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Abstract
We have only a vague idea of precisely how protein sequences evolve in the context of protein
structure and function. This is primarily because structural and functional contexts are not easily
predictable from the primary sequence, and evaluating patterns of evolution at individual residue
positions is also difficult. As a result of increasing biodiversity in genomic studies, progress is being
made in detecting context-dependent variation in substitution processes, but it remains unclear
exactly what context-dependent patterns we should be looking for. To address this, we have been
simulating protein evolution in the context of structure and function using lattice models of proteins
and ligands (or substrates). These simulations include thermodynamic features of protein stability
and population dynamics, and we refer to this approach as ‘ab initio evolution’, to emphasise the
fact that the equilibrium details of fitness distributions arise from the physical principles of the
system, and not from any preconceived notions or arbitrary mathematical distributions. Here, we
present results on the retention of functionality in homologous recombinants following population
divergence. A central result is that protein structure characteristics can strongly influence
recombinant functionality. Exceptional structures with many sequence options evolve quickly and
tend to retain functionality, even in highly diverged recombinants; by contrast, the more common
structures with fewer sequence options evolve more slowly, but the fitness of recombinants drops
off rapidly as homologous proteins diverge. These results have implications for understanding viral
evolution, speciation and directed evolutionary experiments. Our analysis of the divergence process
can also guide improved methods for accurately approximating folding probabilities in more complex
but realistic systems.
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Introduction
Despite over 30 years of serious effort, the mysteries of protein structure and function are
sufficiently complex that it is not possible accurately to predict novel structures from their
sequence information and first principles.1–4 In evolutionary genomics, therefore, people have
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tended to use extremely simple models of protein evolution for theoretical purposes.5 These
models often have little relation to proteins as thermodynamic molecules, and have been further
constrained by the limits of computational resources and algorithm development;6–8

reconstruction of evolutionary processes is itself an extremely difficult and not yet entirely
solved problem.

Until recently, evolutionary models used in comparative genomics almost uniformly assumed
that substitution probabilities were unchanging and the same at all sites, except for variation
in the average rate. A few groups have recently begun to incorporate a broader view of the
context dependence of evolutionary rates, and in particular to incorporate interaction among
protein residue positions, or molecular co-evolution, into the evolutionary model.9–11 A critical
component of modern approaches is to observe variance in substitution probabilities and co-
evolutionary interactions without presupposing their cause, and then relate these observations
to structural and functional features.

It is fairly clear (to us, at least) that current concepts of how proteins evolve are not sufficiently
robust to build good reality-based evolutionary models, and are likely to be misleading in many
aspects — for example, when trying to differentiate selection and adaptation from neutral or
random processes. Due to the large numbers of sequences and genomes from diverse organisms
which are rapidly accumulating in worldwide databases, however, the potential for
evolutionary analysis to inform genomic studies on molecular structure, function and
interaction is enormous. We are beginning to obtain more detailed and densely sampled
taxonomic datasets that are allowing much more sophisticated deconstruction of site-specific
and variable rates, and are developing methodology to take these datasets into account.12–19

In spite of this progress, the lack of reasonable expectations for precisely how structural and
functional contexts affect evolutionary processes hinders the development of realistic models.

As a consequence of this situation, we have embarked on a long-term series of studies to utilise
thermodynamic models of proteins and protein function, in conjunction with population
simulations, to improve our understanding of protein evolutionary dynamics and make better
predictions of the effects to test for in real proteins. What happens in evolution that allows
variation to exist with no apparent effect in some species, but causes disease in others? How
do we expect ligand binding, catalysis and protein–protein interaction to affect evolution, and
how far across a protein should the effects of these interactions spread? Do different types of
proteins behave differently (and what defines a ‘type’)? How does the strength of selection (or
the importance of a function) affect evolution, and how does population size modulate this
effect? It is our experience that intuition is not necessarily a good guide, and that proteins
evolved in semi-natural populations can have very different properties to random proteins or
proteins evolved in an ad hoc fashion.20–22

We use the term ‘ab initio evolution’ to describe our approach, to emphasise the fact that the
distributions of selective effects in these models arise from the system naturally, rather than as
a consequence of artificially constructed distributions of selective effects or from artificial and
overly simplistic adaptive landscapes. This approach owes a great deal to a long history of
work on energy-based landscapes, both for RNA and for proteins. In our work, we particularly
focus on protein-like structures (ie the energy landscape is not solely limited to pairwise
interactions, as in nucleic acid structure), ‘proteins’ evolved to equilibrium in reasonably large
populations, and on reasonably complex interaction energies (ie we use empirically based
interaction potentials that are different for every pair of amino acids, not simplified to a basic
two-state hydrophobic potential).

