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Abstract

The ability of tumors to survive therapy reflects both cell-intrinsic and microenvironmental 

mechanisms. Across many cancers, including triple-negative breast cancer (TNBC), a high stroma/

tumor ratio correlates with poor survival. In many contexts, this correlation can be explained 

by the direct reduction of therapy sensitivity induced by stroma-produced paracrine factors. We 
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sought to explore whether this direct effect contributes to the link between stroma and poor 

responses to chemotherapies. In vitro studies with panels of TNBC cell line models and stromal 

isolates failed to detect a direct modulation of chemoresistance. At the same time, consistent with 

prior studies, fibroblast-produced secreted factors stimulated treatment-independent enhancement 

of tumor cell proliferation. Spatial analyses indicated that proximity to stroma is often associated 

with enhanced tumor cell proliferation in vivo. These observations suggested an indirect link 

between stroma and chemoresistance, where stroma-augmented proliferation potentiates the 

recovery of residual tumors between chemotherapy cycles. To evaluate this hypothesis, a spatial 

agent-based model of stroma impact on proliferation/death dynamics was developed that was 

quantitatively parameterized using inferences from histological analyses and experimental studies. 

The model demonstrated that the observed enhancement of tumor cell proliferation within stroma-

proximal niches could enable tumors to avoid elimination over multiple chemotherapy cycles. 

Therefore, this study supports the existence of an indirect mechanism of environment-mediated 

chemoresistance that might contribute to the negative correlation between stromal content and 

poor therapy outcomes.

Introduction

For many types of cancers, standard cytotoxic chemotherapy remains the main treatment 

option. In many types of cancer, chemotherapies induce potent clinical responses that can 

translate to cures. On the other hand, despite having strong side effects, they often fail to 

eradicate cancers, especially in advanced, metastatic stages. Improving the clinical outcomes 

of these therapies requires an adequate understanding of the mechanisms responsible 

for treatment failure. These needs have motivated massive research efforts to identify a 

large and growing list of specific molecular mechanisms responsible for chemoresistance. 

Whereas chemoresistance studies have primarily focused on cell-intrinsic genetic and 

epigenetic mechanisms, there is a growing appreciation of the importance of cell-extrinsic, 

microenvironmental factors. Across many types of cancers, high stroma-to-tumor ratios 

correlate with poor outcomes (1–8). In multiple contexts of targeted therapy, this correlation 

appears to reflect the effects of direct microenvironmental resistance mechanisms. Multiple 

growth factors and extracellular matrix (ECM) components produced by cancer-associated 

fibroblasts (CAFs) and other non-malignant cell types within the tumor microenvironment 

(TME), can strongly blunt the sensitivity of cancer cells to inhibition of oncogenic drivers 

by the activation of alternative signaling pathways and the induction of cell plasticity (9–11). 

However, the relevance of direct desensitization toward chemotherapy sensitivity is less 

clear.

We sought to explore the link between stroma and chemotherapy responses in triple-

negative breast cancers (TNBC), where stromal gene expression signature is linked to 

poor chemotherapy responses (12). Despite developments in immune therapies and the 

recent approval of PARP inhibitors and antibody-drug conjugates, cytotoxic chemotherapies 

remain the primary therapeutic tool for adjuvant and neoadjuvant TNBC therapy. The 

most commonly used treatment modality in the US is a dose-dense therapy that includes 

anthracyclines (such as doxorubicin), cyclophosphamide, and taxanes (AC-T regimen). 

Chemotherapy is administered intravenously as an injection over a few minutes or as 
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infusions over a few hours. Two to three-week breaks are given to allow patients to recover 

from the strong side effects of the treatment. This cycle is repeated several times. TNBC 

tumors are typically sensitive to chemotherapy, and this sensitivity is maintained over 

the course of the treatment (13), suggesting that TNBC can avoid therapeutic elimination 

without acquiring bona fide resistance (14) as long as a sufficient number of tumor cells can 

survive till the end of chemotherapy.

Like several other cancer types, high stromal content in TNBC strongly correlates with 

poor prognosis (7,12,15). Moreover, stromal gene expression signatures predict a diminished 

response to the anthracycline-containing chemotherapeutic regimen in neoadjuvant therapy 

(12), suggesting a causal link between stroma and therapy persistence. However, we 

failed to observe direct chemoprotection with a panel of CAF isolates and TNBC models. 

Instead, in agreement with prior studies documenting the growth-promoting effects of CAFs 

(9,16,17) we found that, often, CAFs and CAF-conditioned media (CAF CM) enhance the 

proliferation of TNBC cells in vitro, independent of the treatment. Consistent with these 

observations, we found that proximity to stroma is associated with enhanced tumor cell 

proliferation in vivo, in xenograft models and clinical samples. These findings led us to 

hypothesize an indirect link between stroma and chemoresistance: the ability of tumors to 

avoid therapy-induced extinction is mediated by an accelerated recovery of residual tumors 

between cycles of chemotherapy. To test the feasibility of this hypothesis, we developed 

a mathematical model (a spatial agent-based model (ABM)), parameterized and calibrated 

with our experimental data, to understand the impact of stroma-enhanced proliferation on 

the cancer cell population dynamics. We found that a relatively modest enhancement of 

cell proliferation within stroma-proximal tumor cells is sufficient to substantially decrease 

the probability of therapeutic extinction. Our findings indicate the existence of a new 

type of indirect chemoresistance mechanism that, acting in parallel with cell-intrinsic 

chemoresistance mechanisms, likely contributes to the ability of a subset of tumors to persist 

through therapy and might be suppressed therapeutically.

Materials and Methods.

IHC staining.

Formalin-fixed, paraffin-embedded tumors were cut at 5 microns sections. Deparaffinized 

tissue slices were blocked in PBS with 10% goat serum for 30 min at room temperature, 

then incubated at room temperature for 1 hour with primary anti-BrdU antibodies (1:100, 

Sigma#11170376001) and 1 hour with secondary antibodies (1:100, Vector Labs BA-9200), 

with 3×10 min washes after each incubation. The staining was developed using Vectastain 

ABC HRP Kit (Vector Labs, PK-6100), following manufacturer’s protocol. Cytoseal XYL 

mounting media (Epredia) was used to mount the slides.

Histology image segmentation.

IHC images were scanned with Aperio ScanScope XT Slide Scanner (Leica). The image 

areas corresponding to tumor tissue were segmented into BrdU+/− tumor cells, stroma, 

and necrotic tissue, with necrotic tissue excluded from the analyses (Fig. S3A). The 

segmentation was performed using an artificial intelligence (AI) based semi-automated deep 

Miroshnychenko et al. Page 3

Cancer Res. Author manuscript; available in PMC 2024 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learning quantification method (Aiforia version 5.2, Aiforia Inc, Cambridge, MA). Our 

training set for segmentation consisted of 20 slides, including samples after treatment and 

before treatment. An artificial intelligence-based software (Aiforia) was trained to recognize 

the nuclei of proliferating (stained with the proliferation marker BrdU) and non-proliferating 

tumor cells and record the x-y coordinates of the center of the nuclei. The stromal areas were 

segmented as polygons without separating cellular and ECM components. Segmentation 

accuracy was examined and approved by American Board of Pathology certified pathologist. 

Segmentation was performed on selected ROI for the initial correlation analyses. For 

proximity to the nearest stroma and RDS analyses, all of the tumor tissue was subjected to 

segmentation. Segmentation masks were downloaded as rds. files for downstream analyses.

