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Abstract

Background: Clinical, molecular, and genetic epidemiology studies displayed remarkable 

differences between ever- and never-smoking lung cancer.

Methods: We conducted a stratified multi-population (European, East Asian, and African 

descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel 

variants that were missed in the non-stratified analysis. Functional analysis including eQTL 

colocalization and DNA damage assays, and annotation studies were conducted to evaluate the 

functional roles of the variants. We further evaluated the impact of smoking quantity on lung 

cancer risk for the variants associated with ever-smoking lung cancer.

Results: Five novel independent loci, GABRA4, inter-genic region 12q24.33, LRRC4C, 
LINC01088, and LCNL1 were identified with the association at two or three populations 

(P < 5×10−8). Further functional analysis provided multiple lines of evidence suggesting the 

variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of 

gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-

known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, 

light-smokers (packyear <= 20), and moderate-to-heavy-smokers (packyear > 20). Different risk 

patterns were observed for the variants among the different groups by smoking behavior.

Conclusions: We identified novel variants associated with lung cancer in only ever- or never-

smoking groups that were missed by prior main-effect association studies.

Impact: Our study highlights the genetic heterogeneity between ever- and never-smoking lung 

cancer and provides etiological insights into the complicated genetic architecture of this deadly 

cancer.
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Introduction

Genome-wide association studies (GWAS) have been fruitful in the past two decades and 

more than 50 susceptibility loci have been identified in lung cancer1. However, previously 

identified loci only account for a limited proportion of heritability, implying additional 

susceptibility loci that are not yet revealed. The missing variants may include low allele 

frequency variants (minor allele frequency < 0.01) and those that affect lung cancer risk 

through genetic/environmental interactions that cannot be disclosed by regular main-effect 

association studies2–3. Smoking is the leading environmental risk factor contributing to 

lung cancer and > 80% of lung cancer patients have a history of tobacco smoking4. 

Lung cancer in never-smokers, although much less common compared with lung cancer 

in ever-smokers, is still estimated to be the 7th leading cause of cancer-related deaths5. 

Remarkable differences have been identified in both clinical and molecular epidemiology 

studies between ever- and never-smoking lung cancer6. Quite a few genetic variants have 

been reported in ever-smoking lung cancer such as the well-known CHRNA5/A3/B4 gene 

region, TP63, TERT, and CYP2A6 genes7–8. However, fewer studies have been focused 

on identifying genetic loci within smoking behavior subgroups. Some susceptibility loci 

have also been identified in never-smoking lung cancer. For example, VTI1A and ACVR1B 
were found to be associated with lung cancer in Chinese and European never-smoking 

women9–10. Variants affecting the expression of hTERT and TP63 have also been associated 

with lung cancer in never-smokers11. These findings suggest the heterogeneity in genetic 

architecture between ever- and never-smoking lung cancer.

To date, the majority of GWAS studies have been conducted in European (EUR) and 

East Asian populations (EAS), while African descent (AFR) populations have been 

under-represented. A multi-population GWAS including AFR populations will help clarify 

the varying effects of smoking on the risk for lung cancer among the major ancestral 

populations, identify novel variants with effects across multiple populations, and evaluate 

the heterogeneity in lung cancer risk across ancestral groups.

One challenge in GWAS is to delineate the relationship between the genetic variants and 

the biological mechanisms underlying the statistical findings. Various functional annotation 

tools have been developed to infer the functional role of genetic findings such as CADD 

and RegulomeDB12–14. eQTL analysis has also been commonly used in GWAS to infer the 

cis-regulation of nearby gene expression for the variants15. Recently, DNA damage assays 

have also been applied in lung cancer GWAS to characterize candidate genes as lung cancer 

risk genes are enriched in the DNA damageome, proteins that can result in high DNA 

damage when overproduced16–17. For example, significantly increased DNA damage levels 

were observed in CHEK2, ATM, POMC, MLNR, MME, and PPIL6, genes that were found 

to be associated with lung cancer, in DNA damage assay, suggesting that genetic variants 

may promote lung cancer through DNA damage regulation16–17. An integrative functional 

analysis has the potential to provide multi-layered evidence for a more comprehensive 

understanding of the GWAS findings.

In 2022, we performed a multi-population GWAS, including EUR, EAS, and AFR 

populations, and identified five novel susceptibility loci associated with lung cancer16. 
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Leveraging this rich resource, we performed a comprehensive study of genetic variants 

associated with ever- and never-smoking lung cancer aiming to: 1, identify novel variants 

involved in only ever- or never-smoking groups that were missed by prior regular GWAS 

studies; 2, explore the functional roles of the identified variants; 3, investigate the impact 

of tobacco smoking on risk effect of the genetic variants associated with ever-smoking lung 

cancer.

Materials and Methods

Genotype data

The imputed genotypes from the INTEGRAL (Integrative Analysis of Lung Cancer Etiology 

and Risk)-ILCCO (International Lung Cancer Consortium) lung cancer consortium were 

applied in this study (reference panel HRC (r1.1)). Detailed information about genotype 

imputation and data quality control can be found in our previous publication in 202216. 