We also focus in particular on patterns of evolution that can emerge from the interaction
between structure, function and selection in a thermodynamic system, rather than focusing on
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a perfectly accurate representation of protein energy, or on protein structure prediction. For
example, we introduced one of the first, and up to this time one of the few, models that allowed
a diverse and manipulable protein function criterion separate from the simple criterion that a
protein need only fold in order to function.23 We have also been interested in the effect that
the details of protein structure may have on the evolutionary process. The size of the sequence
space that will fold to a particular structure, also known as the structural designability,20,24–
26 has a particularly important influence. For example, a small number of structures are what
is called ‘highly designable’, but because (by definition) many more sequences are compatible
with these structures than with other structures, they are more often compatible with random
mutations, and thus evolve more quickly.

We present here an analysis of the process of divergence with regard to structural designability
and thermodynamic competition with adjacent structures. We consider how the context
changes as divergence proceeds, as measured by the fitness of recombinants that result from
homologous recombination between divergent proteins. We use the common genetic definition
of ‘homologous’; Cui et al.27 previously studied the functionality of recombinants under a
hydrophobic and polar (HP) model, but used a novel definition of ‘homologous’ that did not
involve divergence and did not involve a naturally evolved and selected population. Aside from
the methods section, we avoid extensive discussion of the biophysical details in order to present
the evolutionary motivations of the research clearly to a broad genomics audience. These details
are available in numerous previous publications, by ourselves and others.28–30 Since a central
focus of our work is to infer biologically realistic models that may be useful for predictive
application in evolutionary genomics, we provide detailed consideration of various choices
with regard to aspects of the models that might be simplified or made more complex, and
suggest new approaches for future modelling.

Materials and methods
Modelling protein evolution on a lattice

The main biophysical considerations in modelling proteins on a lattice have been given in detail
previously.23,31,32 In brief, however, for each sequence we consider its energetic compatibility
with the entire ensemble of maximally compact two-dimensional arrangements that are
possible on a regular lattice. We analyse sequences of length 25 or 36, which thus have
maximally compact arrangements that are perfect squares, with side lengths of five or six. The
two-dimensional approximation allows us to consider all possible structures in reasonable
computational time, and also has a more realistic ratio of internal to surface residue positions.
Compatibility of a sequence with a two-dimensional arrangement, called a ‘structure’, or ‘fold’,
is calculated by considering the residues that are adjacent to one another on the lattice, but not

connected along the sequence. Thus, the energy, , of a protein sequence k in fold f is
calculated as the sum of all such interactions in the fold. The energy of each specific amino
acid interaction is given by the empirical Miyazawa–Jernigan potential, which is based on the
frequencies of observed contacts in known crystal structures.33 We do not directly address
folding kinetics in this study, but include a folding approximation in our fitness equation
(below). Assuming thermodynamic equilibrium among the structures, and using standard
Boltzmann statistics, the probability that sequence k will be in fold f is given by:

(1)
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where RT is the universal gas constant times temperature (here, room temperature in degrees
Kelvin). Z is the canonical partition function, which is simply the sum of the numerator in
equation 1 over all possible structures.

Sequence evolution in populations
We modelled evolution in constant-size haploid populations of 1,000 individuals with a
mutation rate of 0.05 mutations per protein per generation (ie five mutants are expected to arise
in the population each generation). Fitness was based primarily on the probability of folding
into a specific ‘native’ structure, fN, which is presumed to be required for protein function, and
was prespecified for any given simulation. The ability of a sequence to achieve a fold kinetically
is also an important consideration that is often modelled,24 but we considered kinetic folding
to be more realistic as a minimum requirement, and thus included foldability as a step function,
such that proteins estimated to fold slower than a critical cut-off had extremely low fitness.
For any sequences remotely close to evolutionary equilibrium, foldability was always far above
the minimum cut-off, and the fitness of a sequence k, was thus:

(2)

Each generation consisted of mutation followed by selection of sequences according to their
fitness, followed by random multinomial sampling to create the subsequent generation. We
also evaluated the potential for two structures (i and j) to be ‘co-selected’ by using a modified
fitness function:

(3)

with the division by one-quarter introduced because the sum of both folding probabilities must
be less than one, so their multiple is, at most, 0.25.