Spatial statistics analyses.

For the correlation analyses between the fraction of BrdU+ cells and stromal content, ROIs 

of 0.9 mm diameter were semi-randomly sampled from the tumor tissue area, avoiding large 

necrotic areas. Each ROI was segmented using the Aiforia AI model described above. The 

stromal area was calculated as a fraction of the ROI area, excluding necrotic tissue. The 

correlation between stroma and BrdU+ cells was calculated in GraphPad Prism using the 

simple linear regression method.

Advanced spatial statistics analyses were performed using R 4.1.2. The point pattern 

extraction from the Aiforia-segmented images has been performed using a combination of 

“sf” and “Magick” packages. Spatial statistics analyses were performed using the “Spatstat 

“, “kSamples”, “sp” and “Goftest”) packages. Polygonal segmentation of tumor stroma was 

tiled/pixelated using R package “sf” and “magick” into squares with the length of an average 

tumor cell diameter (15 μm). X-y coordinates of the center of each square (stroma unit/pixel) 

were recorded and used for the subsequent analyses.

For the analyses of distances to the nearest stroma, for each marker positive and marker 

negative (BrdU or Ki67) tumor cell, the Euclidian distance to the nearest stroma pixel 

was determined, and the distance frequencies and cumulative density graphs were plotted. 

Cumulative density functions of the respective distributions were used for analyses of 

the statistical significance of differences between distances of marker positive and marker 

negative cells by the Kolgomorov-Smirnoff test.

The RDF compares the average density of points against complete spatial randomness 

(CSR) across different length scales. To calculate the RDF for the distribution of marker 

positive/negative cells relative to the stroma, an annulus of width dr and radius r is placed 

around each of the stroma pixels. The number of marker +/− tumor cell centers within each 

annulus was calculated and divided by the expected number of tumor cell centers that fall 

inside the annulus under CSR. This calculation was repeated for each of the stromal pixels, 

and then the average value over all points at a certain r was recorded. CSR was generated 

in silico by maintaining the position of tumor cells and stromal pixels, as well as numbers 

of marker positive/negative tumor cells, but randomly shuffling tumor cell labels (marker 

status). For each sample, we generated a series of 39 CSF distributions and calculated a CSR 

average and 95% envelope of confidence.
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Agent-Based Modeling.

The on-lattice ABM was developed using the Hybrid Automata Library (HAL) Java Library 

platform (18). In our model, cells are positioned in a 100 cells x 100 cells grid; the initial 

distribution of tumor cells and stroma is based on the Aiforia-extracted mask of an IHC slide 

image representing 1500 μm x 1500 μm ea. Each cell on the grid can be occupied by a tumor 

cell, stroma or be empty. Tumor cells are represented by agents that can divide, die, and 

move, while stromal pixels remain static. Time is discrete, with each time step representing 

8 hours. At any timestep, the tumor cells can divide if there is an empty grid space in their 

immediate vicinity, die, or move to an available grid point in their vicinity (see Fig. 3C). 

The probability of proliferation is dictated by the proximity to the stroma, with the effect 

extending to tumor cells within 3 cells from the stromal pixels (based on the x-value of the 

maximum of the RDF). The proliferation rate was extracted from the labeling index given by 

the BrdU staining, while the death rate was taken as the difference between the net growth 

obtained by fitting the volume growth dynamics of the tumor and the proliferation rate 

(see the SI materials for the conversion from volume to cell fraction conversion and other 

details). Both apoptosis and death due to treatment occur without spatial bias throughout 

the grid, while the proliferation is increased by 5% -f 40% excess within the three-cell 

diameter radius during treatment. Based on our observations, in between chemotherapy 

cycles, both the proliferation and death rates are set to 55% of the initial value (in absence 

of treatment). The chemotherapy was simulated as 4 cycles and two scenarios of its effects 

were considered. First, chemotherapy induced a high kill rate over four days, followed by 

seventeen days where the proliferation and death rates were 55% of their respective rates 

before the treatment. Second, chemotherapy induced a low kill rate over two weeks with 

seven days of proliferation/death rates reduced as mentioned in the first scenario.

Parameter values are described in Table S1. Details on the model and derivation of 

parameters from experimental data are provided in the Supplementary Methods.

Cell lines and tissue culture conditions.

Breast cancer cell lines were obtained from the following sources: MDA-MB-231, 

HCC1937, HCC1806, BT549, MDA-MB-436, HCC70, HS578T from ATCC and 

SUM149PT from Dr. S. Ethier (University of Michigan, Ann Arbor, MI). Breast cancer 

and normal fibroblasts were isolated from patient samples as previously described using 

protocols approved by the Dana-Farber Harvard Cancer Center (DF/HCC) Institutional 

Review Board. Fibroblast and SUM149PT cells were cultured in 50/50 mixture of DMEM-

F12/MEGM with supplements containing 5% FBS; all other cell lines were cultured in in 

ATCC-recommended media. Cell line identities were confirmed by STR analysis. All cell 

lines and CAF isolates were routinely tested for mycoplasma contamination.

Firefly luciferase expressing derivates of TNBC cell lines were obtained as described 

in (19). Gaussia-expressing cell variants used for 3D assays were derived by lentiviral 

expression of Gaussia, subcloned from pMCS-Gaussia vector into pLenti6.3/V5-DEST 

vector (ThermoFisher). Fluorescently labeled cells for time-lapse microscopy studies were 

derived from the corresponding cell lines using a custom lentiviral vector which provides a 

nuclear expression of mCherry or GFP, coupled with puromycin expression, as described in 
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(20). CAF-conditioned media was collected from confluent 10 cm dishes of CAFs grown 

in the fibroblast media. CAF CM experiments were performed in 50/50 mixtures of cell 

line-specific media with either CAF CM or fibroblast media.

Cell viability readouts.

For the luminescence-based readouts, firefly luciferase-expressing cells were grown in clear 

bottom white opaque 96 well plates (Corning, 3610). 30 min before taking the reading, 

the medium was replaced with fresh medium containing 25 μg/ml d-luciferin (GoldBio 

LUCK-2G). For the luminescence-based readouts of 3D assays, cells were seeded in ultra-

low attachment U-bottom 96 well plates (Corning, 4520) at 3×104 cells per well. Gaussia 

luciferase levels were measured using the supernatant media, after 5 hours of incubation 

with fresh media to avoid accumulation. 100 ul of 5 ug/ml Coelenterazine (GoldBio CZ) 

was injected using the luminometer. The luminescence signal was determined using GloMax 

luminometer (Promega); the background from the cell-free wells was subtracted from each 

reading. For microscopy-based readouts, time-lapse videos were generated with IncuCyte 

live cell imaging system (Sartorius) using ZOOM 4x objective. Images were acquired in 

red and green fluorescent channels as well as visible light channel every 12 hours for 7–21 

days. Propidium iodide was added to the culture medium at 0.5 μg/ml to label dead cells. 

For the viability assays focused on assessing therapy responses, cells were seeded at 3.5×104 

cells per well to achieve ~80% initial confluency. For the proliferation assays assessing the 

impact of CAFs and CAF CM on cell growth in the absence of treatment, cells were seeded 

at 3×103 to achieve ~5% initial confluency. For the fibroblast co-culture experiments, cells 

were plated in 3:1 TNBC: CAF ratios in 96 well-clear bottom tissue culture plates (Falcon 

#353072).

