, e.g. six subtypes for essential hypertension. Subtypes are often age-dependent, e.g. 

for the CVD and MGND subtypes of type 2 diabetes14,35 (discussed above).

ATM and the resulting subtype assignments do not make use of genetic data. However, we 

used genetic data to assess genetic heterogeneity across inferred subtypes of each disease. 

We used continuous-valued topic weights in this analysis. We first assessed whether PRS 

for overall disease risk varied with continuous-valued topic weights for each disease; PRS 

were computed using BOLT-LMM with five-fold cross validation50,51 (see Methods and 

Code Availability). Results for four diseases (from Fig. 6a) are reported in Figure 6b 

and Supplementary Table 13; results for all 10 well-powered diseases (10 of 52 diseases 

with highest z-scores for nonzero SNP-heritability) are reported in Extended Data Figure 

6 and Supplementary Table 13. We identified 18 disease-topic pairs (of 10 × 10 = 100 
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disease-topic pairs analyzed) for which PRS values in disease cases vary with patient 

topic weight. For example, for essential hypertension, hypercholesterolemia, and type 2 

diabetes, patients assigned to the CVD subtype had significantly higher PRS values than 

patients assigned to other subtypes. For essential hypertension, patients assigned to the CER 

subtype had significantly higher PRS values; for type 2 diabetes, patients assigned to the 

CER subtype had lower PRS values than the CVD subtype, even though the majority of 

type 2 diabetes diagnoses are assigned to the CER subtype. We further verified that most 

of the variation in PRS values with disease subtype could not be explained by age52 or 

differences in subtype sample size (Supplementary Fig. 18). These associations between 

subtypes (defined using comorbidity data) and PRS (defined using genetic data) imply that 

disease subtypes identified through comorbidity are genetically heterogeneous, consistent 

with phenomenological differences in disease aetiology.

We further investigated whether subtype assignments (defined using comorbidity data) 

revealed subtype-specific excess genetic correlations. We used discrete subtypes in this 

analysis. We estimated excess genetic correlations between disease-subtype and subtype-

subtype pairs (relative to genetic correlations between the underlying diseases). Excess 

pairwise genetic correlations for 15 diseases and disease subtypes (spanning 11 diseases 

and 3 topics: CER, MGND and CVD) are reported in Figure 7a and Supplementary Table 

14 (relative to genetic correlations between the underlying diseases; Fig. 7b), and excess 

pairwise genetic correlations for all 89 well-powered diseases and disease subtypes (89 of 

378 diseases and disease subtypes with z-score > 4 for nonzero SNP-heritability; 378 = 348 

diseases + 30 disease subtypes) are reported in Supplementary Figure 19 and Supplementary 

Table 14. Genetic correlations between pairs of subtypes involving the same disease were 

significantly less than 1 (FDR < 0.1) for hypertension (CER vs. CVD: ρ = 0.86 ± 0.04, P 
= 0.0004; MGND vs. CVD: ρ = 0.74 ± 0.05, P = 3 × 10−8) and type 2 diabetes (CER vs. 

MGND: ρ = 0.64 ± 0.09, P = 8 × 10−5) (Fig. 7a and Supplementary Table 14). In addition, 

we observed significant excess genetic correlations (FDR < 0.1) for 8 disease-subtype and 

subtype-subtype pairs involving different diseases (Fig. 7a and Supplementary Table 14). 

Additional secondary analyses are described in the Supplementary Note, Supplementary 

Figure 20, and Supplementary Table 15.

Finally, we used the population genetic parameter FST
53,54 to quantify genome-wide 

differences in allele frequency between two subtypes of the same disease. We used 

discrete subtypes in this analysis. We wished to avoid inferring genetic differences between 

subtypes that were due to partitions of the cohort that are unrelated to disease (e.g. we 

expect a nonzero FST between tall vs. short type 2 diabetes cases; see above). Thus, we 

assessed the statistical significance of nonzero FST estimates by comparing the observed 

FST estimates (between two subtypes of the same disease) to the expected FST based on 

matched topic weights (i.e. FST estimates between two sets of healthy controls with topic 

weight distributions matched to the respective disease subtypes) (excess FST; Methods). We 

determined that 63 of 104 pairs of disease subtypes involving the same disease (spanning 

29 of 49 diseases, excluding 3 diseases that did not have enough controls with matched 

topic weights) had significant excess FST estimates (FDR < 0.1) (Extended Data Figure 7 

and Supplementary Table 16). For example, the CVD, CER, and MGND subtypes of type 2 

diabetes had significant excess FST estimates (F-statistic = 0.0003, P = 0.001 based on 1,000 
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matched control sets). This provides further evidence that disease subtypes as determined by 

comorbidity have different molecular and physiological etiologies. We conclude that disease 

subtypes defined by distinct topics are genetically heterogeneous.

Disease-associated SNPs have subtype-dependent effects

We hypothesized that disease genes and pathways might differentially impact the disease 

subtypes identified by ATM. We investigated the genetic heterogeneity between disease 

subtypes at the level of individual disease-associated variants. We used continuous-valued 

topic weights in this analysis. We employed a statistical test that tests for SNP × topic 

interaction effects on disease phenotype in the presence of separate SNP and topic effects 

(Methods). We verified via simulations that this statistical test is well calibrated under a 

broad range of scenarios with no true interaction, including direct effect of topic on disease, 

direct effect of disease on topic, pleiotropic SNP effects on disease and topic, and nonlinear 

effects (Supplementary Fig. 21). We also assessed the power to detect true interactions 

(Supplementary Fig. 22). To limit the number of hypotheses tested, we applied this test to 

independent SNPs with genome-wide significant main effects on disease (Methods). We thus 

performed 2,530 statistical tests spanning 888 disease-associated SNPs, 14 diseases, and 35 

disease subtypes (Supplementary Table 17). We assessed statistical significance using global 

FDR < 0.1 across the 2,530 statistical tests. We also computed main SNP effects specific to 

each quartile of topic weights across individuals and tested for different odds ratios in top vs. 

bottom quartiles, as an alternative way to represent SNP × topic interactions; the top/bottom 

quartile test is more intuitive, but less powerful in most cases.