In preliminary simulations, the time for populations of sequences to reach equilibrium (as
measured by the autocorrelation of the fitness between well-separated generations) depended
on the native structure chosen. We therefore ran all simulations conservatively to 5,000
generations prior to any analysis, a cut-off that suffices for all structures. To study the
divergence of sequences, equilibrium populations were duplicated and allowed to evolve
independently under identical conditions. After duplication, the most frequent sequences in
each population were sampled every 500 generations. At each sampling point, the two
sequences were recombined at all possible sites and the probability of folding into each
structure was evaluated for each reciprocal recombinant. To summarise this information over
a sample of size S, and all possible recombinants, we generalised Taverna and Goldstein’s
occupancy measure for a sequence of length 2534 as:

(4)

in which case there are 48 different reciprocal recombinants. For comparison, we also
considered the occupancy of each structure in the entire parent population, over the entire
course of evolution. We present the difference between the natural logarithms of these two
measures as the ‘Δ ln occupancy’ measure for each structure. We also, of course, considered
the fitness of the recombinant sequences.
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Structural comparison
We considered the results of our simulations in terms of two structural features. First, we
classified alternative structures by their distance from the native structure. Since contact energy
between residue pairs solely determines compatibility of a sequence with a particular structure,
we measured the distance between two structures by the number of contact pairs that the
structures had in common. A compact structure for sequences of length 25 has 16 contact pairs,
and for a sequence of length 25 this distance measure varies between 0 and 14. The other
structural feature we considered was the ‘designability’ of a structure, which is defined as the
proportion of random sequences that ‘fold’ to that structure.24 Here, we considered that a
sequence ‘folds’ to a particular structure if the probability of folding (Equation 1) was greater
than 98 per cent. We use this definition because it closely matches the average probability of
folding at evolutionary equilibrium in our fitness-based population simulations. We divided
sequence space into three levels, according to the designability criterion, which we designate
‘low-’, ‘medium-’ and ‘high-designable’ structures. About 50 per cent of the sequences in
foldable sequence space fold to the 10 per cent most designable structures. The medium-
designable structures, accounting for another 20 per cent of structures, account for 40 per cent
of the designable sequence space, and the remaining 70 per cent—the low-designable structures
—account for only about 10 per cent of the designable sequence space.

Approximating the probability of folding with fewer structures
As a result of the analyses presented here, it is apparent that not all structures play an equal
role in determining the evolutionary trajectory through sequence space. We therefore
considered whether we might carry out an efficient approximation of the probability of folding
to the native structure, based on our results and a carefully considered sampling of the structural
ensemble. This may allow much more efficient simulation of longer sequences in two or three
dimensions. For a structure space of F folds, the partition function can be split into two parts:

(5)

where the first part is summed over the C folds closest to the native fold (based on shared
contact pairs), and the second part is summed over the remaining folds. We approximate the
partition function by calculating the energies of all C folds, but taking a small random sample
of the F –C folds that are more distant from the native structure. To reduce variance, we also
tried breaking the F –C more distance folds into categories according to their distance from
the native fold, and then randomly sampling to estimate the partial Z score for each distance
category separately.

Results
Considerations on model complexity

The simplicity of the model used in protein evolutionary simulations can have a large influence
on what questions can be asked and answered with these systems. Relatively more accurate
models (for example, all-atom models that incorporate van der Waals effects, electrostatic
interactions, amino acid rotamer information and other important physical principles) will give
more precise and realistic energies for a single structure than simpler models, but the
computational time spent calculating each variant is much longer, meaning that the
evolutionary time span that can be simulated is severely limited. There is also not as much
potential for thorough consideration of a large sample of structural alternatives, and it is not
feasible to evolve a large population. This means that, although the individual energies are
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more accurate, the entropic contributions to energy are much less accurate, and the
consequences of long-term evolution are ignored. We sometimes utilise such models to link
our results more closely to real proteins (Xu, Y. and Pollock, D., unpublished data), but in this
paper we present results from simple lattice models because we are concerned here with long-
term processes of divergent evolution. The simplicity of the function allows us to sample over
many types of structures, and to replicate results.

