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Abstract

Nonalcoholic fatty liver disease (NAFLD) is a common cause of morbidity and mortality. 

Nonfocal liver biopsy is the historical reference standard for evaluating NAFLD, but it is limited 

by invasiveness, high cost, and sampling error. Imaging methods are ideally situated to provide 

quantifiable results and rule out other anatomic diseases of the liver. MRI and US have shown 

great promise for the noninvasive evaluation of NAFLD. US is particularly well suited to address 

the population-level problem of NAFLD because it is lower-cost, more available, and more 

tolerable to a broader range of patients than MRI. Noninvasive US methods to evaluate liver 

fibrosis are widely available, and US-based tools to evaluate steatosis and inflammation are 

gaining traction. US techniques including shear-wave elastography, Doppler spectral imaging, 

attenuation coefficient, hepatorenal index, speed of sound, and backscatter-based estimation have 

regulatory clearance and are in clinical use. New methods based on channel and radiofrequency 

data analysis approaches have shown promise but are mostly experimental. This review discusses 
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the advantages and limitations of clinically available and experimental approaches to sonographic 

liver tissue characterization for NAFLD diagnosis as well as future applications and strategies to 

overcome current limitations.

Chronic liver disease (CLD) affects 1.5 billion people worldwide (1). CLD can be caused 

by metabolic, environmental, infectious, or genetic factors. Across causes, CLD progresses 

through repeated cycles of liver injury and fibrosis in which ongoing inflammation and 

hepatocellular injury result in progressive scarring that can ultimately culminate in cirrhosis.

Nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction–associated steatotic 

liver disease (MASLD) in new terminology, is the most common CLD cause and is 

characterized by fat accumulation in vacuoles within the hepatocytes without alcohol-related 

liver injury (2). Nonalcoholic steatohepatitis (NASH), or metabolic dysfunction–associated 

steatohepatitis (MASH) in new terminology, is a subtype of NAFLD in which inflammation 

and hepatocellular injury result in fibrosis and, ultimately, advanced CLD. Some patients 

with NASH accompanied by severe fibrosis (grade ≥F2) and inflammation (NAFLD activity 

score ≥4) at first diagnosis have an elevated long-term risk of cirrhosis (3,4), termed high-

risk NASH (3,4). Currently, there are no treatment options cleared by the U.S. Food and 

Drug Administration (FDA) for patients with high-risk NASH, but a variety of therapeutics 

are in development. It is important to identify patients with NAFLD, as they are at risk 

for the development of NASH. Early NASH and particularly high-risk NASH diagnosis 

and treatment may provide an opportunity to prevent cirrhosis-related complications, such 

as portal hypertension, hepatic encephalopathy, and hepatocellular carcinoma. Estimation 

of inflammation and fibrosis in patients with NAFLD provides prognostic information and 

helps identify patients with high-risk disease. However, ultimately, a tool for identifying 

patients with NAFLD at risk for progression would be ideal to aid in early detection. Recent 

pilot data suggest that imaging estimates of steatosis severity may help identify patients at 

risk for progressive disease (5).

Liver biopsy is the accepted reference standard tool for NAFLD risk stratification but 

is limited by invasiveness and high cost. MRI-based methods such as proton density fat 

fraction (PDFF) estimation and MR elastography are accurate methods to quantify steatosis 

and fibrosis, respectively (6), but their use is constrained by relatively high cost and limited 

availability. US-based methods have favorable cost and wide availability, making them more 

suitable for population-level diagnosis and risk stratification.

This review focuses on currently available US methods to evaluate liver steatosis, 

inflammation, and fibrosis. Each section summarizes different US-based methods, current 

evidence, and future directions. We also discuss recent promising innovations that are not 

yet clinically available. Our goal is to discuss these technologies and place them into a 

broader context for the practicing radiologist. For more detailed technical discussion, we 

refer the reader to the recent article by Fetzer and Rosado-Mendez et al (7).

Ozturk et al. Page 3

Radiology. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Imaging Methods in Current Clinical Use for Liver Steatosis

Conventional US

Qualitative assessment of conventional gray-scale brightness mode (B-mode) US imaging 

has traditionally been the cornerstone of hepatic steatosis evaluation. Liver sonography is 

often performed as the first-line test to investigate abnormal liver function, and the diagnosis 

of steatosis may be the explanatory factor. Characteristic findings of fat deposition include 

increased parenchymal echogenicity, beam attenuation, blurring of anatomic structures 

(such as the intrahepatic vasculature, gallbladder wall, or diaphragm), and image quality 

degradation (Fig 1). Generally, echogenicity assessment is performed by comparing the liver 

tissue with the other hepatic structures (eg, vessel walls) or adjacent organs (eg, kidney). 