We identified 43 SNP × topic interactions at FDR < 0.1 (Extended Data Fig. 8, 

Supplementary Fig. 23, and Supplementary Tables 18 and 19). Here, we highlight a series 

of examples. First, the type 2 diabetes-associated SNP rs1042725 in the HMGA2 locus 

has a higher odds ratio in the top quartile of CVD topic weight (1.18 ± 0.02) than in the 

bottom quartile (1.00 ± 0.02) (P = 3 × 10−4 for interaction test (FDR = 0.04 < 0.1); P = 

3 × 10−7 for top/bottom quartile test (FDR = 0.0002 < 0.1)). HMGA2 is associated with 

type 2 diabetes55 and is reported to have functions in cardiac remodelling56, suggesting 

that shared pathways underlie the observed SNP × topic interaction. Second, the asthma-

associated SNP rs1837253 in the TSLP locus has a higher odds ratio in the top quartile 

of SRD topic weight (1.17 ± 0.02) than in the bottom quartile (1.05 ± 0.02) (P = 6 × 

10−6 for interaction test (FDR = 0.004 < 0.1); P = 1 × 10−3 for top/bottom quartile test 

(FDR = 0.08 < 0.1)). TSLP plays an important role in promoting Th2 cellular responses 

and is considered a potential therapeutic target, which is consistent with assignment of 

asthma and atopic/contact dermatitis57 to the SRD topic (Supplementary Table 4). Two 

other examples are described in the Supplementary Note. To verify correct calibration, we 

performed control SNP × topic interaction tests using the same 888 disease-associated SNPs 

together with random topics that did not correspond to disease subtypes, and confirmed 

that these control tests were well calibrated (Supplementary Fig. 24b). We conclude that 

genetic heterogeneity between disease subtypes can be detected at the level of individual 

disease-associated variants.
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Discussion

We have introduced an age-dependent topic modelling (ATM) method to provide a low-

rank representation of longitudinal disease records, leveraging age-dependent comorbidity 

profiles to identify and validate biological subtypes of disease. Our study builds on previous 

studies on topic modelling37,38,40,58, genetic subtype identification13–15, and low-rank 

modelling of multiple diseases to identify shared genetic components25–27. We highlight 

three specific contributions of our study. First, we incorporated age at diagnosis information 

into our low-rank representation, complementing the use of age information in other 

contexts32,52,59; we showed that age information is highly informative for our inferred 

comorbidity profiles in both simulated and empirical data, emphasizing the importance 

of accounting for age in efforts to classify disease diagnoses. Second, we identified 52 

diseases with heterogeneous comorbidity profiles that we used to define disease subtypes, 

many of which had not previously been identified (Supplementary Table 20); comorbidity-

derived disease subtypes were consistent between UK Biobank and All of Us, despite key 

differences between these cohorts. Third, we used genetic data (including PRS, genetic 

correlation and FST analyses) to validate these disease subtypes, confirming that the inferred 

subtypes reflect true differences in disease etiology.

We emphasize three downstream implications of our findings. First, it is of interest to 

perform disease subtype-specific GWAS on the disease subtypes that we have identified 

here, analogous to GWAS of previously identified disease subtypes13–15. Second, our 

findings motivate efforts to understand the functional biology underlying the disease 

subtypes that we identified; the recent availability of functional data that is linked to 

EHR is likely to aid this endeavor29,60. Third, the efficient inference of ATM permits 

identifying age-dependent comorbidity profiles and disease subtypes in much larger EHR 

data sets61, though we acknowledge that establishing comprehensive representations of 

disease topics that are transferable and robust across different healthcare systems and data 

sources represents a major future challenge.

Our findings reflect a growing understanding of the importance of context, such as age, 

sex, socioeconomic status and previous medical history, in genetic risk52,62,63. To maximize 

power and ensure accurate calibration, context information needs to be integrated into 

clinical risk prediction tools that combine genetic information (such as polygenic risk 

scores1,64) and non-genetic risk factors. Our work focuses on age, but motivates further 

investigation of other contexts. We note that aspects of context are themselves influenced 

by genetic risk factors; hence, there is an open and important challenge in determining how 

best to combine medical history and/or causal biomarker measurements with genetic risk to 

predict future events65.

We note several limitations of our work. First, age at diagnosis information in EHR data may 

be an imperfect proxy for true age at onset, particularly for less severe diseases that may 

be detected as secondary diagnoses; although perfectly accurate age at onset information 

would be ideal, our study shows that that imperfect age at diagnosis information is sufficient 

to draw meaningful conclusions. Second, raw EHR data may be inaccurate and/or difficult 

to parse1; again, although perfectly accurate EHR data would be ideal, our study shows 
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that imperfect EHR data is sufficient to draw meaningful conclusions. Third, our ATM 

approach incurs substantial computational cost (Supplementary Table 21); however, analyses 

of biobank-scale data sets are computationally tractable, with our main analysis requiring 

only 4.7 hours of running time. Additional limitations are described in the Supplementary 

Note. Despite these limitations, ATM is a powerful approach for identifying age-dependent 

comorbidity profiles and disease subtypes.

