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Abstract
Bile duct damage is present in virtually all cholangiopathies, which share the biliary epithelial
cells (i.e. cholangiocytes) as a common pathogenic target. Cholangiocyte cell death largely occurs
through the process of apoptosis. In this review, we will summarize the mechanisms through
which biliary damage occurs in a variety of animal and in vitro models, such as extrahepatic
cholestasis induced by bile duct ligation (BDL), cytotoxin- and hepatotoxin-induced liver injury,
and biliary atresia. Although we have increased our knowledge of the factors that regulate
cholangiocyte cell death mechanisms during cholangiopathies, especially in experimental models,
there is still a lack of effective treatment modalities for these biliary disorders. However, future
studies will hopefully provide for new therapeutic modalities for the prevention or restoration of
biliary mass and function lost during the progression of cholangiopathies.
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Introduction
The liver is composed of two types of epithelial cells, which are hepatocytes and
cholangiocytes (i.e. biliary epithelial cells).1,2 While hepatocytes account for approximately
70% of the total liver mass, cholangiocytes contribute to 3 to 5% of the endogenous liver
cell population.1 Cholangiocytes line the intra-and extrahepatic bile ducts of the biliary
system, which is comprised of a series of interconnected tube like structures that drain bile
from the liver and delivers it to the gallbladder or duodenum.1 Cholangiocytes modify the
composition of bile that is secreted at the canalicular membranes of hepatocytes as it flows
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through the biliary system.1,3,4 This modification involves the secretion and absorption of
water, electrolytes and other organic solutes from hepatocellular bile.1,2,4–9

Cholangiocytes are the target cells of a number of diseases termed cholangiopathies.1 This
disease class is made up of inherited disorders (Alagille syndrome and cystic fibrosis (CF)),
autoimmune disorders (primary sclerosing cholangitis (PSC), primary biliary cholangitis
(PBC), autoimmune cholangitis (AIC), allograft rejection, graft-versus-host disease
(GVHD)), infections (cholangitis due to bacteria, fungi, parasites or viruses), drug-induced
injury, ischemic injury, and diseases of unknown etiology (biliary atresia and idiopathic
vanishing bile duct syndromes).10 Cholangiopathies are predominantly characterized by a
bile duct-directed inflammatory response that leads to bile duct injury associated with biliary
proliferation in the early stage of the disease course.10 If the biliary injury is chronic there
will be increased bile duct loss (ductopenia), biliary fibrosis and the increased incidence of
bile duct cancer (i.e. cholangiocarcinoma).10 This review summarizes the mechanisms
responsible for non-neoplastic cholangiocyte proliferation and cell death.

Types of Cell Death
Cell death has been subdivided into three categories: apoptosis (Type I), autophagic cell
death (Type II), and necrosis (Type III).11–13 A fine line exists between the two forms of
programmed cell death, apoptosis (‘self-killing’) and autophagy (‘self-eating’) in that they
share common pathways and are functionally linked.14–16 Apoptosis is the most
investigated of the types of programmed cell death. Apoptosis results from the activation of
a signaling cascade of catabolic enzymes, which lead to the destruction of cellular structures
and organelles.17,18 At the conclusion of this process, morphologically changes occur that
include cellular shrinkage, chromatin condensation and nuclear fragmentation.13