The characteristic B-mode findings result from a combination of aberrations due to assumed 

and actual parenchymal sound speed mismatch, increased backscattered echoes from lipid 

droplets, and increased beam attenuation due to increased backscatter and absorption. 

Hepatic fat deposition is often heterogeneous, with characteristic areas adjacent to the 

gallbladder fossa, falciform ligament, or portal vein that remain uninvolved, possibly due 

to variability in venous drainage and perfusion in these regions (8). Moderate to severe 

steatosis can be detected with 84.8% sensitivity (95% CI: 79.5, 88.9) and 93.6% specificity 

(95% CI: 87.2, 97) at B-mode US, as published in a meta-analysis (9). However, sensitivity 

and specificity for mild steatosis could be lower (70% [95% CI: 63, 77] and 86% [95% CI: 

82, 89], respectively), as published in another meta-analysis (10).

B-mode features of steatosis are subjective, with corresponding interpretative variability 

and limited generalizability. Furthermore, technical acquisition parameters can confound 

some features. Increasing overall image gain or changing US transducer frequency can 

lead to increased parenchymal echogenicity, while altering depth-dependent time gain 

compensation settings can mimic increased beam attenuation. Generalized image quality 

reduction may result from several factors, including acquisition hardware differences, 

transducer transmit frequency, sonographer technical skill, and increased patient abdominal 

subcutaneous tissue thickness. Variation in interpreting radiologist experience may confound 

reader reliability. These pitfalls commonly make interpretation challenging, even for 

experienced readers. Identifying fatty sparing in characteristic locations can improve 

interpretation specificity, as technical parameters may have less influence on this feature. 

Nonetheless, the limitations of conventional B-mode US for liver steatosis estimation are 

well established.

The hepatorenal index (HRI) is a semiquantitative B-mode imaging steatosis biomarker 

derived by dividing the hepatic B-mode signal intensity by the renal cortical signal intensity 

at the same depth (to account for attenuation effects) (11) within a single image depicting 

both structures (Fig 2). This aims to mitigate confounding parameters by standardizing 

liver brightness estimation to the renal cortex as an internal control. Higher HRI values 

indicate increased liver echogenicity and correspond to increased steatosis. Some vendors 

offer an HRI calculation tool in their US device commercial software, with a subset 

allowing HRI estimation from the acquired raw data to mitigate confounding from time 

gain compensation settings. However, the HRI measurement may still be confounded 
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by concomitant renal disease, which alters the brightness of the kidney parenchyma. 

Additionally, changing device acquisition settings may influence the appearance of the 

images available for postacquisition HRI measurement, implying that standardized settings 

may be needed for reliable HRI measurements. The reported sensitivity (76.4% [95% CI: 

70.2, 82.7]) and specificity (93.2% [95% CI: 86.4, 98.3]) of HRI with a cutoff value of 

1.22 to detect steatosis in a prospective multicenter study with biopsy-proven CLD cases 

including NAFLD suggest that it may have clinical value (12,13). However, the technique 

is limited by the fact that liver fibrosis, which is a parameter of interest, may confound the 

relationship between HRI and hepatic steatosis (14).

In summary, although B-mode–based methods are common and easy to access, they have 

several disadvantages, as described earlier. To address these limitations, methods such 

as deep learning may decrease manual region of interest drawing workload and provide 

accurate HRI estimation (15). Artificial intelligence (AI)–enhanced screening of B-mode 

images to identify patients with suspected steatosis may be helpful to refer patients to more 

advanced methods, such as PDFF, or more accurate US-based methods, such as attenuation 

coefficient (AC) estimation.

Attenuation Coefficient

US AC is defined as the measure of the rate of energy lost by the acoustic wave as it 

propagates through the tissue, quantified in decibels per unit of depth (in centimeters). 

Attenuation is dependent on insonation frequency and tissue characteristics, so it is 

normalized by the frequency (relative to 1 MHz). Thus, the AC has a unit of dB/cm/MHz. 

Attenuation can be quantified by accounting for the energy lost in the propagating tissue 

at different frequencies. Different factors affect attenuation estimation accuracy, including 

focus depth, varying backscatter and speed of sound (SoS), imaging resolution, artifacts, and 

signal-to-noise ratio of the echo. US AC estimation is available on multiple FDA-cleared 

US devices. Further details describing AC estimation can be found in a review article by 

Ferraioli et al (16).