About 9,000,000 high-quality imputed SNPs (information score >= 0.8) from a total of 

64,897 individuals, including 44,823 ever-smokers and 20,074 never-smokers were analyzed 

in the study. The individuals came from 10 studies with diverse ancestry populations 

including EUR, EAS, and AFR (Table 1, Supplementary Table S1), and about 2,000 

ancestry-informative markers were used to infer the ancestry information of the individuals. 

72.1% of the individuals are inferred with European ancestry (EUR, N=46,786), compared 

with 19.1% with Asian ancestry (EAS, N=12,423) and 8.8% with African ancestry (AFR, 

N=5,688)16. About 35–40% of the ever-smoking lung cancer patients were diagnosed 

with lung adenocarcinoma (ADE) across the populations, and 25–34% of the patients 

were diagnosed with squamous carcinoma (SQC) (Supplementary Figure S1). ADE is the 

predominant subtype in never-smoking patients and accounts for > 57% of patients in all the 

populations. Small-cell lung cancer (SCLC) is much less common compared with ADE and 

SQC in ever-smokers (9.79%) and very few cases occur in never-smokers (0.54%).

Association analysis of lung cancer in ever- and never-smokers

Smoking status was self-reported and was categorized into never-smokers and ever-smokers 

(including both current smokers and former smokers). We conducted separate GWAS in the 

ever- and never-smoking groups for EUR, EAS, and AFR populations and then performed 

a meta-analysis to combine information from each population separately according to the 

ever- and never-smoking strata. Additionally, we adjusted for study sites in the analysis by 

including a categorical variable for each site along with conducting a principal components 

analysis to allow for residual effects of population structure, finding through univariate 

chi-square tests that the first three principal components were significantly associated with 

disease status. Therefore, we also adjusted for these PCs in the analysis. Significant SNPs 

were selected based on two criteria: 1, with the same direction of risk effect and p-value 

< 0.1 in two or three populations (so the association evidence comes from at least two 

populations); 2, and with a joint p value < 5×10−8 in meta-analysis. For the significant 

variants with low allele frequency (MAF < 0.01), we further validated the signals with 

Firth logistic regression, a method designed for rare variants association test to reduce 

small-sample bias in regular logistic regression18. The variants that were not significant 

in the Firth test were removed from the final report. The stratified GWAS analysis was 
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conducted in overall lung cancer as well as ADE, SQC, and SCLC subtypes. The genomic 

inflation factor (the lambda value) was calculated to examine if there was an inflated type 

I error rate in association analysis. The lambda value adjusted by sample size was also 

calculated using the formula: λadjusted = 1 + λ − 1 1
Ncases

+ 1
Ncontrols

/ 1
1000 + 1

1000 . PLINK 1.07 

was used for GWAS and meta-analysis. R-4.0.2 and R package logistic 1.2 were applied for 

Firth logistic regression analysis.

For the variants/regions that were significantly associated with ever-smoking lung cancer, 

including the novel variants identified in this study and the variants identified from prior 

GWAS studies, we selected the most significant variant from each region and further 

examined their risk effect in never-smokers, light-smokers (pack year (packyr) <= 20), and 

moderate-to-heavy-smokers (MtoH-smokers) (packyr > 20) trying to explore if there are 

different risk patterns among the variants across different smoking subgroups. We adjusted 

for the first three principal components and study sites in the analysis.

Functional annotation analysis

The web-based tool RegulomeDB was used to infer the regulatory potential of significant 

variants by integrating high-throughput, experimental data sets from ENCODE and other 

sources13. For each variant, it calculates a probability score indicating their likelihood of 

being a regulatory element or a sequence motif. Another web server, RBPmap, was used to 

identify potential RNA binding protein (RBP) binding motifs in all transcripts overlapping 

with alternative and reference alleles14. A sequence of 61 bp, including 30 bp upstream/

downstream of the candidate SNP was provided as the input for motif search. Transcription 

factor binding motifs or RBP binding motifs with p-value<0.05 for either the reference or 

the alternative allele were identified as putative binding sites.

GWAS-eQTL colocalization analysis

Genotype and gene expression rpkm (Reads Per Kilobase Million) data from 377 lung tissue 

samples with European ancestry were downloaded from GTEx (phs000424.GTEx. v7.p2). 

The average rpkm for the gene was used if there were duplicated samples and individuals 

with rpkm < 0.25 were removed from the analysis. The SNPs from within +/− 250 kb of 

each candidate variant were retrieved from both GTEx and GWAS data. The z-score from 

the association between genotype and gene expression data (GTEx) was plotted against 

those from the GWAS analysis for each retrieved SNP to examine the correlation between 

eQTL and GWAS studies. The eQTL analysis was conducted using program R-4.0.2.

Human cell line, reagents, and DNA damage assays

The MRC5-SV40 human lung fibroblast cell line (male, SV40-immortalized, source: Dr. 