Methods

Ethics statement

This study analyzed publicly available data sets and hence did not require ethical approval.

Age-dependent topic model (ATM)

Our age-dependent topic model (ATM) is a Bayesian hierarchical model to infer latent 

risk profiles for common diseases. The model assumes that each individual possesses 

several age-evolving disease profiles (topic loadings), which summarize the risk over age 

for multiple diseases that tend to co-occur within an individual’s lifetime, namely the age 

specific multi-morbidity profiles. At each disease diagnosis, one of the disease profiles is 

first chosen based on individual weights of profile composition (topic weights); the disease 

is then sampled from this profile conditional on the age of the incidence.

We constructed a Bayesian hierarchical model to infer K latent risk profiles for D distinct 

common diseases. Each latent risk profile (comorbidity topics) is age-evolving and contains 

risk trajectories for all D diseases considered. Each individual might have a different number 

of diseases, while the disease risk is determined by the weighted combination of latent risk 

topics. We use following indices:

• s = 1, . . . , M;

• n = 1, . . . , Ns;

• i = 1, . . . , K;

• j = 1, . . . , D;

where M is the number of subjects, Ns is the number of diseases within stℎ subject, K is 

the number of topics, and D is the total number of diseases we are interested in. The plate 

notation of the generative model is summarized in Extended Data Figure 1:

• θ ∈ R M × K  is the topic weight for all subjects (referred to as topic weights), 

each row of which (∈ RK ) is assumed to be sampled from a Dirichlet 

distribution with parameter α . α is set as a hyper parameter: θs ∼ Dir α . We 

used topic weights to assign continuous values for disease subtypes in PRS and 

SNP × Topic analyses.

• z ∈ {1,2, . . . , K}∑S NS (referred to as diagnosis-specific topic probability) is the 

topic assignment for each diagnosis w ∈ {1,2, . . . , D}∑S NS. The total number 

of diagnoses across all patients are ∑S NS. The topic assignment for each 
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diagnosis is generated from a categorical distribution with parameters equal to 

stℎ individual topic weight: zsn ∼ Multi θs . We used diagnosis-specific topic 

probability to define discrete disease subtypes in excess genetic correlation and 

excess FST analyses.

• β(t) ∈ F t K × D is the topic loading which is K × D functions of age 

t . F(t) is the class of functions of t. At each plausible t, the following 

is satisfied: ∑j βij(t) = 1. In practice, we ensure the above is true and add 

smoothness by constrain F(t) to be a softmax of spline or polynomial functions: 

βij(t) = exp(pij
T ϕ (t))

∑j = 1
D exp(pij

T ϕ (t))
, where pij

T ϕ (t) is polynomial and spline functions 

of t; pij = { pijd}; d = 1,2, . . . , P ; P  is the degree of freedom that controls the 

smoothness; ϕ (t) is polynomial and spline basis for age t.

• w ∈ {1,2, . . . , D}∑S NS are observed disease diagnoses. The ntℎ diagnosis of stℎ

subject wsn is sampled from the topic βzsn(t) (chosen by zsn): wsn ∼ Multi βzsn tsn , 

where tsn is the the observed age at diagnosis of wsn.

The variables of interest are disease topics β(t), individual(patient)-level topic weight θ, and 

diagnosis-specific topic probability z. The innovative element in our model is age-evolving 

risk profiles, which is achieved by model the comorbidity trajectories β(t) ∈ F(t)K × D as 

functions of age. We parameterized functionals F(t) as linear, quadratic, cubic polynomials, 

and cubic splines with one, two and three knots. We use prediction odds ratio to decide 

the optimal model structure including the function forms and the number of topics; we use 

ELBO to choose the optimal inference results (with random parameter initialization) for the 

same model structure (Supplementary Table 1).

Inference of ATM

The variables of interest are global topic parameter β(t), individual (patient) level topic 

weight θ, and diagnosis-specific topic probability z of each diagnosis. We adopt an EM 

strategy, where in the E-step we estimate posterior distribution of θ and z, and then in 

the M-step we estimate β which maximizes the evidence lower bound (ELBO). For the 

E-step, we used a collapsed variational inference; for the M-step, we used local variational 

inference; details are described in the Supplementary Note.

We extract topic weights at patient-level and diagnosis-level from the posterior distribution 

q z , which is a categorical distribution (equation 8 of Supplementary Note). Our model has 

the desired property that both patients and diagnoses are assigned to comorbidity topics. We 

listed following definitions in the paper that are derived from q z :

• Each diagnosis has a diagnosis-specific topic probability, which is computed as 

Eq zn .

• Each patient has a posterior topic weight θs, which is a dirichlet distribution 

θs ∼ Dir( α + ∑n = 1
NS Eq{zn} ) . The topic weights of each patient is defined as 
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the mode of this Dirichlet distribution 
∑n = 1

NS Eq{zn}
∑i = 1

K ∑n = 1
NS Eq{zni}

 (we used α = 1 , which 

puts a noninformative prior on the topic weights). Topic weight is the low-rank 

representation of disease history, which is used in excess PRS and SNP × Topic 

interaction analyses.

• The average topic assignments of disease j is the mean over all incidences 

Eq{ zsn ∈ {wsn = J}}. This metric is used to measure which comorbidity topic a disease 

is associated with (Fig. 4b), and it is equivalent to a weighted average of topic 

loadings (Supplementary Note equation 5 shows the link between diagnosis-

specific topic probability and topic loading). A disease assigned to multiple 

topics is considered to have comorbidity subtypes.