AC for fatty liver evaluation has been studied more than other quantitative US fat 

quantification methods. It is known that higher attenuation values are present in liver tissues 

with higher steatosis severity. Many studies have been published regarding the diagnostic 

accuracy, variability, and operator dependence of these methods (16,17). In a recent meta-

analysis of 13 studies, the pooled sensitivity and specificity for attenuation-related methods 

to diagnose steatosis severity were 76% (95% CI: 73, 80; I2 = 43% [I2 is a marker of 

heterogeneity]) and 84% (95% CI: 77, 89; I2 = 74%), respectively, for mild steatosis (≥S1) 

and 87% (95% CI: 83, 91; I2 = 0%) and 79% (95% CI: 75, 83; I2 = 59%) for moderate 

steatosis (≥S2) (17). These results suggest that AC may be a useful tool to diagnose and 

quantify steatosis severity.

Regarding operator dependence, high intra- and interobserver agreement values (intraclass 

correlation coefficient between 0.79 and 0.98) have been reported for attenuation imaging 

(16). However, it is important to consider the effects of operator training, experience, 

and device familiarity, as these factors may increase operator dependence. As attenuation 
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imaging is available on multiple devices, interplatform agreement is another important factor 

that should be evaluated and is the subject of several active studies (18).

There is currently no widely accepted US AC measurement practice guideline. Some centers 

use elastography practice guidelines to perform US attenuation examinations, which include 

the following suggestions: (a) Liver attenuation measurements are typically taken with the 

patient in the supine or left lateral decubitus position at mid breath hold and (b) the region 

of interest should be placed on a homogeneous region more than 2 cm deep to the liver 

capsule to avoid capsule artifacts while avoiding blood vessels (Fig 3). Most vendors suggest 

taking five independent measurements of attenuation and reporting the median value; 

however, there is no strict recommendation or guideline regarding the required number of 

measurements. The utility of reporting the IQR divided by the median value, as is done for 

shear-wave elastography (SWE), is presently unclear (16). In summary, initial data regarding 

the diagnostic performance and variability of AC estimation for steatosis quantification are 

promising, but several unmet needs remain, including (a) widely accepted implementation 

guidelines, (b) understanding of measurement variability across manufacturers, and (c) 
understanding of how new AI technologies may be used in conjunction with the technique 

(19).

Other Commonly Used Methods

Changes in the number and size of intracellular fat vacuoles in steatosis result in a change 

of parenchymal echogenicity, producing a hyperechoic appearance compared with normal 

tissue or kidney. Techniques to discern these properties from the level of the acoustic echoes

—termed the backscatter coefficient—have demonstrated similar performance to MRI-

derived estimates of steatosis quantification (20–22). It is known that backscatter coefficient 

values increase with increased steatosis level. However, more clinical studies are needed to 

understand operator dependence and other patient- and device-related confounding factors. 

Backscatter coefficient can be calculated from radiofrequency signal data (23).

SoS is another acoustic parameter that can be used to assess steatosis. SoS quantification 

provides reasonable delineation of disease severity, with known negative correlation between 

steatosis severity and SoS (Fig 4). Currently, the availability of this method on clinical 

devices is limited, as is the literature on the performance of SoS in clinical studies. However, 

recent studies show promising results to diagnose steatosis. In a cohort of 215 patients with 

NAFLD, SoS estimation showed an area under the receiver operating characteristic curve 

(AUC) of 0.88 (95% CI: 0.82, 0.92) to detect grade S2 or higher (24). A widely acceptable 

reference standard like biopsy or PDFF was not available in this recent study. More clinical 

studies are needed to understand the effect of confounding factors and device and operator 

variability on the SoS biomarker.

Other techniques combine measures (eg, attenuation and backscatter coefficient) to estimate 

a US-derived fat fraction (Fig 5) (22) and have demonstrated high performance in the 

diagnosis of steatosis when compared with the reference standard of MRI PDFF (AUC, 

0.90 [95% CI: 0.79, 0.96] to detect greater than 5.5% PDFF value) (25) and also high 

reproducibility values (intraclass correlation coefficient higher than 0.93) (26). These results 

suggest that US-derived fat fraction may be an accurate and reproducible method to evaluate 
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steatosis; however, studies with biopsy-proven (ideally single-pathologist) NAFLD may be 

needed to support the literature.

A persistent challenge for deriving material properties from US images is that these 

images depend both on individual machine settings (frequency, gain, focal depth, etc) and 

parameters that are set by the individual sonographer. Controls by way of a reference 

phantom or by comparison with the appearance of another target, such as the kidney cortex 

(ie, the HRI), have been proposed to mitigate interoperator and intersession variability. 