Mouse xenograft studies

Tumors were initiated by orthotopic injection of 8 weeks old female NSG mice 1×106 cells, 

suspended in 50/50 mix of DMEME-F12 culture media and Matrigel (BD Biosciences), in 

100 μl volume; each animal was implanted with two tumors on the opposite flanks. Tumor 

growth was monitored weekly by electronic caliper measurements as described in (21). 

30–40 min prior to euthanasia, mice were injected with 10 mg/ml BrdU dissolved in PBS. 

Tumors were fixed in formaldehyde and embedded in paraffin. All animal experiments were 

performed in accordance with the approved procedures of the IACUC protocol #IS00005557 

of the H. Lee Moffitt Cancer Center.

Clinical Samples

Diagnostic needle biopsy and post-surgery tissues of TNBC patients after AT-C neoadjuvant 

therapy were collected at Moffitt Cancer Center (Tampa, FL). All tissues utilized for 

this study were collected as part of Moffitt Cancer Center’s Total Cancer Care protocol 

(MCC#14690), with patients providing written informed consent.

De-identified formalin-fixed paraffin-embedded breast tissues were cut at 5 microns sections 

and released in support of this study under IRB-approved protocol.
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Statistical analyses

Statistical analyses of in vitro and in vivo experimental data were performed using GraphPad 

Prism software, using statistical tests indicated in figure legends. Statistical analyses for the 

in silico simulations were performed with R and MatLab.

Data and code availability

All data supporting the findings of this study are available in the article and its 

Supplementary Information files, and upon request from the corresponding author. Tissue 

segmentation data is available at https://github.com/Marusyk-Lab/TNBC-CAF. The code 

for running the simulations and topology analysis is available online at https://github.com/

ttanya86/TNBC. The association between the expression of CAF markers and TNBC 

survival data in this study were obtained from Kaplan-Meier Plotter at https://kmplot.com.

Results

CAFs stimulate the proliferation of TNBC cells but provide no direct chemoprotection.

CAFs are one of the main cellular components of the TME and the primary producer of 

ECM, growth factors, and cytokines. Multiple cytokines and ECM components, produced 

by CAFs (e.g., HGF, FGFs, fibronectin, etc.) have been shown to strongly reduce the 

sensitivity of cancer cells to therapeutic agents in multiple contexts of targeted and cytotoxic 

therapies (6,22–25). Therefore, we asked whether the known correlation between poor 

prognosis and high stromal gene signature can be reduced to a correlation with CAFs. To 

this end, using the KM plotter tool (26) (see Methods), we interrogated publicly available 

expression datasets to explore the association between the expression of CAF markers and 

TNBC survival. We found that the expression of individual CAF markers aSMA, FAP, and 

PDGFRa, was associated with significantly lower survival (Fig. S1). This association led 

us to speculate that, like other contexts of CAF-mediated therapy resistance (27,28), CAFs 

might directly reduce the sensitivity of TNBC cells to chemotherapeutic agents. To test 

this hypothesis, we evaluated the ability of CAFs to modify the sensitivity of a panel of 

TNBC cell lines to the AC-T components doxorubicin and taxol, as well as the widely used 

therapeutic agent cisplatin. Since the commonly used viability assays, such as CellTiterGlo 

or MTT cannot discriminate between the viability signals of cancer cells and CAFs, we 

used luciferase-labeled TNBC cells and bioluminescence readout, as described in our prior 

work (19) (Fig. 1A). When normalized to vehicle-treated TNBC cell monocultures (Fig. 

1B), co-culture with CAFs enhanced the luminescence readout under treatment in most of 

the tested models (Fig. 1C). However, we also observed a substantially higher luciferase 

signal in the DMSO controls of the CAF co-cultures, suggesting a general enhancement of 

proliferation, rather than reduction of sensitivity to therapy. Indeed, when the readouts of the 

CAF co-cultures were normalized separately to their DMSO controls (Fig. 1B), luciferase 

signal enhancement under therapy was no longer observed (Fig 1D). Notably, this lack of 

specific protection stands in contrast to the CAF-mediated desensitization to the therapies 

that target specific signaling nodes, such as EGFR/HER2 inhibitor lapatinib, reported in our 

prior work (19), or pan-class I PI3K inhibitor BKM120 (Fig. S2A).
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A general enhancement of the luciferase signal was also observed with a large panel of 

primary human CAFs, normal breast fibroblasts, and immortalized and primary mouse 

fibroblasts (Fig. S2B, C). Of note, consistent with the prior knowledge, CAFs were much 

less sensitive to chemotherapy, compared to TNBC cells (Fig. S2D). The effect of CAFs 

was phenocopied with CAF-conditioned media (CM), suggesting mediation by secreted 

factors (Fig 1E). To establish whether higher luciferase readouts reflected growth-promoting 

or metabolic effects of CAFs, we assessed cell proliferation more directly with time-lapse 

microscopy using TNBC cells labeled with nuclear GFP, as described in our prior work 

(20). To facilitate the ability to detect an enhancement of cell expansion, cells were seeded 

at low (~10%) confluency. CAFs co-culture and CAF CM potently enhanced proliferation 

in multiple TNBC cell models (Fig. 1F and S2E). In contrast, while CAFs and CAF 

CM enhanced viability under doxorubicin treatment, the effect was much weaker than in 

the DMSO controls (Fig. 1F), suggesting that this enhanced viability reflects a general 

enhancement of TNBC proliferation rather than a direct enhancement of chemoresistance. 

Finally, the proliferation-enhancing effect of CAFs and CAF CM was not limited to 2D 

cultures, as a similar effect could be observed within 3D cultures (Fig. S2F, G).

Proximity to stroma enhances TNBC cell proliferation in vivo.

In contrast to the well-documented ability of CAFs to enhance tumor cell proliferation in 

vitro, the existence of this effect in vivo is less clear. While the ability of CAFs to promote 

tumor growth is well-established, this does not necessarily imply enhanced tumor cell 

proliferation, as cell proliferation is not strictly coupled with tumor growth (29). Moreover, 

CAFs are also known to impact additional phenotypes that can limit tumor growth, including 

neovascularization, immune surveillance, as well as the ability of tumor cells to migrate and 

invade the surrounding tissues (9). Therefore, we sought to assess the in vivo relevance of 

the enhanced proliferation observed in vitro more directly. The establishment and growth 

of experimental tumors in murine xenograft models are contingent on the recruitment 

of host stroma. CAFs play an essential “infrastructural” role by producing ECM that 

provides the structural organization of tumor tissues, e.g., enabling cell-ECM adhesion and 

vascularization, etc. Therefore, in contrast to in vitro studies, a “clean” +/−CAF comparison 

in experimental tumors is impossible. At the same time, even genetically homogeneous 

experimental tumors typically display substantial spatial heterogeneity, including regional 

differences in the stroma-to-tumor ratios. We leveraged this variability by assessing the 

correlation between stromal content and tumor cell proliferation across semi-randomly 

selected tumor microdomains of variable tumor tissue across whole tumor cross-sections 

(Fig. 2A). To enable accurate detection of proliferating cells, animals bearing experimental 

tumors were injected with the dNTP analog BrdU before the euthanasia. Following IHC 

staining against BrdU, images of whole-slide scans were segmented into micronecrotic 

regions, stroma, BrdU+ & BrdU− tumor cells using the AI-assisted digital pathology 

platform Aiforia (https://www.aiforia.com)(Fig. 2A, S3A). Consistent with our in vitro 
findings, we found a strong correlation between the fraction of BrdU+ tumor cells and 

stromal content in MDA468 and BT549 xenograft models of TNBC, under both vehicle 

control and doxorubicin or taxol administration (Fig. 2B, S3B).
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Encouraged by these observations, we sought to validate these findings with an independent 

approach that relies on analyses of the distributions of distances between BrdU+ and BrdU− 

cells and the nearest stroma (Fig. 2C). In these analyses, every tumor cell within the 

tumor cross-section was analyzed, thereby minimizing bias, and improving statistical power. 