• A hard assignment of a patient-diagnosis to a comorbidity-derived subtype is 

based on the max value of the vector Eq{zn} . The incident disease is assigned to 

topic argmaxi (Eq{zni}).

Metrics for evaluating ATM

ATM is evaluated for different purposes, which requires different metrics (Supplementary 

Table 1). Here we list the details of the four metrics considered: Prediction odds ratio, 

Evidence Lower Bound (ELBO), the Area under the Precision-Recall curve (AUPRC)66, and 

Co-occurrence odds ratio.

Prediction odds ratio.—We used prediction odds ratio to compare models of different 

topic numbers and configuration of age profiles. Briefly, prediction odds ratio is defined on 

20% held-out test data as the odds that the true diseases are within the top 1% diseases 

predicted by ATM (trained on 80% of the training set and uses earlier diagnoses as input), 

divided by the odds that the true diseases are within the top 1% of diseases ranked by 

prevalence. Details of computing prediction odds ratio for each patient are described in the 

Supplementary Note.

Evidence Lower Bound (ELBO).—ELBO evaluated the accuracy of the variational 

inference method on a specific data set39. The mathematical expression of ELBO for ATM 

is equation 9 in the Supplementary Note. We computed ELBO when fitting ATM to UK 

Biobank with 19 choices of the number of topics (5–20, 25, 30, and 50) and 6 choices of age 

profiles configuration (linear, quadratic polynomial, cubic polynomial, and splines with one, 

two and three knots). Each model is run for 10 times with random initializations. We choose 

the model that has the highest ELBO after converging.

AURPC.—To evaluate whether a model could capture the comorbidity subtypes in 

simulation analysis, we compute the precision, recall, and area under precision-recall curve 

(AUPRC) to correctly assign disease diagnosis to the true topic. The topic of each diagnosis 

is determined by diagnosis-specific topic probability. Note we could only evaluate AUPRC 

in simulations where the truth is known.
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Co-occurrence odds ratio.—To verify that the comorbidity profiles are capturing 

diseases that are more likely to co-occur within the same individual, we estimate the odds 

ratio of the disease duo, trio, quartet, and quintet that are captured by the topic versus that 

of random combinations. Details of computing Co-occurrence odds ratio for each model are 

described in the Supplementary Note.

Simulations of ATM method

To test whether the algorithm could assign disease diagnosis to correct comorbidity profiles, 

we simulated disease using following parameters:

• M = 10,000;

• NS = 6.1;

• NS ∼ exp{NS};

• D = 20;

• K = 2;

Here M is the number of individuals in the population, NS is the average number of 

diseases for each individual, D is the total number of diseases, and K is the number of 

comorbidity topics. The distribution of disease number per-individual NS is sampled from an 

exponential distribution, which matches those from UK Biobank data (Supplementary Fig. 

25). According to equation 3.1 in Ghorbani et al.67, whether the topic model could capture 

the true latent structure is determined by the signal-to-noise ratio and could be evaluated 

with limits M ∞; D ∞; D
M δ, where δ is a constant. Therefore, we choose D and 

M that make D
M  similar to those of the UK Biobank dataset (samples size = 282,957; distinct 

disease number = 349).

Details of topic loadings (Supplementary Fig. 26) and topic weights used in simulations are 

described in the Supplementary Note.

We simulated diseases with distinct comorbidity subtypes by combining diseases from 

distinct topics and labelling them as a single disease, using parameters described above. 

We consider two scenarios: (1) the subtypes of diseases have the same age at diagnosis 

distribution; (2) the subtypes of disease have distinct age at diagnosis distribution. We first 

chose one disease (disease A) then sampled a proportion of a second disease (disease B) to 

label as disease A. The proportion is varied to create a different sample size ratio of the two 

subtypes. In scenario one, disease B is a disease that has the exact same age distribution as 

disease A but from the other topic. In scenario two, disease B is from the other topic and 

has a different age distribution (age at diagnosis moves up for 20 years, 10 years, or 5 years, 

respectively) than disease A. After changing the labels of disease B to be the same as disease 

A, we use ATM/LDA to infer diagnosis-specific topic probability to assign diagnoses to the 

topics.

To evaluate whether a model could capture the comorbidity subtypes, we compute the 

precision, recall, and area under precision-recall curve (AUPRC) of correctly classifying 
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incident disease B to be from the correct topic. The topic of each diagnosis is determined by 

diagnosis-specific topic probability. We use other diseases from the same topic of disease B 

to benchmark the topic label. Topic modelling on the simulated data is performed with both 

ATM and LDA (both implemented using collapsed variational inference for fair comparison) 

to compare the performances.

We evaluate the subtype classification with varying values of four parameters: ratio of 

sample sizes between the two subtypes, simulated population size, number of distinct 

diseases, and difference of age distribution; details are described in the Supplementary Note.

UK Biobank comorbidity data

We analysed comorbidity data from 282,957 UK Biobank samples with diagnoses for at 

least two of the 348 focal diseases that we studied (see below). We use the hospital episode 

statistics (HES) data within the UK Biobank dataset, which uses ICD-10/ICD-10CM coding 

system; the average record span of HES data is 28.6 years. Codes starting with letters from 

A to N are kept as they correspond to disease codes (as opposed to procedure codes). The 

disease records were mapped from ICD-10/ICD-10CM codes to Phecodes using a three-step 

procedure; details are described in the Supplementary Note and the method is implemented 

in the ATM software.