Apoptosis can be activated extrinsic and intrinsic pathways that lead to caspase-dependent
cell death. The extrinsic pathway begins outside the cell through the activation of pro-
apoptotic or death receptors.19 These death receptors are members of the tumor necrosis
factor receptor (TNFR) superfamily, which includes TNF-receptor 1 (TNF-R1/p55/
CD120a), Fas (CD95/APO-1), TNF-related apoptosis-inducing ligand receptor (TRAIL-R1/
Death Receptor-4 (DR4), DR3 (APO-3/TRAMP/WSL-1/LARD), and TRAIL-R2(DR5/
APO-2/KILLER).19,20 The ligands for death receptors include tumor necrosis factor-alpha
(TNF-α), Apo2L/TRAIL and CD95L/FasL.20 The signaling mechanisms downstream of the
activation of death receptors has been previously review.19 The key caspases activated by
the extrinsic pathway are caspase 8 and 10.19 As its name suggests, the intrinsic pathway is
initiated from within the cell. The intrinsic pathway is activated in response to cellular
signals resulting from DNA damage, a defective cell cycle, detachment from the
extracellular matrix, hypoxia, loss of cell survival factors, oxidative stress or other types of
severe cell stress.21 The intrinsic pathway is characterized by the involvement of the
mitochondria with mitochondrial outer membrane permeabilization and the release of
mitochondrial cytochrome c.22 The release of cytochrome c stimulates the assembly of
caspase-activating complex between caspase-9 and APAF1 (i.e. apoptosome).16 The role of
the BH3-only proteins that participate in initiation of mitochondrial outer membrane
permeabilization have been reviewed elsewhere.23 During DNA damage, activation of p53
can result in the transcriptional activation of the BH3 only proteins PUMA and NOXA,
which can then promote mitochondrial outer membrane permeabilization via BAX and BAK
channels.24 In addition, DNA damage can also activate caspase-2 in a complex of proteins
that involves p53-induced protein with a death domain (PIDD) and RIP-associated protein
with a death domain (RAIDD), which together is known as the piddosome.25,26 Activation
of other cellular stress pathways can lead to the stimulation of apoptosis including the
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activation of caspase independent cell death that can result from factors that trigger
lysosomal membrane permeabilization.27,28

On the other hand, autophagy (i.e. macroautophagy) represents a stress adaptation that
avoids cell death while suppressing apoptosis in certain cellular conditions.15 However, in
other stress conditions it represents an alternative cell death mechanism.15 Autophagy is a
cellular mechanism that promotes the degradation of aging cytoplasmic proteins and
intracellular organelles.15 Autophagy also plays a role in cellular adaptation to starvation by
triggering self-catabolism to provide for the bioenergetic needs of the cell.29,30 The cellular
signaling pathways that guide the cellular response to either autophagy as a survival or cell
death mechanism and its relationship with apoptosis have been thoroughly reviewed
elsewhere.11,14–16,27,31

The definition of necrosis is somewhat ambiguous in light of the fact that it is most often
defined as a type of cell death that lacks features of apoptosis and autophagy, and is an
uncontrolled mechanism.32 Whether or not necrosis is a controlled cell death mechanism
remains controversial.32 However, necrosis can include signs of controlled processes such
as mitochondrial dysfunction, ATP depletion and proteolysis by calpains and cathepsins.32

Types of Cell Death Observed in Cholangiopathies
Necrosis is usually the consequence of acute metabolic perturbations as those that occur in
ischemia-reperfusion or acute drug-induced cellular toxicity.10 Bile duct necrosis is present
in ischemic cholangiopathies, which predominantly affects the middle third of the common
bile ducts, followed by the hepatic duct confluence, with intrahepatic involvement being the
least common feature.33 In the liver, autophagy plays a key role in the regulation of energy
balance and nutrients for basic cell functions as well as the removal of misfolded proteins
and the turnover of organelles.34 The role of autophagy as a death mechanism has not been
well addressed for biliary injury or cholestatic liver diseases. However, autophagy does play
a role in autoimmunity in particular in the control of T lymphocyte homeostasis and
potentially could be involved in immune-mediated liver diseases.32 On the other hand,
apoptosis is thought to play a major role in cholestatic liver diseases such as PBC, PSC and
biliary atresia.35,36 In immune-mediated liver diseases, such as PBC, PSC and autoimmune
hepatitis, recent studies have indicated that programmed cell death ligands and circulating
apoptotic markers might serve as diagnostic markers for these diseases.35,37 Apoptosis of
cholangiocytes has been observed in a number of animal models of cholestasis and biliary
injury.38–42 In light of these findings, our review will focus on apoptosis in non-neoplastic
cholangiocytes.