Consistent with the correlation-based analyses, we found a significant difference in the 

distribution of BrdU+ and BrdU− cells, with BrdU+ cells distributed, on average, closer 

to the stroma, supporting the notion that stroma-produced paracrine factors stimulate cell 

proliferation in vivo (Fig. 2D, E). Importantly, our analyses revealed a similar bias in the 

distribution of Ki67+ cells in a post-therapy sample of primary TNBC, suggesting broader 

relevance to primary human disease (Fig. 2F, G).

To quantitatively assess the impact of stroma on the proliferation of tumor cells in vivo, 

we decided to repurpose a radial distribution function (RDF), g(r), which is often used in 

the field of spatial ecology (30–32). RDF can be used to compare the average density of 

observed BrdU+/− tumor cells against randomly distributed BrdU+/− across different length 

scales from each of the stromal pixels. The location of the RDF peak, gmax, indicates the 

linear distance of the effect of stroma on cell proliferation. The gmax value indicates the 

magnitude of the effect (Fig. 2H). To improve the accuracy of our analyses, our analyses 

were applied to whole histological cross-sections. Thus, each analysis captured the spatial 

patterns of BrdU positivity of 104 to 106 cancer cells per tumor, with multiple tumors 

analyzed per experimental condition.

The RDF revealed that, in MDA468 xenograft tumors, the proliferation probability of 

cells within 2–3 cell diameters from the stromal boundary (~ 30 μM) was increased by 

30–40% in the chemotherapy naïve tumors and further increased after doxorubicin treatment 

(Fig. 2I). A similar (25–30%) enhancement was also observed in a primary post therapy 

TNBC sample, with the effect distributed over a larger distance from stromal edge (Fig. 

2J). In summary, these analyses support the notion of the in vivo relevance of proliferation-

enhancing effects of stroma, while also highlighting the spatial limitation of this effect.

In silico model for characterization of proliferation/death dynamics in time and space.

Whereas the ability of fibroblasts to enhance tumor cell proliferation has been observed 

in multiple contexts, it is unclear whether the enhanced proliferation can blunt the effects 

of chemotherapy. Higher proliferation rates are considered to enhance rather than decrease 

sensitivity to DNA-damaging cytotoxic chemotherapy (33). (Therefore, in the absence of 

direct stroma-mediated resistance, one would expect the proliferation-enhancing effects 

of stroma to increase rather than decrease chemoresistance. On the other hand, the 

differences in chemosensitivity are typically assessed within short time scales that do not 

necessarily reflect tumor response over the course of chemotherapy treatment. Cytotoxic 

chemotherapies, including the ACT regimen used in TNBC therapy, are administered in 

several cycles of brief chemotherapy exposures separated by several weeks of recovery 

(34). This pattern administration is based on the well-established concept of a fractional 

cell kill, i.e., chemotherapy exposure eliminates a fraction of the neoplastic population with 

each cycle (35), thus necessitating repeated dosing to achieve complete elimination. The 

length of the recovery between administrations of chemotherapy is typically designed with 
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the aim of minimizing systemic toxicity. Given the short duration of conventional drug 

administration and the short half-life of chemotherapeutic agents, the surviving tumor cells 

have an opportunity to partially recover, re-populating the tumor between therapy cycles. 

Cancer is cured if, over the course of multiple cycles, all the tumor cells are eliminated or if 

the surviving fraction is below a threshold for stochastic or immune-mediated extinction. 

Thus, we hypothesized that the enhanced proliferation of stroma-proximal cells could 

reduce chemosensitivity by enhancing the ability of residual tumor cell populations to 

regrow between therapy cycles (Fig. 3A). We expect this effect to contribute to other 

factors shaping chemotherapy responses, including cell-intrinsic drug sensitivity, dormancy, 

inequality of drug access, selection for cells with reduced sensitivity over multiple cycles, 

direct environmental chemoresistance, etc. Thus, from the first principles, the effect of 

enhanced proliferation should be most impactful when therapy eliminates the majority, but 

not all, of tumor cells at each cycle. For intrinsically chemoresistant tumors, the effect 

is expected to have a marginal contribution. Likewise, the hypothesized effect would be 

irrelevant if all the tumor cells were eliminated or arrested for the whole duration of 

individual chemotherapy cycles.

We sought to evaluate the potential relevance of this hypothesis under a biologically relevant 

set of conditions. Evaluating this hypothesis requires simultaneous consideration of the 

combination of factors, including the initial size of the neoplastic population, proliferation/

death rates of tumor cells during both acute and recovery phases of chemotherapy cycles, 

the magnitude of proliferation enhancement effect, and the size of the peristomal niche. 

Given the lack of experimental in vivo models enabling to turn the effects of stromal 

niche on and off, separate the effect of stromal niche from the additional mechanisms that 

influence chemoresistance, and achieve strong, but incomplete responses, “clean” evaluation 

of the hypothesis presented in Fig. 4A necessitated an in-silico examination. To this end, 

we constructed an on-lattice stochastic, agent-based model (ABM) capable of integrating 

the spatiotemporal effects of stroma on proliferation and death dynamics using the HAL 

platform (18) (see Supplemental information for full details). The ABM is initialized as a 

100×100 cell grid with the location of tumor cells and stroma matching those observed 

within a region from a histological sample (Fig. 3B). In our model, tumor cells are 

“agents”, while stroma remains static throughout the simulation. At every time step of the 

simulation, each of the tumor cells can either remain unchanged, die, divide, or move to an 

adjacent space on the lattice, with division and movement dependent on space availability. 

Proliferation and death probabilities are influenced by the effects of chemotherapy and 

proximity to stroma (Fig. 3C).

The utility of in silico simulations depends not only on the validity of the model’s 

assumptions but also on the quantitative accuracy of the parameters that define the 

dynamics of agents within the model. Even though therapy outcomes are shaped by multiple 

cell-intrinsic and cell-extrinsic mechanisms, the effects of these mechanisms ultimately 

converge on the balance between cell proliferation and cell death. Despite the fundamental 

importance of these parameters, their reliable estimates are lacking in the literature, forcing 

mathematical modelers to operate with net growth rates, which can be inferred from 

experimental and clinical data with relative ease and accuracy. However, the same net 

growth rate can result from highly different birth (proliferation) and death rate combinations. 
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For example, while stagnant tumor growth can be a manifestation of proliferation rate, it 

can also result from space restriction or other resource limitations, resulting in high turnover 

rates, with high rates of cell proliferation being balanced by high levels of cell death (29). 