Modern implementations of these techniques rely on internal validation and correction 

strategies that are embedded in the device, which mitigates the need for external validation 

tools, such as phantoms.

Backscatter coefficient, SoS, and US-derived fat fraction show promising results in terms 

of steatosis quantification. US-derived fat fraction and SoS methods are available on 

clinical systems, but access to raw data may be needed to calculate backscatter coefficient. 

Cooperative efforts to standardize approaches across manufacturers and provide access to 

raw data under appropriate legal terms may be crucial to use these methods reliably in 

clinical settings.

Speckle Statistics

Speckle patterns appear in US images due to scattered US signals from tissue 

microstructures. Therefore, speckle statistics, representing the envelope distribution of 

backscattered US signal, are a good indicator of tissue scattering characteristics. Advanced 

quantitative US techniques based on these envelope parameters, such as acoustic structure 

quantification (ASQ), normalized local variance (NLV), and Nakagami distribution, have 

been developed as potential biomarkers for fat quantification. Most of these methods are 

commercially available; however, the literature is limited on the comparison of these with 

the other NAFLD assessment tools. We summarize these methods in the Table and Figure 6.

In the ASQ method, the degree of deviation from the Rayleigh distribution is quantified 

to assess the liver tissue characteristics (Fig 6). Theoretically, ASQ is used to compute a 

focal disturbance ratio, which is inversely related to the fat content of the liver. In an early 

study, a significant negative correlation between the focal disturbance ratio and the MR 

spectroscopy–based hepatic fat fraction was demonstrated (r = −0.87; P < .01) (27). Similar 

negative correlation results have been shown in a recent study (28), and performance to 

diagnose MR spectroscopy–defined steatosis (≥5%) was also proven (AUC, 0.82) (29).

NLV is an extension of ASQ and provides a quantitative tool to perform regional analysis 

of the image and evaluate the intensity and homogeneity of the liver tissue. Lower NLV 

values have been associated with higher steatosis grade (30). The SD of NLV has been 

shown to help detect mild (AUC, 0.90 [95% CI: 0.74, 0.97]), moderate (AUC, 0.74 [95% 

CI: 0.56, 0.87]), and severe steatosis (AUC, 0.60 [95% CI: 0.42, 0.76]) (31). Generally, with 

the other steatosis quantification methods, higher AUCs may be observed in the detection 

of severe steatosis, but the opposite could be possible for NLV, considering the results from 

Zhao et al (31). In a separate study (32), NLV showed high repeatability with an intraclass 

correlation coefficient of 0.87 (95% CI: 0.61, 0.95) and reproducibility with intraclass 
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correlation coefficient of 0.80 (95% CI: 0.50, 0.92) in assessing PDFF-proven steatosis. 

These studies show promising results, but sample sizes were small; meta-analyses may be 

needed to understand the cumulative effect.

Last, the Nakagami parameter, another modern technique, is the variation in the shape of the 

envelope distribution of backscattered US signal. Increased Nakagami parameter values have 

been associated with higher steatosis severity (33). In a recent study (33), the Nakagami 

parameter was indicative of mild steatosis (PDFF ≥6.4%), with an AUC of 1.00. Although 

high correlation with PDFF has been reported by some authors, others have not shown as 

promising results, with lower correlation (r = 0.47) with PDFF (34). Further studies with 

larger samples are needed to understand the diagnostic performance of this method.

Tissue scatter distribution imaging and tissue attenuation imaging, other commonly used 

techniques, provide attenuation and Nakagami parameter values. High diagnostic accuracy 

was observed when using this combination of methods, the details of which can be found in 

another review (35).

ASQ, NLV, and Nakagami parameters may be useful methods in the diagnosis of NAFLD. 

Although the diagnostic performance has been reported as high in recent studies, it is 

important to note that the literature regarding these parameters is limited, and reported 

results may not be generalizable. Additionally, the effect of several confounding factors like 

obesity, patient movement, and breath intake are not well established.

Shear-Wave Elastography, Dispersion, and Viscosity

In US SWE, tissue stiffness is estimated by inducing shear waves in tissue, most commonly 

with acoustic radiation force, and measuring the propagation velocity of those shear waves. 

Based on the measurement area size, it can be categorized as point SWE or two-dimensional 

SWE. Higher shear-wave velocities are associated with increased fibrosis severity or 

increased tissue stiffness (36). SWE estimates of tissue stiffness can be reported as the 

estimated Young modulus of tissue in kilopascals or as shear-wave speed in meters per 

second; conversion between these properties is algebraic. Multiple studies have shown that 

SWE can be used to distinguish cirrhosis from early-stage liver fibrosis with excellent 

accuracy and differentiate intermediate liver fibrosis stages with moderate accuracy (37). 