Cholestatic Animal Models and Cholangiocyte Proliferation
A number of animal models that mimic cholestatic liver diseases and liver injury have been
utilized to expand our knowledge concerning the mechanisms of cholangiocyte proliferation
and bile duct damage.1,43–47 Of these models of bile duct injury, the bile duct ligated
(BDL) model has been the most commonly used.4,8,44,47,48 In normal human and rodent
liver, cholangiocytes are mitotically dormant and apoptosis is rare.1,47,49 BDL induces
proliferation of cholangiocytes. Although cholangiocyte apoptosis is minimal, this model
has proved valuable because it renders cholangiocytes more susceptible to injury.
39,40,45,50,51 Proliferating cholangiocytes acquire a neuroendocrine phenotype and secrete
and respond to a number of hormones, neuropeptides and neurotransmitters.52 The
formation of a neuroendocrine compartment predominated by cholangiocytes represents a
unique opportunity for cholangiocytes to regulate their own proliferation via autocrine
pathways and for cholangiocytes to influence other nearby cell types, such as vascular
endothelial cells, portal fibroblasts and hepatic stellate cells (HSC).52
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Of importance to both normal physiology and pathophysiology, cholangiocytes are the only
cell types in the liver that express the secretin receptor (SR). Secretin stimulates ductal bile
secretion by a series of coordinated events, which involves the elevation of intracellular 3′,
5′-cyclic adenosine monophosphate (cAMP) leading to the activation of protein kinase A
(PKA).53 Subsequently, PKA phosphorylates the cystic fibrosis transmembrane
conductance regulator (CFTR) triggering the opening of Cl− channels leading to extrusion of
Cl− at the apical membrane.54 The Cl− efflux from CFTR creates a Cl− gradient that favors
the activation of the apically located Cl−/HCO3

− exchanger,55 which results in secretin-
stimulated bicarbonate-enriched bile.1,2,4,6,8 Several studies have revealed that SR
expression is linked to cholangiocyte proliferative responses in animal models of biliary
hyperplasia such as BDL, partial hepatectomy, chronic feeding of bile acids [e.g. taurocholic
acid (TC)] and cirrhosis induced by chronic carbon tetrachloride (CCl4) administration and
can serve as a surrogate marker for proliferative status and biliary damage.1,4,43,44,49,56
Proliferating cholangiocytes have increased SR expression while cholangiocytes that are
damaged have lower levels of SR expression. Changes in the functional expression of this
receptor have been suggested as a patho-physiological tool for evaluating changes in the
degree of cholangiocyte growth/loss.1,7,40,49 In humans, SR expression is present in the
biliary tract in normal bile ducts and ductules and the majority of cholangiocarcinomas, but
is not present in hepatocytes or hepatocellular carcinoma.57,58 Consistent with animal
models of cholestasis, SR expression was upregulated in ductular reactions in liver cirrhosis.
58 No studies have determined yet whether SR expression can be a clinical therapeutic
target. However, we have data demonstrating that cholangiocyte proliferation during
cholestasis is heavily dependent upon the expression of SR. In SR knockout mice, biliary
proliferation is dramatically reduced during extrahepatic cholestasis induced by BDL59 (and
Alpini, G. unpublished data). Interestingly, cholangiocyte proliferation is predominantly
regulated through the cAMP/PKA/ERK1/2-dependent signaling mechanisms, which is a
critical mechanism involved in the activation of biliary epithelial cell damage and a
mechanism that can be activated to protect cholangiocytes from damage under certain
circumstances.38,46,48,60–65 A summary of the regulation of biliary damage that will be
discussed in the following discussion is illustrated in Figure 1.

Mechanisms of Cholangiocyte Cell Death
Sympathetic and parasympathetic innervation

In rat liver, sympathetic and parasympathetic nerves are located around the hepatic artery,
portal vein, and intrahepatic and extrahepatic biliary epithelium.66 Cholangiocytes have
been shown to express α-1, α-2, β-1 and β-2 adrenergic receptor subtypes.64 The
expression of these receptors is closely linked to the functional activity of cholangiocytes.
The α-1 agonist, phenylephrine, stimulates secretin-induced choleresis of BDL rats through
the activation of IP3/Ca2+-dependent PKC-α and PKC-βII.64 However, the α-2 agonist,
UK14,304, modulates ductal bile secretion by decreasing secretin-stimulated choleresis of
BDL rats by down-regulating cAMP/PKA/CFTR/Cl−/HCO3