Xenograft models enable accurate estimation of proliferation rates owing to the availability 

of experimental labels like BrdU. BrdU, which is a dTTP analog, incorporates into DNA 

during the replication (S) phase of the cell cycle (36). Thus, a brief BrdU label administered 

prior to tumor harvest provides an accurate quantitative estimate of the fraction of cells 

in the S phase of the cell cycle. Since the duration of the S phase in mammalian cells is 

highly conserved (8–12 hours), the proportion of BrdU+ cells can be used to accurately 

quantify tumor birth rates (37). Whereas similar direct estimates of cell death rates are 

not available, they can be inferred as a difference between cell proliferation, inferred from 

BrdU labeling, and net changes in disease burden available from volumetric studies. Given 

the inability of common xenograft models to accurately recapitulate clinical chemotherapy 

sensitivity, we decided to use a hybrid approach, where proliferation rates are directly 

estimated from xenograft studies while death rates are determined from the death rates, 

sufficient to eradicate the tumors over the course of multiple therapy cycles in the absence of 

stromal enhancement of proliferation.

To infer cell proliferation during therapy, we subjected a cohort of mice bearing MDA468 

xenograft tumors to a clinically relevant regimen of four cycles of AC (doxorubicin/

cyclophosphamide) treatment with three-week intervals between cycles. Tumors were 

harvested two days after the first, third, and fourth cycles, with additional 2 tumors harvested 

two weeks after the fourth cycle. Consistent with generally weak chemotherapy responses 

in xenograft TNBC models, AC treatment slowed the growth of MDA468 xenograft tumors 

but failed to induce substantial tumor regression (Fig. 3D). Similar to the observed responses 

of MDA468 xenografts to a single dose of doxorubicin (Fig. S2B), the doxorubicin/

cyclophosphamide combination led to a ~ 2-fold reduction in the fraction of BrdU+ cells, 

and this suppression lasted over the subsequent AC cycles (Fig. S4A). Strong cytotoxic 

responses are expected to increase the proportion of stroma due to stroma activation and 

elimination of tumor cells. However, consistent with the lack of strong response to the 

chemotherapy, we observed only a slight increase in the stroma-to-tumor ratio (Fig. S4B), 

while the effect of therapy on the fraction of stromal area and the proportion of cells staining 

positive for the apoptotic marker cleaved caspase 3 did not reach statistical significance 

(Fig. S4D). To estimate the effects of therapy on cell proliferation and tumor/stroma ratios, 

we analyzed six pairs of matched pre- and post-therapy histological samples in TNBC 

patients treated with a full course of AC-T neoadjuvant therapy without achieving full 

pathological response. As expected, post-therapy samples displayed a trend to increase in 

the stroma area, with reduced cellularity and cell proliferation (Fig. S5A, B). The effects 

were not statistically significant, likely reflecting substantial patient-patient differences, 

small sample size, and variability in the time between the AC-T completion and surgery. 

However, analysis of a larger histological dataset of unpaired samples revealed a statistically 

significant increase in the stroma, as well as a bimodal distribution of the effect of therapy 

on proliferation (Fig. S5C).

Given that the MDA468 model adequately recapitulates clinically relevant baseline growth 

and proliferation proliferative index (29)and that the reduction in proliferation rates in 
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xenograft tumors is consistent with therapy responses in at least some human tumors, we 

reasoned that the xenograft data is suitable for parameterization of cell proliferation rates 

during therapy. Therefore, we assumed that tumors maintain constant proliferation during 

therapy (with a rate reduced two-fold compared to pre-therapy), with therapy inducing a 

brief period of substantially enhanced death, followed by the return of death rates to the 

baseline during the recovery periods before the subsequent therapy cycle. Following these 

considerations, from the BrdU labeling data, we estimated the average proliferation rate of 

0.198 per day during therapy. The knowledge of proliferation rates and net growth rates 

enabled us to estimate the death rate outside of the acute phase of therapy to be 0.165 per 

day (see Supplementary Methods).

Next, we used the ABM simulation to determine the acute chemotherapy-induced death that, 

in the absence of the stromal enhancement, is sufficient to eliminate in silico tumors over the 

course of four chemotherapy cycles under the fractional cell kill scenario. Given the short 

infusion duration and the rapid pharmacokinetics of chemotherapeutic agents in vivo(38), 

the acute therapy-induced DNA damage that acts as a trigger of cell death should be 

inflicted within hours. Cell viability assays (such as the MTT or Cell Titer Glo), commonly 

used in preclinical in vitro studies to evaluate therapeutic sensitivities, typically measure 

cell viability after three to four days post-drug administration. Therefore, in our in silico 
simulations, we decided to equally distribute acute therapy-induced tumor cell death over 

the course of four days (without directly affecting cell birth rates), at which point cell death 

rates to the baseline. An example of a simulation run of the model is shown in video S1. We 

found the minimal therapy-induced death rate that is sufficient to eliminate in silico tumors 

with complete penetrance (100% extinction rate in 500 simulations) after four chemotherapy 

cycles in the absence of stroma proximity to be 0.45 per day (Fig. S6 A, B).

Testing the impact of stroma-enhanced proliferation on tumor eradication.

The development and parameterization of the in silico model enabled us to assess the 

impact of enhanced proliferation within stroma-proximal niches on the odds of therapeutic 

extinction. To this end, we asked how the enhancement of proliferation within 3 cell 

diameters from stroma impacts the outcomes of treatment that is otherwise sufficient to 

achieve a full penetrance (in 500 simulations) over the course of treatment. We found that 

a 10% or higher enhancement of proliferation enabled some of the in silico tumors escape 

eradication, with the higher proliferation enhancement increasing the probability of escape. 

(Fig. 3E, F, Video S2). An increase in the initial population size enhanced the probability 

of relapse. Even under a 5% proliferation bias which was insufficient to mediate rescue 

when the initial population was below 1×104 cells, enabled 80% relapse when the initial 

population size was 1×107 cells (Fig. 3G); the effect was even more pronounced with a 15% 

enhancement (Fig. S6C). Thus, the slight enhancement of cell proliferation, restricted to 

stroma-proximal cells, might enable an ecological rescue even in the absence of cell-intrinsic 

chemoresistance.

Next, we sought to assess whether this rescue effect can be recapitulated experientially. 

Given the lack of appropriate in vivo models, we decided to assess the effect in vitro, where 

proliferation-enhancement effects of stroma could be recapitulated by the addition of CAF 
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CM. To recapitulate the scenario of high-intensity, transient clinical exposure, chemotherapy 

was applied for 2 hours, then the media was replaced with a drug-free media after a 

thorough PBS wash. Based on the commonly used 3–4 days duration of drug dose-response 

assays, we expected that, under this brief exposure scenario, the cells that survive up to day 

4, will be able to recover and regrow. Surprisingly, we found that the cytotoxic impact of 

the brief doxorubicin exposure on the viability of tumor cells extended over a substantially 

longer time frame and that even substantially lower doxorubicin concentrations allowing for 

an initial expansion, led to the continuous decline of viable tumor cells for at least 2 weeks 

post the brief exposure (Fig. 4A).