As a result, SWE-derived hepatic shear-wave speed estimates have been widely adopted as 

liver fibrosis biomarkers. SWE is in widespread clinical use but is limited by variability 

produced by operator-, patient-, and device-related factors (Fig 7). Details about common 

SWE limitations and artifacts can be found in the paper by Bruce et al (38).

Shear-wave dispersion (SWD) has been proposed as a biomarker for inflammation and has 

been studied in several clinical studies (39). Higher SWD values have been associated with 

higher grades of histopathologic ballooning and lobular inflammation (40). When combined 

with AC, SWD may show higher diagnostic performance in the detection of NASH, even 

higher than SWE alone. These results show that combining parameters, such as AC, SWE, 

and SWD, may improve diagnostic performance for identifying patients with high-risk 

NASH (41).
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Last, shear-wave viscosity (SWV), another shear wave–focused biomarker, has been used 

in several clinical studies. No significant relationship has been shown between SWV and 

PDFF-based steatosis severity (34,42); however, SWV may be related to the degree of 

fibrosis (AUC, 0.76 [95% CI: 0.64, 0.87] for significant fibrosis), with higher viscosity 

values at higher fibrosis stages (43). No association was found between SWV and steatosis 

or disease activity (43). One of the strong sides of this study is that the biopsy samples 

were evaluated by one pathologist, which minimizes the reader variability on the reference 

standard side.

SWE, SWD, and SWV may be estimated during a single US examination. The diagnostic 

performance of SWE for fibrosis staging is well known. More clinical studies are needed for 

SWD and SWV to better understand their association with inflammation and fibrosis and the 

magnitude of the effect of common confounders, including obesity, food intake, and patient 

movement.

Several future directions to improve and combine these biomarkers have been proposed. 

Researchers have proposed increasing the acoustic output to obtain higher-quality SWE 

images in difficult-to-image patients, especially in patients with obesity and increased 

subcutaneous tissue thickness (44). Multiple frequency–induced reverberant shear waves 

may be helpful to obtain higher-quality SWD data in patients with increased subcutaneous 

tissue thickness (45) and may specifically be helpful to detect inflammation. Combined 

fibrosis, steatosis, and inflammation assessment tools may help identify patients with 

NAFLD who are at risk of developing NASH and those with established high-risk NASH. 

For example, using SWE, SWD, and attenuation in the same US examination in the 

same region of interest would be cost- and time-efficient and provide full characterization 

to identify patients in need of aggressive treatment. Considering the high prevalence of 

NAFLD, the use of these combined tools for screening at the primary care level with 

point-of-care devices could provide a population-level solution to identify at-risk patients in 

need of specialized care.

Portal Venous and Other Waveform Analysis

Hepatic Doppler US is widely accepted as a valuable, noninvasive, and cost-effective tool 

that is considered a first-line imaging technique for evaluating the hepatic vasculature. A 

hepatic Doppler US examination consists of gray-scale or B-mode US, color Doppler US, 

and spectral waveform analysis obtained by placing a small region of interest over a vessel 

of interest.

Each of the main vessels assessed during a liver Doppler US examination have characteristic 

waveforms determined by the anatomic position of the vessel as well as cardiac- and 

respiration-related pressure variations. These waveforms are also affected by various 

physiologic and pathologic conditions. Resistive index (systolic velocity – diastolic velocity/

systolic velocity), the arterial pulsatility index (systolic velocity – diastolic velocity/mean 

velocity), and the venous pulsatility index (systolic velocity/diastolic velocity) are examples 

of quantitative biomarkers developed for describing changes in vascular flow. These 

biomarkers can be used in hepatic artery, hepatic vein, and portal vein imaging. For NAFLD 

or NASH diagnosis, predominantly portal vein–based indexes have been investigated and 
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therefore are the focus of this section (46). Hepatic vein– and artery–based indexes are 

outside of the scope of this review; however, these methods, and newer methods like 

subharmonic imaging, can be used in evaluation of advanced CLD (47,48).