− exchanger (AE2)67 activity in
cholangiocytes.61

Denervation of adrenergic terminal fibers of BDL rats by administration of 6-
hydroxydopamine (6-OHDA) induces functional damage of the biliary system via the down-
regulation of the cAMP-dependent signaling and the induction of cholangiocyte apoptosis.
38 The functional damage and apoptosis induced by 6-OHDA was reversed by the
administration of forskolin (adenylyl cyclase activator), clenbuterol (β-2 adrenergic agonist)
and dobutamine (β-1 adrenergic agonist), which are all factors that stimulate adenylyl
cyclase and elevate intracellular cAMP levels.38 Similar results were obtained when 6-
OHDA treated BDL rats were fed the bile acid taurocholate for one week post 6-OHDA
administration.68 Taurocholate feeding had previously been shown to increase
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cholangiocyte proliferation and secretion.56 Taurocholic acid prevented 6-OHDA-induced
cholangiocyte apoptosis and restored cholangiocyte proliferation and secretin-stimulated
ductal secretion through an AKT-dependent mechanism.68

Similar findings were observed with parasympathetic denervation by total vagotomy.
Cholangiocytes express the M3 acetylcholine receptor and interruption of cholinergic
innervation induces functional damage of cholangiocytes by apoptosis in BDL but not
normal rats.5,47 Vagotomy-induced apoptosis was associated with decreased cAMP-
dependent signaling and reduced cholangiocyte hyperplasia.47 In fact, chronic forskolin
administration prevents vagotomy-induced damage of cholangiocytes in BDL rats. Chronic
feeding of taurocholic acid also prevented vagotomy-induced apoptosis of cholangiocytes,
which was dependent upon maintenance of ABAT (apical bile acid transporter) activity,
down-regulation of caspase activity, and activation of PI3-kinase signaling.41

These studies clearly indicate the importance of the cAMP-dependent signaling mechanism
in the prevention of cholangiocyte apoptosis and restoration of cholangiocyte proliferation in
the absence of sympathetic and parasympathetic innervation. Cholangiocyte necrosis and
autophagy have not been evaluated in the context of sympathetic and parasympathetic
innervation. However, these findings indicate that the sympathetic and parasympathetic
nervous systems play a key role in the regulation of biliary mass during cholestasis and that
the modulation of these systems could potentially have a therapeutic effect in patients with
early extrahepatic cholestasis.

Ischemic injury
The function of the intrahepatic biliary epithelium is closely linked to its vascular supply the
peribiliary vascular plexus (PBP).69 Alterations of the intrahepatic biliary tree during
cholestasis are associated architectural changes of the PBP.69 The PBP undergoes marked
proliferation in order to support the increased nutritional and functional demands from
proliferating bile ducts during bile duct ligation (BDL).70 Interestingly, the proliferation of
the PBP occurs only after hyperplasia of the intrahepatic biliary epithelium during
extrahepatic cholestasis.70 Apoptosis of cholangiocytes is also observed in BDL rats
following hepatic artery ligation, which interrupts the main blood supply of the intrahepatic
biliary epithelium.70 The dramatic loss of cholangiocytes was presumably due to lack of
oxygen and nutrients to supply the increased biliary mass induced by bile duct ligation thus,
making proliferating cholangiocytes more sensitive to apoptosis. Hepatic artery ligation was
associated with the disappearance of the peribiliary vascular plexus (PBP) and decreased
expression of vascular endothelial growth factor (VEGF) by cholangiopcytes.42
Administration of recombinant VEGF-A to BDL rats with hepatic artery ligation prevented
cholangiocyte apoptosis due to a VEGF-A-dependent maintenance of the PBP and blood
flow to cholangiocytes,42 which might have occurred through the formation of collaterals.
In addition, administration of anti-VEGF antibodies to BDL rats was associated with a
decrease in cholangiocyte proliferation and increased cholangiocyte apoptosis.42 This work
highlights the importance of VEGF in the modulation of biliary mass and is supported by
other studies that demonstrate that VEGF-A regulates cholangiocyte proliferation in an
autocrine fashion during extrahepatic cholestasis.50 These studies suggest that
administration of VEGF-A during ischemic periods such as during liver transplantation
might reduce bile duct injury in humans.