Notably, the decline in cell numbers occurred despite the active proliferation of tumor 

cells, consistent with a lasting induction of increased cell death rates (Video S3). The 

longer-lasting effect of chemotherapy was also observed in additional models of TNBC 

that we have tested (HCC1806 and HCC1937), although the duration of the effect and 

the baseline doxorubicin sensitivities varied with the model (Fig. S7A, B). Similar lasting 

suppression of net proliferation was observed with taxol (Fig S7C). Moreover, the lasting 

effect of chemotherapy was observed with A678 cell line model of Ewing sarcoma, 

following exposure to doxorubicin, vincristine, and 4-HU (Fig. S7D), suggesting a broader 

generalizability of the lasting chemotherapy impact towards different cancer types and 

chemotherapeutic agents. Finally, the extended effect was not limited to 2D studies, as 

treatment with doxorubicin and doxorubicin - 4HC (active metabolite of cyclophosphamide) 

combination induced loss of viability that lasted 7–10 days (Fig. S7E, F)

The addition of CAF CM (Fig. 4B, Fig. S7A–C, F) or physical co-culture with CAFs 

(Fig. S7E) partially counteracted the lasting cell attrition induced by transient chemotherapy 

administration across all of the tested TNBC models. While automatic cell detection had 

insufficient sensitivity to detect rare viable cells, visual examination of the time-lapse 

sequences indicated that under conditions that led to complete elimination of controls 

(Video S3), viable cells could often be detected in cultures with CAF CM (for example, 

see VideoS3, S4 for doxorubicin treated MDA468 cells). Notably, we also observed a more 

obvious rescue in MDA468 cells, treated with sequential 1 hr exposure of doxorubicin and 

4HC (Fig. 4C).

Whereas the in vitro studies provide proof of principle validation of our hypothesis, 

presented in Fig. 3A, in vitro studies cannot recapitulate the in vivo birth/death dynamics. 

For example, CAF CM mediated rescue shown in Fig. 4C enabled surviving cells to expand 

above the initial cell numbers. On the other hand, the lingering cytotoxic effects of therapy 

are expected to reduce the impact of the postulated effect of stroma in vivo. Thus, we 

re-evaluated our in silico simulations, taking the extended duration of chemotherapy induced 

cell death into account. While we observed a substantial variability in the duration of the 

lingering therapy-induced death, we decided to use a more conservative two-week estimate, 

as the shorter recovery time should limit the effect of the accelerated recovery.

We started by assessing whether the brief chemotherapy exposure leads to a single or bi-

phasic (acute phase followed by lowering intensity lingering effects) induction of cell death. 

The fitting of in vitro experimental data indicated that chemotherapy induces a monotonous 
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decrease in cancer cell numbers, consistent with a single phase (Fig. S8A & Mathematical 

Supplement). Next, after finding the threshold death rate that sufficient to eliminate tumors 

in all 500 in silico tumors, we asked whether the enhanced proliferation within stroma 

proximity can still counteract elimination. The extended duration of chemotherapy-induced 

cell death translated into a reduction in per-day death rates, which is necessary to eliminate 

the tumors over the course of four cycles of chemotherapy from 0.45/day (Fig. S6A, B, to 

0.2/day (Fig. S8B, C). As expected, the reduced recovery time counteracted the ability of 

stroma to rescue tumors from therapeutic extinction but did not entirely negate this effect. 

The threshold proliferation–enhancing effect of stroma, detectable with 500 simulations, 

increased from 10% under the four-day duration of tumor cell kill to 35% under the 

two-week duration (Fig. 4D, S8D). Increasing the number of simulations to 10,000 shifted 

the threshold to 20%; similar to the 4-day acute effect duration, an increase in the initial 

population size magnified the effect of stroma, shifting relapse probability to ~80% when 

the initial population was 1×107 cells (Fig. 4E). Next, we evaluated the impact of stromal 

enhancement of proliferation under lower therapy-induced death rates where, in the absence 

of stromal effects, therapy leads to a partial (75%) penetrance of tumor eradication under 

initial population under 1×104 cells. Under this scenario, even a 10% enhancement of 

proliferation within 3 cell distances from the stroma almost doubled the relapse probability 

(Fig. 4E, F). The effect was even more pronounced with the stronger stromal enhancement 

(Fig. 4E, F).

In summary, our results indicate the existence of an indirect, stroma-mediated 

chemoresistance mechanism where enhanced proliferation within stroma proximal niches 

shifts the net outcomes of proliferation-death dynamics, enabling tumors at the brink of 

elimination to avoid therapy-induced extinction (Fig. 3A and 4G). More generally, our 

study highlights the importance of consideration of extending the consideration of causes of 

therapy resistance beyond proximal molecular mechanisms.

Discussion.

Despite the advances in basic and clinical cancer research, the combination of surgery 

and chemotherapy usually fails to eradicate advanced cancers, including TNBC. Improving 

clinical outcomes requires an accurate and comprehensive understanding of the biological 

mechanisms that enable tumors to avoid therapeutic elimination. Chemoresistance and 

patient-patient variability in clinical responses reflect a combined output of multiple 

contributing factors, including mechanisms acting on cell-intrinsic, microenvironmental, and 

systemic scales. The stochastic nature of somatic evolution, underpinning carcinogenesis, 

combined with genetic, environmental, and other differences between the cancer 

patients, leads to a substantial tumor-tumors variability in chemosensitivity. Further, intra-

tumor genetic and epigenetic variability, as well as mutational and plasticity-mediated 

diversification, can lead to differential survival of chemoresistant subpopulations and 

declined responses over multiple cycles of chemotherapy. At the same time, cancers can 

also persist through chemotherapy without developing resistance, as the ability of some 

tumor cells to enter dormancy before or during therapy enables them to “wither the 

storm”, re-awakening to resume proliferation after therapy resumption (14,39). Our studies 

uncover a novel, indirect mechanism of stroma-mediated chemoresistance where treatment-
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independent enhancement of tumor cell proliferation in the stroma’s vicinity augments 

residual tumors’ ability to recover between chemotherapy cycles, thus decreasing the odds 

of therapeutic extinction over the course of treatment (Figs. 3A). The magnitude of this 

mechanism’s impact on tumor eradication depends on the combined output of several 

parameters, including disease burden, proliferation/death rates, their modification by therapy 

(including the duration of therapy-induced changes), the spatial distribution of tumor cells 

and stroma, as well as the size and distance of the effects of stroma proximity. With 

all things being equal, under biologically relevant proliferation, death, and stromal effect 

parameters, the proliferation-enhancing impact of stroma can tilt the balance, enabling 

tumors to avoid therapeutic elimination (Fig. 4G). The proposed mechanism should be most 

impactful for those tumors on the brink of therapeutic extinction, i.e., when, in the absence 

of the effect, therapy achieves a partial penetrance of disease elimination.

Most of the research and development efforts in therapy resistance are directed to the 

identification and targeting of individual molecular mechanisms that enable tumor cells to 

avoid therapeutic elimination. This approach is not limited to cell-intrinsic mechanisms but 

also extends toward cell-extrinsic, microenvironmental mechanisms of therapy resistance. 

In the context of targeted therapies directed against oncogenic signaling pathways, multiple 

paracrine factors, including elements of the ECM and cytokines produced by CAFs and 

other non-neoplastic cells within the TME, have been documented to confer resistance to 

targeted inhibitors by activating alternative signaling pathways (40–42). A strong correlation 

between high stromal content, chemoresistance, and poor patient survival in TNBC (12), 

where cytotoxic therapy remains the main therapeutic option, suggests the existence of 

similar direct chemoresistance mechanisms. Indeed, several studies have reported direct 

stroma-mediated chemoresistance in the context of chemotherapy (43,44). However, the 

magnitude of the direct effects of stroma on chemosensitivity appears to be much lower, 

and the generalizability of these effects is less clear, as modulation of cell signaling is less 

capable of impacting the cellular damage created by chemotherapy.