There are numerous alternatives and choices for simplification, even in simpler lattice-based
models.28,29 Some of these may depend simply on choice, and others depend heavily on what
questions are being addressed. We usually use a simple contact potential from Miyazawa and
Jernigan (MJ),33 but we avoid further simplification to the HP model28 because we are
interested in the effect of the more numerous and subtle interactions in the full MJ potential,
and there is little computational cost compared with the HP model. Furthermore, with the MJ
potential, it is extremely rare to find a sequence that folds equally well to two structures,
whereas this is common with the HP model.

Other choices with regard to simplification are the length of sequence, the dimensionality,
limiting the analysis to compact structures and the consideration of the folding process. The
choices we have made in the current study have mostly been made to allow more thorough
long-term evolutionary analysis. Three dimensions allow much more conformational
flexibility than two dimensions, meaning that there are many more structures to consider. For
the lengths of sequence that can be managed, three-dimensional structures have unrealistically
few ‘core’ sites due to their small size. Likewise, there are far more non-compact structures
than compact structures, but most of these structures are much less stable than the compact
structures (because they necessarily make fewer contacts). Structure or fold space also
increases exponentially with sequence length, and so the choice of sequence length is simply
a matter of how much computational power is available, and how many variants must be
calculated in the study. Further specifics on some of these trade-offs are given later in the
results, where we consider the potential for approximations that could get around some of these
computational limitations. The folding process itself is even more complex, and we do not
generally consider it in great detail. It appears that for the most part, however, equilibrium
sequences produced by evolution based on a thermodynamic fitness function are also predicted
to fold well (data not shown).

A further benefit of simple models over more complex models is that simple models allow
clear sufficiency proofs. In other words, if we can find evidence for a particular behaviour in
a simple model, this can provide a simple and comprehensible explanation, whereas a more
complex model can be more difficult to parse and reduce to its meaningful components. Also,
we can test more variables in a simple model to ascertain the most important model details,
rather than having only one or a few enigmatic examples, as is often the case for more complex
models.

Divergence, recombination and designability
As proteins diverge from one another, we can reasonably expect that recombinants between
these proteins may eventually cease to function because of accumulated co-evolutionary
incompatibilities between the divergent halves of the proteins. We can also expect that the
specifics of this process are difficult to predict. An important initial question is whether this
process varies between different kinds of proteins (as measured by designability, the number
of sequences that can fold into a particular structure), and whether competition with specific
alternative misfolded structures is responsible for poor folding in recombinants. We measure
this competition by considering the probability of folding to alternative misfolded structures
(the occupancy of the alternate folds) during normal evolution, and after recombination
between divergent proteins.
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Visually, the occupancy of misfolded structures had a log-linear relationship in both the
parental and recombinant populations, with no clear differences between proteins with different
designability levels (data not shown). This means that there is not a large difference in how
target structures with different designabilities mutate to deleterious sequences. There is,
however, a large difference between low-, medium- and high-designable structures, in the
extent to which the recombinants are worse than their parents (Figure 1).

The difference in the misfolding of alternative structures in recombinants is necessarily
reflected in a similar difference in the probability of folding to the native structure — that is,
the fitness of recombinants. This is seen in a rapid and continuing decrease in the fitness of
low-designable recombinants over the course of evolution (Figure 2). High- and medium-
designable structures have a much slower rate of decrease. We observe here that there is
apparently considerable asymmetry in the fitness of reciprocal recombinants. For high- and
medium-designable proteins, the more fit of the two reciprocal recombinants is on average
only slightly less fit than the parental type, even after one million generations of evolution. By
contrast, even the better of the two reciprocal recombinants is substantially less fit than the
parents in low-designable proteins, and the worse of the two is dramatically worse than any
other recombinants. Although it is in some ways surprising that the various levels of fitness of
recombinants are not worse than they are, the drops in fitness for the recombinants are such
that they would be removed from the population by natural selection. According to standard
population genetics theory,35 for a population of 1,000, fitness differences of 1/1,000 are
considered selectable, and fitness differences greater than 1/100 (Ns < 10, where N is the
population size and s is the selective effect) are considered to be strong selective differences.