The mapped Phecodes are filtered to keep only the first diagnosis for the recurrent diseases 

within a patient. The age at diagnosis for each disease is computed as the difference between 

month of birth to the episode starting date. We then computed the occurrence of each disease 

in the UK Biobank and kept 348 that have more than 1,000 occurrences (Supplementary 

Table 4). Starting with all 488,377 UK Biobank participants (including both European and 

non-European ancestries), we filtered the patients to keep only those who have at least two 

distinct diseases from the 348 focal diseases, as we are most interested in the comorbidity 

information. We treated the death as an additional disease (8,666 records) to evaluate 

if certain comorbidities are more likely to lead to fatal events. The procedure leaves us 

1,726,144 distinct records across 282,957 patients.

To name the topics inferred from the UK Biobank, we take the sum of average 
topic assignments (section Inference of ATM) over diseases for each Phecode system 

and extract the three most common Phecode disease systems. Six topics are named 

using the three most common Phecode disease systems: NRI “neoplasms, respiratory, 

infectious diseases”, CER “cardiovascular, endocrine/metabolic, respiratory”, SRD “sense 

organs, respiratory, dermatologic”, FGND “female genitourinary, neoplasms, digestive”, 

MGND “male genitourinary, digestive, neoplasms”, and MDS “musculoskeletal, digestive, 

symptoms”. For four topics that are predominantly associated with one system, we name 

them based on their top associated Phecode system: LGI “lower gastrointestinal”, UGI 

“upper gastrointestinal”, CVD “cardiovascular”, and ARP “arthropathy”.

We present focal diseases by selecting disease with highest average topic loading between 

age 30 to 81. We chose the top seven diseases for visualization, as we found more diseases 

would be harder to read on a plot.
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To compare the comorbidity heterogeneity between age groups, we group the incidences for 

each disease to two age groups: young group (<60 years of age) and old group (≥60 years 

of age). We compute the average topic assignment of each group as described in section 

Inference of ATM. Additionally, we inferred topics for male (984,554 records in 156,366 

individuals) and female (741,590 records in 126,591 individuals) populations respectively 

using ATM with 10 topics and spline function with one knot. We extract the average topic 

assignment for each disease, and use Pearson’s correlation to match the topics for both sexes 

to the topics inferred on the entire population.

We assigned diagnoses to discrete subtype using max diagnosis-specific topic probability. 

We focus our genetic heterogeneity analysis on 52 diseases that have at least 500 incidences 

assigned to a secondary topic.

All of Us comorbidity data

We analyzed EHR data collected in the EHR domain of All of Us samples, which includes 

both primary care and secondary care data. The average distance between first and last 

diagnoses is 7.9 years (vs. 7.0 years in UK Biobank); the average record span period is 

unknown, but we hypothesized that it is likely to be considerably larger than 7.9 years 

(vs. 28.6 years in UK Biobank). Disease codes in the All of Us EHR domain are coded 

in SNOMED CT. Details of mapping from SNOMED CT to Phecode are described in the 

Supplementary Note and implemented in the ATM software. We kept 233 Phecodes that 

overlap with the 348 diseases analyzed in the UK Biobank. We kept the first diagnosis 

for recurrent diseases in each patient. After mapping, we are left with 3,098,771 diagnoses 

spanning 211,908 All of Us samples. We run ATM with topic number from 5 to 20 and age 

functions configured as splines with two knots (degree of freedom = 5) on the All of Us 

comorbidity data and computed prediction odds ratio (using five-fold cross validation) and 

ELBO (on all 211,908 samples).

Comparing disease topics between UK Biobank and All of Us

We compared the optimal models from UK Biobank (10 topics, degree of freedom = 5) and 

All of Us (13 topics, degree of freedom = 5). We constrained our analyses on 233 of the 348 

diseases that are shared between the two data sets. We performed three analyses to compare 

the comorbidity patterns from the two data sets.

First, we computed the correlation of topic loadings from two data sets. Since the topic 

loadings are functions of age, we computed their correlations using four different ways to 

summarize age information: topic loadings averaged across age, and topic loadings at age 

50, 60, and 70. For each UK Biobank topic, we found its most similar All of Us topic that 

has max correlation of topic loadings (averaged across age).

Second, we computed the cross-population prediction odds ratio, using the All of Us topics 

to predict comorbidity patterns in UK Biobank data. We divided the UK Biobank samples 

into 10 jackknife blocks and computed prediction odds ratios on each leave-one-out sample.

Third, we compared the correlation of comorbidity profiles (measured by average topic 

assignments; see Methods for definition) for 233 diseases that are shared between the two 
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populations. We define correlations between topic assignments as the correlation between 

UK Biobank average topic assignments and All of Us average topic assignments mapped to 

UK Biobank topic space; details are described in the Supplementary Note.

UK Biobank genotype data

For genetic correlation analysis, FST, and SNP × Topic interaction analyses, we used genetic 

data from 488,377 UK Biobank participants (prior to restricting to 282,957 samples with 

at least two of the 348 diseases studied). For PRS and heritability estimation of the 10 

topics, we constrained our analysis to 409,694 British Isle ancestry individuals to adjust for 

population structure. We choose different sets of SNPs that are practical for each method; 

details are described in the Supplementary Note.

Polygenic risk scores (PRS) analysis

Although population stratification cannot be excluded68, to adjust for and minimize the 

impact of population stratification, we applied mixed-effect association model to samples 

of British Isle ancestry group (n = 409,694) to compute PRS for 10 heritable diseases 

that have the highest heritability z-scores. We used BOLT-LMM to construct genome-wide 

PRS50. Details of creating balanced case-control and SNP selection are described in the 

Supplementary Note. For each disease, we used 5-fold cross validation to estimate effect 

sizes using BOLT-LMM and computed the PRS on the held-out testing set. We used linear 

regression between continuous-valued topic weights and PRS to compute the excess PRS 

over different topics.