Despite the substantial and constantly advancing knowledge of specific molecular 

mechanisms mediating direct therapy resistance, this knowledge is yet to translate into the 

ability to improve clinical therapy outcomes. To a large extent, this lack of progress reflects 

the fact that chemotherapy sensitivity represents a complex, multifactorial phenomenon that 

integrates a combined effect of multiple mechanisms acting at different scales (cell intrinsic, 

population, microenvironmental, systemic). Even at the scale of individual tumor cells, 

therapy resistance is not necessarily reducible to a single molecular mechanism (21,45). 

Further, chemotherapy responses cannot be fully reduced to the level of specific molecular 

mediators. For example, the efficiency of chemotherapies is limited by their ability to reach 

all tumor cells during the relatively short period of high drug concentration in circulation 

(46,47). However, the effects of these multiple mechanisms ultimately converge at the 

level of proliferation and death dynamics. Cancer is eradicated when cell death exceeds 

proliferation for a sufficiently long time to eliminate/permanently arrest all the tumor cells 

or to bring the disease burden to a threshold where the few surviving cells can be eliminated 

by the immune response. If this is not achieved, the cancer relapses. Despite this fact, 

considerations of proliferation/death dynamics are typically neglected when interpreting 

experimental data or designing clinical therapies. This omission is especially problematic 
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for cytotoxic therapies that are administered in cycles, where rounds of acute drug exposure 

are spaced by several weeks of recovery, which is needed to manage therapy-associated 

side effects. For example, the common drug sensitivity assays, including sensitivities to 

chemotherapeutic agents, involve a single readout 3–4 days after the start of the treatment, 

often without wash-off of the drug, over a range of drug concentrations. These assays 

quantify the number of viable cells (via proxy readouts, such as MTT), relative to the 

number of cells in vehicle-treated control, with drug sensitivity usually assessed in metrics 

such as dose sufficient to induce a two-fold reduction in viability. The common implicit 

assumption is that a single timepoint measurement of net cell viability is sufficient to predict 

the overall therapy efficiency. However, a lack of response detectable at this time point 

might hide a complete elimination over a longer timeframe for chemotherapeutic agents 

that shift the proliferation/death balance (Fig. 4, Fig. S7). Moreover, identical short-term 

responses can reflect a wide range of proliferation/death combinations that can lead to 

dramatic differences over a longer time frame, where higher proliferation enables quick 

recovery and fast amplification of fitness differences.

In addition to consideration of temporal proliferation/death dynamics, understanding of 

therapeutic responses in vivo might also require consideration of space. For both direct 

resistance mechanisms, mediated by paracrine factors produced by stroma, and for 

proliferation-mediated effects uncovered in this study, the effects should be limited to 

tumor cells within sufficient proximity to stromal niches. Therefore, tumor/stroma ratios 

and specific patterns of the spatial distribution of stroma and tumor cells are expected 

to have a substantial impact on therapeutic responses. Moreover, the spatial patterns 

often change with treatment, as effective therapy typically leads to an increase in stroma/

tumor ratio, as the numbers of neoplastic cells are reduced while neoplastic cell death 

leads to enhanced wounding signals, triggering stromal reaction/activation, i.e., enhanced 

secretion of inflammation-associated cytokines and increased ECM production, manifesting 

as swelling of stromal regions. While the diagnostic value of stromal activation is unclear 

(48), given the therapy-induced tumor shrinkage, it should increase the proportion of tumor 

cells within the spatial niche, where tumor cells are influenced by direct or proliferation-

mediated resistance, thereby enhancing the importance of microenvironmental resistance 

mechanisms.

While our study focuses on enhanced proliferation within the peristomal niche, the 

importance of proliferation/death rates extends beyond the tumor-stroma crosstalk. 

Accelerated recovery between chemotherapy cycles might also be contributing to the 

stroma-independent link between a high proliferative index and poor outcomes. Both 

TNBC, which tend to be stroma-rich, and Ewing sarcomas, which tend to be relatively 

stroma-poor (49) tend to be highly sensitive to standard-of-care chemotherapies, yet these 

tumors typically resist therapeutic elimination. Based on strong experimental evidence, this 

discrepancy is often attributed to intratumor heterogeneity, enabling selection of intrinsically 

chemoresistant populations, or dormancy, i.e., some tumor cells avoid elimination either 

due to drug insensitivity or the ability to “sleep through the storm” through quiescence. 

Our results suggest that the high proliferation of residual tumor cells might also be an 

important contributor, suggesting parallels with r/K reproductive strategies in evolutionary 

ecology (50). Cell-intrinsic and cell-extrinsic mechanisms involving direct protection against 
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the cytotoxic and cytostatic effects of the drugs are analogous to the K strategy, focused 

on enhanced protection/survival. In contrast, the indirect protection mechanism suggested 

by our study is analogous to the r strategy, where reproductive success is achieved by 

maximizing the number of offspring.

To some extent, the neglect of consideration of spatiotemporal proliferation/death dynamics 

reflects the lack of established experimental and analysis pipelines for accurate quantitative 

inferences of parameter values. Moreover, linear logical inferences used in molecular 

oncology studies are not suitable for understanding responses that integrate the impact 

of multiple variables. This task requires the use of biologically driven and parameterized 

mathematical modeling tools. The use of in silico modeling enables the understanding of 

the contribution of individual variables governing proliferation/death dynamics on therapy 

outcomes within biologically and clinically relevant parameter values, uncovering their 

emergent properties. The model’s simulations allow the exploration of large parameter 

space while uncoupling the studied parameters from confounding factors. The “clean” in 

silico experiments can provide full control over variables while addressing questions that 

are not accessible to purely experimental studies. For example, within purely experimental 

approaches, it is impossible to address whether a 5% difference in cell proliferation in 

stroma-proximal tumor cells can impact therapy outcomes (Fig. 4F). On the other hand, 

it is not possible to incorporate consideration of all factors shaping chemosensitivity. In 

addition to increasing the model’s complexity, the inclusion of additional variables is limited 

by the availability of knowledge on the additional parameters, as well as the ability to 

extract relevant quantitative information required for parameterization. Thus, inclusion of 

additional variables would necessitate the use semi-arbitrary assumptions, which reduces the 

utility of the model’s inferences. For example, our ABM does not include variabilities in 

cell-intrinsic chemotherapy sensitivities, differences in replication potential etc., as we lack 

the ability to extract relevant information from experimental and clinical samples. Therefore, 

the quantitative inference of modeling studies should be taken with caution, and their 

incorporation into the body of biological knowledge and clinical decision-making requires 

rigorous validation and follow-up.