It should also be noted that our fitness function, in contrast to many studies, does not increase
linearly with increasing energy, nor do we use an arbitrary flat fitness cut-off to produce a
neutral network artificially. Thus, the benefit of increasing stability decreases as the protein
approaches the evolutionary/thermodynamic equilibrium. With every mutation, the fraction of
space that is approximately neutral changes, as does the distribution of selective effects in
probable future mutants.

The differences shown are averages over all sites of recombination. It is expected that
recombination sites closer to the centre of the protein might lead to greater effects, since at
such sites there is a greater amount of disruption in contact pairs in the recombinants. Indeed,
our own simulations agree with previous results36 in demonstrating a strong correlation
between the recombination site with lowest fitness for any pair of structures and the number
of contact pairs that are disrupted by recombination at that site (data not shown). Not
surprisingly, the site of lowest fitness tends on average to be near the middle of the protein
(Figure 3). The variation in fitness reduction versus the site of recombination was much more
notable and dramatic in low-designable structures, and there was also more variation among
low-designable structures in the location of the worst recombinant (Figure 3).

Competition between structures in sequence space
The preceding results illustrate an interesting difference in how structures diverge according
to their designability. It has previously been shown,37,38 and our own simulations agree, that
compared with high-designable structures, structures with low designability tend to have more
‘adjacent’ structures with many shared contact pairs. We see here that the difference in
designability must be solely due to the number of adjacent structures, since there is no
difference between high- and low-designable structures in their tendency to mutate to adjacent
structures with the same number of contact pairs.

By contrast, low-designable recombinants have a greater tendency to fold into alternative
structures at all distances. Thus, the lower fitness of low-designable recombinants is a
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combination of both the number of adjacent structures and an increased propensity to fold to
adjacent structures. To determine how well this result is upheld on a structure by structure
basis, it is necessary to evaluate the sequence space where pairs of structures are in direct
conflict. In other words, one should evaluate the sequence space that is most ambivalent about
which structure is preferred. This sequence space is so small a proportion of overall sequence
space that it is not feasible to identify it through random sampling (unless the structure space
is very simple39); instead of this technique, we therefore used co-selection for two structures
at the same time. This approach allowed us to locate this space efficiently through the
evolutionary process.

We do not have a direct measure of the size of the overlapping space using this method, but
the average fitness of these co-selected populations can serve as a surrogate. We found a
surprisingly linear relationship between the average equilibrium fitness of co-selected
populations and the number of contact pairs shared between the two co-selected structures
(Figure 4). We did not find any relationship between equilibrium fitness and the designability
of either structure in the pair. It is also interesting that we did not find any asymmetry in the
tendency of equilibrium sequences to fold to one structure in the pair or the other, regardless
of whether one structure was high designable and the other was low designable (data not
shown).

Increased computational efficiency for energy calculations
In ab initio evolutionary studies, complete analysis of longer and more complex proteins is
precluded by the immense sizes of conformation space as sequence lengths increase, when
non-compact structures are considered and when moving to three dimensions. For example,
there are 1,081 structures possible for the square 5 × 5 lattices used in most of this study, but
a 6 × 6 lattice has 57,337 structures, and there are nearly 5.77 billion non-compact structures
for sequences of length 25.40 For a sequence of length 27, there are over 103 thousand compact
structures in a three-dimensional 3 × 3 × 3 lattice.40

To further consider the potential use of the previous results, we ran simulations to test how
many structures were necessary to approximate the partition function, and whether targeted
sampling of these structures might lead to more accurate results. We first tried sampling a set
of the closest structures (those with the most shared contact pairs), plus an equal-size set of
randomly sampled structures for a sequence of length 36 on a 6 × 6 lattice, to estimate the
remainder of the partition function. Comparing set sizes of 50 and 50, 500 and 500, and 5,000
and 5,000, we found that set sizes of 5,000 were necessary to obtain a reasonably good
approximation of the probability of folding to the native structure (Figure 5A). The important
region of sequence space is not random, however, but is the region closest to the well-folded
and relatively fit sequences achieved at equilibrium. To evaluate this region, we ran
evolutionary simulations as described earlier, and considered the accuracy of our
approximation for all the sequences, including mutants, that were generated in 800 generations
after reaching equilibrium (Figure 5B). In this region, the results were not as accurate as we
might have hoped, and so we tested another approximation in which the partition function was
divided according to structural distance from the target structure, and the partial partition
function for each structural distance category was sampled and estimated separately. This
resulted in a dramatic increase in accuracy (Figure 5C). For comparison, we evaluated a
structurally divided estimator using only 500 random structures, and found that it was a more
accurate estimator than the entirely random sampling of 5,000 structures (Figure 5D).