We compute the subtype-specific relative risk for each percentile of PRS using the following 

formula:

RRpt, s = npt, s × 100
ns

,

where RRpt, s is the relative risk of s subtype for the ptth PRS percentile (computed for the 

entire population); npt, s is the number of cases in s subtype that has PRS within the ptth

percentile; ns is the number of cases in the s subtype.

Genetic correlation analysis

We used discrete subtypes in genetic correlation analysis (different from the PRS analysis 

above). For each disease and disease subtype, we used a case-control matching strategy 

to construct data to estimate coefficients for genetic correlation analysis. We used a 

one-to-four case-control ratio, matching sex, BMI, year of birth and 40 genetic principal 

components. We used PLINK 1.969 to perform logistic regression with sex and top 10 

principal components as covariates. We used LDSC2 and summary statistics from the 

logistic regression to estimate the heritability for each disease or disease subtype which 

has more than 1,000 incidences (378 = 30 diseases subtypes + 348 diseases). We focus 

on 71 disease and 18 disease subtypes of the 378 diseases subtypes and diseases that have 

heritability z-score above 4 for genetic correlation analysis.
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We used LDSC and summary statistics from the logistic regression to compute genetic 

correlation for each pair of disease-disease, disease-subtype, and subtype-subtype. We report 

the estimate of genetic correlation and z-scores. Additionally, for pairs that involve subtypes 

(disease-subtype or subtype-subtype), we compute the excess genetic correlation, defined 

as the difference between the genetic correlation involving subtypes (disease-subtype 

and subtype-subtype) and the genetic correlation involving all disease diagnoses (disease-

disease). For example, the genetic correlation between T2D-CER and hypertension-CVD 

is compared to the genetic correlation between all T2D and all hypertension. We note that 

genetic correlations between subtypes of the same disease are compared to 1. We only 

reported P-values of excess genetic correlation when both genetic correlation estimation has 

standard error < 0.1 and at least one of the genetic correlations has |z-score| > 4.

To avoid potential collider effects where subtypes are defined by topic components that are 

independent of the diseases, we performed the same genetic correlation analyses but match 

cases in each subtype with controls with similar topic loadings; details are described in the 

Supplementary Note.

FST analysis

We used discrete subtypes in genetic correlation analysis (same as genetic correlation 

analysis above; different from the PRS analysis). To evaluate the genetic heterogeneity 

between disease subtypes, we estimated the FST across subtypes for 52 diseases that have 

at least 500 incidences assigned to a secondary topic. To test the statistical significance of 

FST, we adopted a permutation strategy by sampling controls with matched topic weights 

and sample size for each disease subtype, and computed FST across the subtype-matched 

control groups; details are described in the Supplementary Note. The FSTs are computed 

using PLINK 1.9’s weighted mean across all genotyped SNPs.

We obtained 1,000 permutation samples and reported the permutation P-value for each 

disease. Under the assumption that causal and non-causal variants have similar allele 

frequency differences across the subtypes, FST is a measure of causal genetic effect 

heterogeneity across subtypes.

SNP × topic interaction test

We used continuous-valued topic weights in the SNP × topic interaction analysis (same as 

the PRS analysis; different from the genetic correlation and FST analyses). We focus on 14 

diseases that have heritability z-score above 4. We fit following a logistic regression model:

logit p = β0 + β1 * T + β2* T2 + β3 * G + β4 * G * T,

where T  is individual topic weights for a specified topic, G is the genotype, and p is the 

probability of getting the disease. We computed the test statistics under the null that β4 = 0.

Simulations (below) showed that the interaction test is underpowered when the variant 

effects are small; we focused on the set of GWAS SNPs that reaches genome-wide 

significance level. We used LD-clumping at r2 > 0 . 6 to keep moderately independent 
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variants. We computed the test statistics using the model above (for testing β4 = 0) and 

computed study-wise FDR across 2,530 disease-topic pairs. We used QQ plots to check that 

interaction test statistics computed using all non-subtype topics for each disease (which are 

expected to be null) were well calibrated (Supplementary Fig. 24b).

As an alternative way to verify the interactions, we divided cases into quartiles based on 

topic weights (which defines disease subtypes continuously) for each disease-topic pair, and 

randomly sampled two controls that match the topic weights for each case. We estimated 

the main effect sizes for all GWAS SNPs within each quartile of topic weight and compared 

the effects between the top and bottom quartiles of topic weights. For visualization, we used 

GWAS SNPs that have no interaction effect (above, P > 0.05) as background SNPs.

Simulations of SNP × topic interaction

We simulated comorbidity with genetics to test interaction between genetic and comorbidity 

topics. We simulated 100 independent variants with MAF randomly sampled from the MAF 

of 888 independent disease-associated SNPs. We assumed an additive model and simulated 

genotypes for the population using Hardy-Weinberg equilibrium. We simulated three types 

of genetic effects on topic and diseases, based on the simulation framework described in the 

Simulations of ATM method section (genetics-topic, genetic-disease-topic, and genetic-topic 

interaction); details are described in the Supplementary Note.