Portal venous pulsatility index, calculated as (maximum velocity – minimum velocity)/

maximum velocity (Fig 8), may be useful for the diagnosis of NASH with significant 

fibrosis. In a recent study of 123 patients, pulsatility index was shown to have a high AUC 

(0.84 [95% CI: 0.77, 0.91]) in the detection of biopsy-proven high-risk fatty liver (46). The 

low cost and excellent availability of hepatic Doppler US and the magnitude of information 

that can be extracted by means of waveform analysis suggest that this will remain an area 

of active research for improving the diagnosis and staging of liver pathology. New machine 

learning techniques will likely find a role in automated calculation of Doppler waveform–

based biomarkers as well as finding new biomarkers that may be difficult to discern with 

visual inspection of spectral waveforms. The focus of these automated techniques will likely 

be to automate vessel identification, subsequent Doppler activation, and measurement of the 

quantitative parameters of interest.

Multiparametric Models

Multiparametric models using US-derived imaging markers have recently been developed 

to identify patients with high-risk NASH. The FibroScan–aspartate aminotransferase 

score combines FibroScan (Echosens) measurements of liver stiffness and the controlled 

attenuation parameter with aspartate aminotransferase levels. This score has been reported to 

have good diagnostic performance in the detection of NASH (identified as NAFLD activity 

score ≥5), with an AUC of 0.75 (95% CI: 0.69, 0.81) and slightly superior results to liver 

stiffness measurement alone; however, the AUC (0.68 [95% CI: 0.61, 0.75]) to detect F2 

grade or higher was lower than that for liver stiffness measurement alone (0.82 [95% CI: 

0.76, 0.87]) (49). Another combination model, LAD-NASH score, has been developed by 

combining three US features: liver stiffness, AC, and dispersion slope. Performance of this 

score in the detection of patients with high-risk NASH was good in two study samples from 

different countries (Japan, 111 patients with NAFLD [AUC, 0.86 {95% CI: 0.79, 0.93}]; 

Korea, 102 patients with NAFLD [AUC, 0.88 {95% CI: 0.80, 0.95}]) (4).

Despite encouraging early results, US-derived multiparametric models have several 

limitations. One major disadvantage is the existence of a large “gray zone.” Both the 

FibroScan–aspartate aminotransferase and LAD-NASH scores use a dual cutoff approach 

where low and high cutoff values are used to rule out and rule in high-risk NASH. The gray 

zone, where results are too indeterminate to support clinical decision-making, lies between 

these. In the training cohorts of the FibroScan–aspartate aminotransferase and LAD-NASH 

scores, 39% and 26% of patients fell into this category, respectively. To narrow the gray 

zone, sequential testing using different noninvasive tests and other imaging modalities has 

been proposed, with liver biopsy as a last resort (4,50).

Multiparametric US–based model components may not be readily available, create extra 

cost and time burdens for health care providers and patients, and be clinically unreliable in 

specific circumstances. For example, the FibroScan–aspartate aminotransferase score relies 

on aspartate aminotransferase levels, which may show poor correlation with disease severity 
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(51). In the case of the LAD-NASH score, dispersion slope measurement is required. This 

parameter is not yet widely available or routinely obtained.

In summary, for multiparametric US models, quantitative sonographic biomarkers should 

be evaluated not only in terms of their absolute diagnostic value, but also their incremental 

value relative to other readily available sonographic biomarkers. These models may be used 

as enrichment biomarkers to select patients with high-risk NASH for future clinical trials. 

More studies are needed to understand the role of these models.

Artificial Intelligence

AI applications in liver US imaging are growing quickly, with many innovative approaches 

reported in the literature (52). For example, Byra et al (53) recently developed image 

analysis algorithms to detect PDFF-defined steatosis on multiview US images. Multiview 

algorithms could diagnose greater than 5% steatosis with an AUC of 0.91 and greater than 

10% steatosis with an AUC of 0.86. Combining US images from multiple views with the 

help of deep learning may be valuable, as it would provide a whole-organ assessment of the 

liver tissue.

AI methods for radiofrequency signal processing have also been studied. For example, Han 

et al (54) used a deep learning approach to classify US radiofrequency data to quantify 

steatosis by accepting MRI PDFF values as the reference standard. The authors reported a 

strong linear relationship between the deep learning–predicted fat fraction and MRI PDFF 

results (Pearson r = 0.85). Jeon et al (55) used two-dimensional neural networks to study 

B-mode images and tissue scatter distribution imaging and tissue attenuation imaging data 

in a PDFF-defined sample of patients with NAFLD. The algorithm output could identify 

greater than 5% steatosis with an AUC of 0.97 (95% CI: 0.93, 0.99), which was higher than 

tissue attenuation imaging, tissue scatter distribution imaging, and B-mode–based visual 

decision (P = .01, P = .006, and P < .001, respectively). These results show that analyzing 

radiofrequency data with the help of deep learning may provide superior performance in the 

diagnosis of steatosis compared with existing conventional methods.