Discussion
We have described here the overall motivation of our work in ab initio evolution, and how it
relates to evolutionary genomics. In general, we are trying to use realistic thermodynamic and
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evolutionary simulations make better predictions of the kinds of evolutionary features that we
might expect from real proteins with realistic functional requirements. This is done in order
that we may then develop models to detect the presence of such features in real proteins using
comparative genomics. Here, to illustrate our approach, we present a study that was designed
specifically to achieve a better understanding of the process of divergence with respect to
protein function and fitness. To what extent does molecular co-evolution between residues as
proteins evolve lead to reduced fitness in recombinants between diverged proteins?

Our primary result is that the answer to this question is highly dependent on the type of structure
being considered. High-designable structures are infrequent and evolve quickly due to the
larger number of sequences that fold to them; however, they produce highly fit homologous
recombinants, even after long periods of divergence. Structures that are compatible with fewer
sequences, the much more common and slow-evolving low-designable structures, are much
less likely to produce fit recombinants.

Thus, it should be expected that in low-designable structures, recombination is a less efficient
method to explore sequence space for novel variants because many recombinants will be
structurally unfit. This has obvious implications for protein engineering, in which in vitro
evolution and recombination are important methods for generating variation. It is also
important for understanding how to use observations of sequence evolution to predict the effect
of sequence variants in the human genome, and to identify those variants that are most likely
to cause disease. Since there is more co-evolution and incompatibility between diverged low-
designable proteins, divergence in low-designable proteins is probably a worse predictor of
variant effects than in medium- and high-designable proteins.

Another interesting aspect that arises from our simulations is the high degree of asymmetry in
fitness between reciprocal recombinants, particularly in low-designable structures. This effect
is sufficiently strong that the worse reciprocal recombinant would generally be quickly
eliminated by selection, whereas for high- and medium-designable structures, the better of the
two reciprocal recombinants might not be eliminated in this way, even after long periods of
divergence. The potential benefits of recombinant diversity, such as those that a recombinant
immunodeficiency virus might be expected to incur by presenting novel epitopes to the human
immune system, were not modelled in this study. They would have to be rather strong, however,
to overcome the deleterious effect of recombination in low-designable protein structures.
Interestingly, we have observed this effect even more clearly in binding studies (to be described
more thoroughly elsewhere) that do not involve competition between structures. Thus, the
asymmetry appears to arise mostly from evolution on an energy landscape, and may even be
somewhat ameliorated by the force of structural competition in high- and medium-designable
structures.

It has been previously observed that evolution can drive sequences towards high-designable
structures,24,30 and presumably recombination can drive it even faster.27 Our detailed analysis
of the process of divergence and recombination based on occupancy of alternative structures
provides no evidence of a bias or tendency for low-designable structures to mutate or recombine
towards high-designable structures. Furthermore, our use of co-selection to analyse the
boundary in sequence space between structures indicates that there is no bias towards the more
designable structure at these boundaries. Together, these data indicate that populations
evolving without recombination tend towards high-designable structures solely because of the
larger size of high-designable sequence space. Recombining populations tend even more
towards high-designable structures because of the greater tendency for recombinants to move
out of low-designable sequence space in any direction. With a greater number of structures
close to low-designable structures, there are a greater number of sequence pair boundaries,
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which provide high-fitness openings to other structures and thus a faster approach to local
equilibrium.

Our analysis of the processes of divergence and co-evolution also clarifies the extent to which
it is necessary to incorporate alternative structures when trying to understand evolutionary
trajectories of real proteins. It is well known that the energetic compatibility of sequences with
target structures alone is an insufficient description of thermodynamic constraints, but it is not
always easy to know what aspects of entropy are important. Here, we have seen that for
evolutionarily equilibrated proteins, the importance of different structures in evolutionary
competition is a simple (log linear) function of their distance from a target (ie presumably
functional) structure.