We simulated with varying disease-topic or topic-disease causal effects with 50 repetitions at 

each causal effect size. The simulated data are fed to the ATM to infer the topic weights for 

interaction testing.
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Extended Data

Extended Data Fig. 1. Plate notation of ATM generative model.
M is the number of subjects; Ns is the number of records within sth subject. All plates 

(circles) are variables in the generative process, where the plates with shade w is the 

observed variable and plates without shade are unobserved variables to be inferred; is the 

topic weight; z is diagnosis-specific topic probability; t is the age at diagnosis for each 

diagnosis; is the topic loadings which are functions of age t; is the (non-informative) 

hyperparameter of the prior distribution of. The generative process is described in the 

Methods and Supplementary Note.
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Extended Data Fig. 2. Posterior topic distributions are different between age groups for diseases 
that have subtypes.
The figure has the same legends as Fig. 3A but focusing on 52 diseases that have a subtype 

with at least 500 incidences. Distribution of average topic assignment for these 52 diseases is 

reported in Supplementary Fig. 15.
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Extended Data Fig. 3. Comparison of prediction odds ratio between LDA and ATM.
Each dot represents results from running either ATM or LDA on the same random training 

and testing split. The models were run with different topic numbers and we chose a cubic 

spline with one knot for configuring ATM topic loadings. The prediction odds ratios are 

computed on the testing data using topic loadings inferred from the training data and topic 

weights inferred using previous diseases of testing individuals. The odds ratios are between 

the odds that target diseases are within model-predicted top percentile disease set versus the 

odds that target diseases are within the prevalence-ordered top percentile disease set. For 

the optimal model with 10 topics, ATM has an average prediction odds ratio 1.71 (across 

10 random training-testing splits); LDA has an average prediction odds ratio 1.58 (across 

10 random training-testing splits). Box plots show the distributions of the dots; centre, box 

bounds, and whisker ends denote median, quartiles, and minima/maxima.

Jiang et al. Page 22

Nat Genet. Author manuscript; available in PMC 2024 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4: Posterior topic distributions of female and male populations.
The figure is the same as Fig. 3A but comparing the topics that are inferred from female and 

male populations separately.
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Extended Data Fig. 5. Subtype correlations between UK Biobank and All of Us for 41 diseases 
that are presented in both datasets and have subtypes in UK Biobank.
Each box of the heatmap shows the correlation of average diagnosis-specific topic 

probability between a disease from All of Us and the other disease from UK Biobank. 

The diagnosis-specific topic probabilities from All of Us were mapped to UK Biobank based 

on proportional variance between the two topic spaces (Methods).

Jiang et al. Page 24

Nat Genet. Author manuscript; available in PMC 2024 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 6. Excess PRS analysis for all topics across 10 diseases (selected by 
heritability z-score).
The bar plot shows the estimated changes in s.d. of PRS per unit changes in the patient topic 

weight in disease cases. The PRS is estimated using all the cases in British Isle Ancestry. 

Error bars denote the 95% confidence interval. The stars show disease-topic pairs that are 

significant at FDR = 0.05. Numerical results are reported in Supplementary Table 13.
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Extended Data Fig. 7. Excess FST of disease subtypes compared with controls with matched topic 
weights.
P-values are for testing case-FST significantly higher than controls of similar topic weight 

distribution. The permutation controls are sampled for 1,000 times with the same topic 

weights distribution and sample size to the disease subtypes. We focus on 49 of the 

52 diseases which have more than one subgroup of at least 500 cases. Subtypes are 

defined based on the max value of the diagnosis-specific topic probability. Three diseases 

(“hypertension”, “hypercholesterolemia”, and “arthropathy”) are excluded as there are not 

enough controls that match the topic weights of cases. The colour shows the value of FST 

across subtypes. Exact P-values are reported in Supplementary Table 16.
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Extended Data Fig. 8. Examples of SNP × topic interaction effects on disease phenotypes.
For each example, we report main SNP effects (log odds ratios) specific to each quartile 

of topic weights across individuals, for both the focal SNP (blue dots) and background 

SNPs for that disease and topic (genome-wide significant main effect (P < 5×10–8) but 

non-significant SNP × topic interaction effect (P > 0.05); grey dots). Dashed red lines denote 

aggregate main SNP effects for each focal SNP. Error bars denote 95% confidence intervals. 

Grey lines denote linear regression of grey dots, with grey shading denoting corresponding 

95% confidence intervals. P-values for interaction are for testing the interaction regression 

coefficients; P-values for top/bottom differences are for two-sided t-test. Numerical results 

are reported in Supplementary Table 18.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. ATM provides an efficient way to represent longitudinal comorbidity data.
Top left: input consists of disease diagnoses as a function of age. Top right: ATM assigns a 

topic weight to each patient. Bottom: ATM infers age-dependent topic loadings.
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Fig. 2 |. ATM outperforms LDA in simulations with age-dependent effects.
In simulations at different levels of age-dependent effects (left panels), we report the area 

under the precision and recall curve (AUPRC) for ATM vs. LDA as a function of subtype 

sample size proportion (the proportion of diagnoses belonging to the smaller subtype) (right 

panels). Each dot represents the mean of 100 simulations of 10,000 individuals. Error bars 

denote 95% confidence intervals. a, 20-year difference in age at diagnosis for the two 

subtypes. b, 10-year difference in age at diagnosis for the two subtypes. c, 5-year difference 
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in age at diagnosis for the two subtypes. Numerical results are reported in Supplementary 

Table 2.
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Fig. 3 |. Age-dependent topic loadings of 10 inferred disease topics across 348 diseases in the UK 
Biobank.
We report topic loadings averaged across younger ages (age at diagnosis < 60) and older 

ages (age at diagnosis > 60). Row labels denote disease categories ordered by Phecode 

systems, with alternating blue and red color for visualization purposes; “Other” is a merge 

of five Phecode systems: “congenital anomalies”, “symptoms”, “injuries & poisoning”, 