In summary, our study uncovers a novel indirect chemoresistance mechanism where 

enhanced proliferation of tumor cells within peristomal niches facilitates tumor recovery 

between chemotherapy cycles, thus reducing the odds of therapeutic extinction for tumors at 

the brink of elimination (Figs. 3A and 4H). This mechanism might be partially responsible 

for the known link between high stromal content and poor therapeutic responses, although 

the link likely involves additional mechanisms, such as reduced drug penetration, induction 

of EMT/stemness, etc. Our study highlights the limitations of standard viability assays to 

understand the impacts of therapies while pointing out to the utility of understanding the 

spatiotemporal birth/death dynamics of cancer cells through the integration of experimental 

and mathematical modeling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance:

Integration of experimental research with mathematical modeling reveals an indirect 

microenvironmental chemoresistance mechanism by which stromal cells stimulate breast 

cancer cell proliferation and highlights the importance of consideration of proliferation/

death dynamics

Miroshnychenko et al. Page 21

Cancer Res. Author manuscript; available in PMC 2024 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. CAFs facilitate TNBC proliferation in vitro.
A. Experiment diagram for the chemosensitivity sensitivity assay. Luciferase-labeled TNBC 

cells are cultured in the presence or absence of unlabeled CAFs in the presence of 

doxorubicin or DMSO vehicle control. Only TNBC cells directly contribute to the viability 

signal. B. Normalization schemata for the data analyses. Raw data from the viability assay 

can be normalized to either i) the DMSO control signal of cells cultured without CAFs, or 

ii) with separate normalization of the control and CAF co-cultures to their respective DMSO 

controls. C, D. Heatmap summaries of the impact of CAF co-cultures on the sensitivity 

of the indicated chemotherapeutic agent in a panel of TNBC cell lines, normalized as 

i) or ii) in panel B, respectively. E. Heatmap summaries of the impact of CAF CM on 

doxorubicin sensitivities of the indicated TNBC cell lines. F. Impact of CAFs and CAF 

CM on the growth of GFP-labelled MDA468 cells following 24 hours of doxorubicin 

exposure, measured by time-lapse microscopy. Statistical analyses of indicated differences 

were performed with a paired 2-tail t-test, comparing confluency value at each of the time 

point *** p=0.0007, ** p=0.003, * p=0.0102.
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Figure 2. Proximity to stroma correlates with higher proliferation in vivo.
A. Diagram of the experimental approach to assess the impact of stroma proximity on the 

proliferation of TNBC cells in vivo. Before euthanasia, the mice are pulsed with BrdU, 

which enables IHC-based detection of cells in the S phase of the cell cycle. Tumor tissue 

in whole slide scans of BrdU IHC staining is subsampled into smaller areas (0.9 mm in 

diameter); necrosis-free tumor tissue within these subsampled regions is segmented into 

BrdU+/− tumor cells and stroma. B. Regression analyses of MDA468 xenograft tumors, 

treated with doxorubicin (2.5 mg/kg), Taxol (10 mg/kg) or vehicle control 48 hours before 

euthanasia were used to assess the correlation between stromal content and tumor cell 

proliferation. Each dot represents a subsampled ROI, as in A. Spearman R and p values 

of non-linear fit are shown. C. Schemata for the nearest neighbor analyses that calculate 

distances between each of BrdU+/− cells in the tumor cross-section and the nearest stromal 

pixel. D, E. Frequency distribution and cumulative distribution function (CDF) plots of 

distances to the nearest stroma of BrdU+/− cells in MDA468 xenografts tumors from 

control (D) and doxorubicin-treated (E) mice. Dashed lines indicate medians and means of 

the distributions KS denotes the Kolmogorov-Smirnov statistical test. F. A representative 

image of a diagnostic biopsy of a post-treatment primary human TNBC tumor, stained with 

proliferation marker Ki67, ROIs used for subsampling, and an example segmentation of an 

ROI into Ki67+/− cells and stroma. G. Frequency distribution and CDF plots of distances of 

Ki67+/− cells to the nearest stroma in the primary TNBC sample. H Schemata for the RDF 

analysis. I. RDF analyses of the impact of stroma proximity on the distribution of BrdU+/− 

cells in control and doxorubicin-treated MDA468 tumors. J. RDF analyses of the impact 
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of stroma proximity on the distribution of Ki67+/− cells in a post-treatment primary TNBC 

tumor. (Part of the figure is created with BioRender.com)
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Figure 3. In silico validation of the hypothesized indirect stroma-mediated chemoresistance.
A. Model schemata depicting the hypothesized indirect stroma-mediated chemoresistance. 

Enhanced proliferation in stroma-rich tumors can enhance between-chemo cycles recovery 

of tumors, enabling them to escape therapeutic eradication. B. ABM is initiated based on 

the spatial localization of tumor cells and stroma observed in the indicated experimental 

sample. C. Diagram of the ABM model. D. Dynamics of volume changes in MDA468 

xenograft tumors over the course of AC treatment (0.5 mg/kg doxorubicin and 50 mg/kg 

cyclophosphamide), injections times are indicated by red arrows. Traces indicate individual 

tumors; distinct colors of volume traces indicate tumors harvested at different time 

points, indicated by arrows of matching colors. E. Impact of the indicated magnitude of 

enhancement of cell proliferation within 3 cell diameters from stroma border on the average 

population size over the course of chemotherapy. Traces depict average population sizes 

over 500 simulations per condition. F. Impact of the indicated magnitude of enhancement 

of cell proliferation on the probability of tumor relapse through the course of therapy, over 

500 simulations with 95% confidence interval. ****, ***, ** indicate p-values of <0.001, 

<0.001, and 0.0076, respectively, of Fisher exact test, comparing the probability of relapse 

with indicated proliferation bias against the simulations without stromal effect (proliferation 

bias 0%). G. Dependence on the sampling grid size of the tumor relapse for the simulations 

under short-term cytotoxic effects of the chemotherapy under 5% bias in proliferation due to 

stromal effects. For each data point, 500 random samplings of groups of 1,9,50, 100, 200, 

300, 500 700, and 1000 simulations have been randomly selected from 10,000 simulations 

of 100×100 grids. Error bars depict 95% confidence intervals
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Figure 4. Impact of the stroma-enhanced proliferation on tumor chemotherapy recovery.
A, B. Changes in numbers of viable MDA468 cells following brief (2-hours) administration 

of doxorubicin in control medium (A) and with CAF CM (B). C. Impact of CAF CM on 

the response of MDA468 to the sequential administration of doxorubicin and 4-hydroxy 

cyclophosphamide (1 hour each). D. Probability of relapse for the simulations under long-

term cytotoxic effects of the chemotherapy, with the killing fraction of 21% of the cells 

per time step. Each data point in the graph represents the average of 500 simulations, error 

bars indicate 95% confidence interval. E. Dependence of the relapse probability on the 

initial population size under the scenario of 20% bias in tumor cells proximal to the stroma. 

Each data point is the average of the 500 samplings and the respective 95% confidence 

interval. F. Impact of the indicated magnitude of enhancement of cell proliferation within 

3 cell diameters from stroma border on the average population size over the course of 

chemotherapy that, in the absence of stromal effects, eliminates tumors with 27% relapse 

probability. Traces depict average population size over 500 simulations per condition. 

G. Probability of tumor relapse affected by different proliferation bias and prolongated 

cytotoxic effect. Graphs depict the outcomes of 500 simulations with 95% confidence 

interval. **** indicates < 0.001 p-values of Fisher exact test, comparing outcomes with 

different values of stromal enhancement values to simulations without stromal effect 

(proliferation bias 0%). H. Conceptual model of the indirect stromal chemoresistance. 

The link between high stromal content and chemoresistance might be at least partially 

mediated by the stroma-dependent potentiation of tumor cell proliferation, which enhances 

tumor recovery between chemotherapy cycles and decreases the odds of chemotherapeutic 

extinction.
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