AI in US is rapidly evolving, with multiple FDA-cleared models commercially available, 

particularly for cardiac applications. Despite emerging literature, FDA-cleared NAFLD-

focused AI-enabled devices are not yet widely available (56). Currently, most of the 

published US NAFLD management algorithms focus on diagnostic accuracy. However, 

early disease detection, reprioritization of cases for radiologist review, and personalized 

diagnostics by comparing prior examinations are alternative approaches that may improve 

NAFLD management (57,58). To give specific examples, early AI-enhanced steatosis 

quantification may be helpful for making lifestyle changes earlier in life. Identifying patients 

at risk for developing advanced CLD, like those with high-risk NASH, from US images 

and reprioritizing these images for more detailed review could facilitate better detection. 

Comparing prior US images and analyzing the differences in liver tissue characteristics may 

ultimately be important for monitoring treatment response.
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Consensus Efforts

Several expert societies and committees have convened groups to develop guidelines and 

consensus recommendations based on multicenter phantom and clinical studies. These 

activities are necessary, as complex multiparametric quantitative imaging methods require 

standardization to minimize variability. The Society of Radiologists in Ultrasound and the 

RSNA Quantitative Imaging Biomarkers Alliance, or QIBA, Ultrasound Shear Wave Speed 

Committees developed separate but complementary recommendations for SWE practice that 

aim to aid interpretation and decrease variability (37,59).

The American Institute of Ultrasound in Medicine/RSNA QIBA Pulse-Echo Quantitative 

US group has been working to develop consensus guidelines and profiles for attenuation, 

backscatter coefficient, and SoS methods (7).

Conclusion

Since the late 1960s, scientists have studied hepatic fat accumulation with conventional 

sonographic imaging techniques (60,61). In the intervening years, advances in US hardware, 

signal processing, computational efficiency, and analytic algorithm development have led 

to new, exciting, and powerful quantitative imaging tools that promise to increase hepatic 

steatosis diagnostic accuracy and reliability.

Early nonalcoholic fatty liver disease (NAFLD) diagnosis and timely clinical management 

are the main motivating factors for developing noninvasive biomarkers. The low cost, wide 

availability, and lack of harm of diagnostic US combined with the prevalence and public 

health importance of NAFLD suggest that US-based techniques will continue to be used for 

the foreseeable future. Limited evidence, device and operator variability, and patient-related 

factors like obesity are common limitations for some US biomarkers. Innovative research 

that combines multiparametric sonographic parameters with advanced machine learning and 

acoustic signal processing techniques are likely to further improve the clinical utility of 

diagnostic US in NAFLD care. Advanced sonographic techniques are likely to grow further 

and become an integral part of NAFLD care for diagnosis, risk stratification, and response to 

therapy assessment in the next few years.
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Summary

Quantitative US techniques are noninvasive methods to quantify fatty liver disease 

severity; innovations in acoustics and image analysis disciplines show promising results 

in fatty liver diagnosis and risk stratification.

Essentials

• Noninvasive, low-cost, and accurate imaging-based quantification tools are 

needed to address the increasing incidence of fatty liver disease.

• Several tools are currently available, with varying evidence to support their 

role in detecting and assessing nonalcoholic fatty liver disease (NAFLD); 

these include shear-wave elastography and estimation of parameters such as 

attenuation coefficient, sound speed, hepatorenal index, and pulsatility index.

• Multiple advanced signal processing and image analysis methods for NAFLD 

and nonalcoholic steatohepatitis evaluation will likely be clinically available 

in the next 3–5 years.
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Figure 1: 
Characteristic B-mode US image in a 35-year-old male patient with hepatic steatosis and 

16% MRI proton density fat fraction. Steatosis results in increased brightness of the liver 

relative to the kidney (arrow), blurring of hepatic vasculature (small arrowhead), loss of 

definition of the diaphragm (large arrowhead), and reduced signal from deep anatomy.
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Figure 2: 
B-mode US image at the level of the pouch of Morison in a 59-year-old female patient 

with nonalcoholic steatohepatitis and grade 2 hepatic steatosis. Two circular regions of 

interest are placed on the kidney cortex and liver tissue at the same depth. Hepatorenal 

index (HRI) can be calculated on US systems with HRI quantification software, or images 

can be exported in Digital Imaging and Communications in Medicine, or DICOM, format 

and region of interest circles can be drawn with a DICOM viewer. In this image, the local 

region of interest pixel brightness values and the HRI value are presented in the bottom left 

corner. Reproduced, with permission, from the Non-Invasive Biomarkers of Metabolic Liver 

Disease, or NIMBLE 1.1, study (18).
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Figure 3: 
US image in a 72-year-old male patient with nonalcoholic steatohepatitis and grade 

1 steatosis shows an example of US liver attenuation coefficient measurement. Higher 

attenuation values are expected with higher grades of steatosis. A region of interest is placed 

on an area without visible blood vessels. Attenuation value is presented on the bottom left of 

the image. Attenuation measurements are collected from the rectangular region of interest. 