“other tests”, and “death” (which is treated as an additional disease, see Methods). Topics 

are ordered by the corresponding Phecode system. Further details on the 10 topics are 

provided in Table 1. Further details on the diseases discussed in the text (type 2 diabetes 
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and breast cancer) are provided in Extended Data Figure 2. Numerical results are reported in 

Supplementary Table 4.
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Fig. 4 |. Topic loadings in UK Biobank capture age-dependent comorbidities.
a, Age-dependent topic loadings for two representative topics, CER and CVD; for each 

topic, we include the top seven diseases with highest topic loadings. Results for all 10 topics 

are reported in Supplementary Figure 9. b, Box plot of disease topic loading as a function of 

rank; disease topic loadings are computed as a weighted average across all values of age at 

diagnosis. c, Box plot of patient topic weight as a function of rank. Centre, box bounds, and 

whisker ends denote median, quartiles, and minima/maxima. Numerical results are reported 

in Supplementary Table 5.
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Fig. 5 |. Topic loadings in All of Us capture age-dependent comorbidities that are concordant 
with UK Biobank.
a, Age-dependent topic loadings for two All of Us topics corresponding to CVD and CER 

(Fig. 4a); for each topic, we include the top seven diseases with highest topic loadings. 

Correlations of topic loadings between UK Biobank and All of Us topics were 0.74 for CVD 

and 0.65 for CER. Numerical results for all 13 topics are reported in Supplementary Table 

6. b, Topic loading correlations between UK Biobank (UKB) and All of Us (AOU). The 

y-axis reflects the 10 topics from the optimal UK Biobank model; the x-axis reflects the 13 

topics from the optimal All of Us model. Numerical results are reported in Supplementary 

Table 7. c, Correlations between UKB and AOU topic assignments were higher for the same 

diseases (red shading, average = 0.70) than for different diseases (grey shading, average = 

0.02). P-value is for two-sided t-test; numerical results are reported in Supplementary Table 

9.
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Fig. 6 |. Polygenic risk scores vary across disease subtypes defined by distinct topics.
a, Stacked bar plots of age-dependent subtypes (defined by topics) for four representative 

diseases (type 2 diabetes, asthma, hypercholesterolemia, and essential hypertension); for 

each disease, we include all subtypes with at least one diagnosis. Results for all 52 diseases 

are reported in Supplementary Figure 16. b, Standardized excess PRS values in disease 

cases (s.d. increase in PRS per unit increase in patient topic weight) for four representative 

diseases and four corresponding topics. c, Relative risk for cases of type 2 diabetes and 

hypercholesterolemia of CVD and MGND subtypes (vs. controls) across PRS percentiles. 

Each point spans 2 PRS percentiles. Lines denote regression on log scale. Error bars denote 

95% confidence intervals. Numerical results are reported in Supplementary Tables 11–13.
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Fig. 7 |. Genetic correlations vary across disease subtypes defined by distinct topics.
a, Excess genetic correlations for pairs of 15 disease subtypes or diseases (9 disease 

subtypes (denoted with asterisks) + 6 diseases without subtypes), relative to genetic 

correlations between the underlying diseases. Full square with asterisk denotes FDR < 

0.1; less than full squares have area proportional to z-scores for difference. Grey squares 

denote NA (pair of diseases without subtypes or pair of same disease subtype or disease). 

b, Genetic correlations between the underlying diseases. Full circle denotes |z-score| > 4 

for nonzero genetic correlation; less than full circles have area proportional to |z-score|. 

Numerical results are reported in Supplementary Table 14.
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Table 1|
Summary of 10 inferred disease topics in the UK Biobank.

For each topic, we list its 3-letter acronym, disease systems, representative diseases, and number of associated 

diseases (defined as diseases with average diagnosis-specific topic probability >50% for that topic). Topics are 

ordered by the Phecode system (see Fig. 3). 316 of 348 diseases analyzed are associated with a topic; the 

remaining 32 diseases do not have a topic with average diagnosis-specific topic probability >50%. NOS, not 

otherwise specified.

Acronym Disease systems Representative diseases
Number of 
associated 
diseases

NRI Neoplasms, respiratory, infectious 
diseases

Secondary malignancy of lymph nodes; Pneumococcal pneumonia; 
Bacterial infection NOS 53

CER Circulatory system, endocrine/
metabolic, respiratory Type 2 diabetes; Obesity; Chronic airway obstruction 41

SRD Sense organs, respiratory, 
dermatologic

Cataract; Septal Deviations/Turbinate Hypertrophy; Benign 
neoplasm of skin 38

CVD Cardiovascular disease Hypercholesterolemia; Coronary atherosclerosis; Myocardial 
infarction 27

UGI Upper gastrointestinal disease Diaphragmatic hernia; Benign neoplasm of other parts of digestive 
system; Gastritis and duodenitis 22

LGI Lower gastrointestinal disease Irritable Bowel Syndrome; Benign neoplasm of colon; Anal and 
rectal polyp 13

FGND Female genitourinary, neoplasms, 
digestive

Uterine leiomyoma; Malignant neoplasm of female breast; 
Hypothyroidism NOS 34

MGND Male genitourinary, neoplasms, 
digestive

Urinary tract infection; Cancer of prostate; Other disorders of 
bladder 33

MDS Musculoskeletal, digestive, 
symptoms Back pain; Cholelithiasis; Other disorders of soft tissues 29

ARP Arthropathy-related disease Arthropathy NOS; Rheumatoid arthritis; Enthesopathy 26
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