Tumor necrosis factor-alpha (TNF-α)-induced and cytotoxic cell death
TNF-α is a pro-inflammatory mediator with the capacity to induce apoptosis.
Cholangiocytes are the primary epithelial source of TNF-α in the liver, and biliary levels of
TNF-α are increased in patients with cholangitis following biliary tract obstruction.71,72
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TNF-α plays a critical role in epithelial cell injury as well as in immune-mediated
cholangiocyte injury.73 Immune mediated injury has been implicated in the pathogenesis of
PBC and PSC.1 In vitro studies have demonstrated that that TNF-α in combination with
interleukin-1 (IL-1), IL-6 and interferon-γ, inhibits cAMP-dependent ductal secretion.74
TNF-α binds to TNF-receptor 1 (TNF-R1/p55/CD120a), which is part of the TNF
superfamily of membrane death receptors.19 Death receptors are characterized by a
cytoplasmic region termed, the death domain, which is required for apoptotic signaling.20
The mechanisms by which death receptors trigger apoptosis have been recently reviewed.19
We have previously shown that TNF-α, when administered in combination with
actinomycin D, induces cholangiocyte apoptosis and loss of ductal secretion in BDL rats.45
In this study co-incubation with actinomycin D sensitized the cholangiocytes from BDL (but
not normal cholangiocytes) to TNF-α toxicity.45 These findings suggest that during
cholestasis proliferating cholangiocytes are more sensitive to the toxic effects of TNF-α.
The bile acid, taurocholate, was shown to prevent TNF-α induced damage of cholangiocyte
through the activation of the PI3K pathway.75

Human cholangiocytes express DR5, and TRAIL expression and apoptosis were shown to
be significantly elevated in cholangiocytes of human PSC and PBC patients.76 Takeda et al
have shown that TRAIL receptor 2/DR5 may be a key play in the regulation of cholestatic
liver injury.76 In the study, they demonstrated that administration of agonistic anti-DR5
antibody triggered cholangiocyte apoptosis, induced cholangitis and cholestatic liver injury
in B6 mice.76 BDL in the mice augmented DR5 expression and sensitized the mice to DR5-
induced cholangitis with a histological presentation similar to PSC.76 Their findings suggest
that TRAIL-mediated apoptosis may play an important role in the progression of chronic
cholestasis. Recently, Feng and colleagues have reported an up-regulation of tumor necrosis
factor related apoptosis-inducing ligand (TRAIL) receptors, death receptors (DR) DR4 and
DR5, in an in vitro model of hypoxia/reoxygenation, a condition that may occur during the
pathogenesis of liver diseases.77 The upregulation of DR4 and DR5 resulted in increased
sensitivity to TRAIL-induced apoptosis in cholangiocytes.77

TNF-α has been implicated in the pathogenesis of biliary atresia, which is a fibrosis/
inflammatory cholangiopathy that obstructs the extrahepatic bile ducts in infants.36
Apoptosis is thought to play a key role in the progression of biliary atresia. In a mouse
rotavirus model of biliary atresia, the biliary epithelium undergoes an extensive activation of
early apoptosis. This increase in apoptosis was associated with increased expression of
caspase 1 and 4, interferon-γ (IFNγ)-related and TNFα-related gene expression.36
Simultaneous exposure of cholangiocytes to IFNγ and TNFα decreased cell viability.36
Blockade of caspase activity in vivo decreased the extent of injury to the biliary epithelium
and supports the role of apoptosis in the pathogenesis of biliary atresia in animal models.36