Empirical testing of inclusion of both random and adjacent ‘decoy’ structures has already been
used to improve predictions of protein structures.1,41–44 Our results might be used to more
efficiently improve the distribution of decoy structures that ought to be included. Choices must
be made in trying to reproduce essential biological features in the face of immense
computational burdens. Our conclusion is that these modified fitness functions could be used
to analyse more complicated structural scenarios with a much lower computational burden then
would otherwise be the case. It also seems likely that sampling from known protein database
structures to estimate energy functions45 is probably insufficient to understand the evolution
of sequences in structure space because adjacent structures are far more important in
determining the evolutionary trajectory of stable sequences.

Estimating the number of sequences that will fold to a naturally occurring protein structure is
not feasible, since the number of folds is so high and determining whether a sequence achieves
a particular fold is so difficult. Nevertheless, natural proteins are evolved thermodynamic
objects, and approximate methods of predicting designability indicate that it is an important
property of real proteins.46–49 The designability principle, postulated from simple models, is
believed to hold in real proteins.47 Designability affects rates of sequence evolution (issues of
function and selective importance aside), and here we show that, counter to intuition, it affects
neutral rates of co-evolution and functional divergence in an exactly opposite manner. This
means that different proteins will be more or less amenable to in vitro redesign using mutation
and recombination, and that the course of viral evolution through mutation and recombination
may be affected by the designability of their component proteins. It also means that the use of
comparative genomics to predict the function of possible disease-related variants may need to
rely on an understanding of the type of protein structures involved, since the degree of epistatic
interaction between variants is highly dependent on designability.
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Figure 1.
Differences between alternative structure log occupancies in parental and recombinant
proteins. The average differences after one million generations for eight high-, 24 medium-,
and 32 low-designable target (native) structures are represented with squares, triangles and
circles, respectively, with results for each structure replicated four times. The differences in
the natural log occupancies decrease linearly with the number of shared contact pairs, although
there are many fewer alternative structures with large rather than small numbers of shared
contacts, and thus much more variable results. The difference in log occupancies between low-
designable and medium- and high-designable structures is consistent, meaning that the
occupancy of alternative (non-native) folds in low-designable recombinants is about one- to
twofold higher.
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Figure 2.
Average fitness of recombinants between proteins from two diverging populations over the
course of evolution. Averages of the same number of high-, medium-, and low-designable
structures are represented as in Figure 1, except that the average of the better of the two
reciprocal recombinants is shown with a solid symbol, while the average of the worse reciprocal
recombinant is shown with a hollow symbol. Populations of size 1,000 were equilibrated for
10,000 generations prior to duplication and divergence for a further one million generations,
and sequences were recombined at the midpoint.
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Figure 3.
Average fitness of recombinants from diverged populations as a function of crossover position.
Recombinants at all possible positions were tested from the equilibrated and diverged
populations from Figure 2. Averages of the same number of high-, medium- and low-
designable structures are represented with solid lines and the same symbols as in Figure 1. In
addition, results for a particular low-designable structure are shown with a dashed line and an
‘X’ to demonstrate that there is considerable variation among low-designable structures in the
crossover position of the lowest-fitness recombinants (this was also replicated four times).
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Figure 4.
The average fitness of co-selected protein pairs as a function of the number of shared contacts
between the pairs. Populations of size 1,000 were equilibrated for N generations under a co-
selection regime (see methods). The fitness values were averaged across all structure pairs with
the same number of shared contacts. Since there was no correlation between fitness of co-
selected pairs and the designabilities of the structures in the pair, the fitnesses shown here were
average over all possible structure pairs regardless of designability.
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Figure 5.
Relationship between the true probability of folding to the target sequence and the approximate
probability of folding estimated from a limited sample of structures. Sequences were sampled
either randomly (A) or else all mutants were sampled for 800 generations of the evolutionary
process subsequent to equilibrium (B–D). The approximate probability of folding was
estimated from a sample of random structures plus the same number of structures closest to
the native structure in terms of shared contact pairs (B). The random sample was treated as a
representative of the remaining unsampled structural ensemble, and thus multiplied by the
inverse of its proportional representation of this ensemble (see methods). In (C) and (D), each
category of structural distance from the native or target structure was sampled separately, and
the contribution of each distance category to the overall partition function was also estimated
separately. The number of random and adjacent structures used in the approximations was
5,000 in all cases except (D), for which 500 distance-based random structures and 500 adjacent
structures were used.
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