Color map may be added to the region of interest if needed. Reproduced, with permission, 

from the Non-Invasive Biomarkers of Metabolic Liver Disease, or NIMBLE 1.1, study (18).
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Figure 4: 
US image in a 64-year-old male patient with nonalcoholic steatohepatitis cirrhosis and grade 

1 steatosis. Speed of sound (SSp PLUS) and attenuation (Att PLUS) values are shown. 

The measurements are collected from the rectangular region of interest. Lower speed of 

sound values are expected with increasing steatosis. Reproduced, with permission, from the 

Non-Invasive Biomarkers of Metabolic Liver Disease, or NIMBLE 1.1, study (18).
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Figure 5: 
US image in a 55-year-old female patient with nonalcoholic steatohepatitis and grade 

1 steatosis. Point shear-wave elastography (pSWE) and US-derived fat fraction (UDFF) 

measurements are presented. The device software uses a large region of interest with 

15 small measurement locations (rectangles). In this method, attenuation and backscatter 

coefficients are combined to report a single value in percentage unit. Higher US-derived 

fat fraction values are expected with increasing steatosis. The US-derived fat fraction 

and shear-wave speed values (top left corner) are acquired by these 15 small regions of 

interest. The purpose of using 15 small regions of interest is to expand the measurement 

area. Reproduced, with permission, from the Non-Invasive Biomarkers of Metabolic Liver 

Disease, or NIMBLE 1.1, study (18).
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Figure 6: 
Diagram shows liver fat quantification with the acoustic structure quantification (ASQ), 

normalized local variance (NLV), and Nakagami parameter methods. (A) ASQ and NLV 

are calculated by comparing the theoretical and real envelope distributions of backscattered 

US signal (purple and red distribution curves). The magnitude of the fitting between these 

two curves is calculated as the Cm2 value. This value is calculated in multiple small 

regions of interest (ROIs). (B) The distribution of these multiple Cm2 values is plotted. 

The ASQ method uses the differences between these plots to differentiate fibrotic tissue. 

NLV is calculated according to similar principles; however, it is mainly used for steatosis 

quantification. (C) The Nakagami parameter is the variation in the shape of the envelope 

distribution of backscattered US signal (red distribution on the blue curve). This variation 

is estimated as the m value, which is also called shape parameter. Higher m values are 

observed in fatty liver tissues.
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Figure 7: 
Shear-wave elastography (SWE) signal quality may be affected by the thickness of the 

subcutaneous tissue or skin-to–liver capsule distance. (A) SWE image in a 74-year-old 

female patient with clinically suspected nonalcoholic fatty liver disease (NAFLD). SWE 

examination was performed, and a complete SWE value pixel map was observed. The 

shear-wave speed, or SWS, color spectrum is presented on the left side (red, high SWS; dark 

blue, low SWS). Skin-to–liver capsule distance was estimated as 1.8 cm (vertical yellow 

line). The SWS value is presented in the bottom left corner of the image. SWS values 

are generated from the circular region of interest. (B) SWE image in a 35-year-old female 

patient with clinically suspected NAFLD. SWE examination was performed, and poor SWE 

value pixel map fill-in was observed. Skin-to–liver capsule distance was estimated as 3.6 cm 

(vertical yellow line). The SWS value is presented in the top left corner of the image. SWS 

values are generated from the circular region of interest.
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Figure 8: 
Doppler US image in a 72-year-old male patient with nonalcoholic steatohepatitis (NASH) 

and grade 1 steatosis. An example of a portal vein spectral Doppler image with flow speed 

maximum of 15.33 cm/sec and minimum of 12.72 cm/sec. The colored scale bar on the 

left represents the flow speed spectrum based on the flow direction. The graph on the 

bottom represents the Doppler spectrum and its association with flow velocity. Increased 

portal vein pulsatility index [(maximum velocity – minimum velocity)/maximum velocity] 

may be associated with NASH (46). Reproduced, with permission, from the Non-Invasive 

Biomarkers of Metabolic Liver Disease, or NIMBLE 1.1, study (18).
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