PBC is characterized by sustained macrophage infiltration suggesting that these immune
cells may mediate the destruction of bile ducts.78 Activation of CD40 on cholangiocytes by
soluble CD154 induces apoptosis in vitro.79 Co-incubation of human cholangiocytes with
activated liver-derived macrophages stimulated CD40-dependent secretion of
proinflammatory cytokines and apoptosis of cholangiocytes, which suggest that
macrophages play a role in the destruction of bile ducts through CD40 in liver disease
pathogenesis.80 Recently, Shimoda and colleagues have shown that chemokine-adhesion
molecule CX3CL1 (fractalkine) plays a role in bile duct destruction in PBC.81 Their data
indicate that TNF-α and CX3CL1, induced by toll-like receptor ligand, participate in
processes that lead to the recruitment of lymphoid cells into the portal tracts characteristic of
chronic nonsuppurative destructive cholangitis of PBC.81
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Hepatotoxin-induced biliary damage
As mentioned early, the bile ducts of animals with BDL are more sensitive to damage.
However, in the CCl4 model of hepatotoxin induced liver damage both normal and BDL
cholangiocytes are susceptible to damage.39,40 Administration of an acute dose of CCl4 to
normal or BDL rats induces apoptosis of large cholangiocytes39,40 (which line large ducts).
82,83 Small cholangiocyte (which line small ducts)82,83 were resistant to injury and
proliferated to compensate for the loss of functionally active large cholangiocytes.39,40
Recently, it has been shown that exendin-4 (a long acting analogue of glucagon-like
peptide-1 (GLP-1)) prevents cholangiocyte apoptosis in rats with BDL treated with CCl4,
which was due to exendin-4 ability to counteract the activation of the mitochondrial pathway
of apoptosis.84 On the other hand, chronic feeding of the hepatotoxin, α-
napthylisothiocyanate (ANIT), induces cholangiocyte proliferation in both small and large
cholangiocytes.51 Apoptosis is observed in small and large cholangiocytes upon withdrawal
of the diet allowing for the regression of biliary mass.51

Conclusion and Future Directions
Over the previous 20 years, we have significantly increased our understanding of the
mechanisms involved in cholangiocyte death. Cholangiocyte apoptosis plays a key role in
the pathogenesis of many cholangiopathies such as PBC and biliary atresia. In most models
of biliary damage, proliferating cholangiocytes are more sensitive to factors that activate
apoptosis (Fig. 1). New therapies based upon the inhibition of cholangiocyte apoptosis (i.e.
biliary damage) should prove beneficial for sustaining biliary mass in cholangiopathies that
result in the loss of cholangiocytes, such as PBC and biliary atresia. Due to the high
probability that a large proportion of cholangiopathies are autoimmune in nature, more
studies that address how cholangiocytes interact with the immune system and immune cells
will be required for a complete understanding of the pathogenesis of these devastating
biliary tract diseases. In addition, evaluation of the role of autophagy and its relationship
with apoptotic programmed cell death is needed for a complete understanding of how cell
death mechanisms participate in the pathogenesis of cholangiopathies.
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AIC autoimmune cholangitis

ANIT α-napthylisothiocyanate

BDL bile duct ligation

cAMP 3′,5′-cyclic monophosphate

CF cystic fibrosis

CFTR cystic fibrosis transmembrane conductance regulator

CCl4 carbon tetrachloride

GLP-1 glucagon-like peptide-1

GVHD graft-versus-host disease

HSC hepatic stellate cells

IFNγ Interferon-gamma

PBC primary biliary cholangitis

PBP peribiliary vascular plexus

PKA protein kinase A

PSC primary sclerosing cholangitis

SR secretin receptor

TC taurocholic acid

TNFα tumor necrosis factor alpha

VEGF vascular endothelial growth factor
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Figure 1.
Mechanisms of biliary damage during cholestasis. Bile duct ligation (BDL) induces the
proliferation of cholangiocytes, which is associated with increased cAMP-dependent
signaling mechanisms. Cholestasis induced by BDL renders cholangiocytes more sensitive
to damage by hepatotoxins, hepatic artery ligation (HAL) and denervation. This damage is
associated with increased cholangiocyte apoptosis and decreased cAMP-dependent signaling
mechanisms. Administration of cAMP agonists (for CCl4 and denervation), VEGF-A (for
HAL), and TC (for HAL and denervation) have been shown to restore cholangiocyte
proliferation and cAMP dependent signaling mechanisms and prevent cholangiocyte
apoptosis.
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