Stephen P. Jackson Lab via Dr. Kyle Miller) was maintained in DMEM, high glucose 

medium (Gibco, #11965118) containing 10% FBS (Gibco, #10438034), 2mM L-glutamine, 

100ug/ml streptomycin, and 100 ug/ml penicillin (Gibco, #10378016). The cell line was 

authenticated via STR analysis (ATCC, July 2018) immediately before freezing in liquid 

nitrogen and was routinely checked for mycoplasma contamination (ABM, G238). The 

passage number was limited to a maximum of 30. Gating entry clones for each of the 
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candidate genes, such as GABRA4 (IOH27675) and NF2F1 (IOH3781), were acquired 

from the Kenneth Scott cDNA library at Baylor College of Medicine. They were then 

further subcloned into an N-terminal EmGFP tagged vector (pcDNA6.2/N-EmGFP-DEST, 

Invitrogen), using Gateway LR Clonase II Enzyme Mix (Invitrogen, #11791020). The 

previously cloned EmGFP-Tubulin was used as a control (PMID: 30633903).

Plasmid transfections were performed using GenJet In Vitro DNA Transfection Reagent 

Ver. II (SignaGen, #SL100489). To further characterize the candidate genes, flow-cytometric 

DNA damage assays were performed as previously described in the MRC5-SV40 cell 

line with transient candidate gene overexpression19–20. Briefly, MRC5-SV40 human lung 

fibroblasts cells were fixed, permeabilized, and, stained with γH2AX antibody (#05-636, 

Sigma), then samples were measured by a BD LSRFortessa flow cytometer and analyzed 

using the FlowJo software. For overproduction experiments, cells with mock transfection 

were used to set the threshold gating to determine the percentage of GFP− and γH2AX− 

cells, with 0.5% of control cells gated as the damage threshold as previously validated. The 

DNA-damage ratio caused by protein overproduction is defined by (Q2/Q3)/(Q1/Q4), where 

Q2 is the number of transfected damage-positive cells; Q3 is the number of transfected 

damage-negative cells; Q1 is the number of untransfected damage positive cells, and Q4 is 

the number of untransfected damage-negative cells.

DNA damage assays with benzo[a]pyrene (Bap; #48564, Sigma) were carried out under 

similar conditions that do not involve exogenous agent exposure. Briefly, BaP (8uM) was 

added when cells were transfected with plasmids, and incubated for 72 hours, followed by 

flow-cytometric DNA damage assays as described above.

Data Availability

The following publicly available datasets were used in this work: Prostate, Lung, Colorectal, 

and Ovarian Cancer Screening Trial, phs000093.v2.p2; FLCCA study, phs000716.v1.p1; 

EAGLE study, phs000336.v1.p1; NCI study of African-Americans, phs001210.v1.p1; 

German, SLRI, IARC, and MDACC studies, phs000876.v2.p1; Oncoarray study, 

phs001273.v3.p2; imputed Oncoarray study using HRC reference panel, phs001273.v4.p2; 

Affymetrix study, phs001681. v1.p1. The eQTL data from GTEx was obtained from https://

gtexportal.org/home/datasets (phs000424.GTEx.v7. p2)16.

Results

Genetic variants associated with ever- or never-smoking lung cancer

Genome-wide association analyses were conducted in ever- and never-smokers in overall 

lung cancer as well as other lung cancer subtypes. Figure 1A displays the Manhattan plots 

of the signals from the stratified analysis. QQ-plots of the p values from the association 

analysis and adjusted genomic inflation values (lambda values) by sample size displayed no 

inflated type I error rate in the analysis (Figure 1A right). We identified a few significant 

variants in ever- and never-smoking lung cancer, including the significant variants from 

known genes, such as AK5, TP63, TERT, etc., which are summarized in Supplementary 

Table S2 (Labeled in black in Figure 1A). Table 2 lists the risk variants with association 
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evidence from only ever- or never-smoking individuals (not from both groups) including the 

well-known 15q25.1 region, which only shows associations in ever-smokers. Six candidate 

variants were identified in the study, but one of the variants, rs7985487, was removed from 

the final report due to not reaching genome-wide significance in the Firth test check despite 

being associated with lung cancer in the EUR and AFR population (P_firth=4.00×10−7, 

Supplementary Table S3). In the end, five variants, including two variants associated with 

ever-smoking lung cancer, rs62303696 from GABRA4 and rs58778970 from intergenic 

region 12q24.33; and three variants from never-smoking lung cancer, rs4756620 from 

LRRC4C, rs1383429 from LINC01088 and rs968516 from LCNL1, were reported as novel 

findings (labeled in red at Figure 1A). Multiple supporting variants in strong LD (r2>= 0.8) 

surrounding the five SNPs were identified indicating the reliability of the signals except for 

SNP rs4756620, for which only one supporting variant with r2 of 0.6 was detected in the 

region (Figure 1B). To check the authenticity of the signal at rs4756620, we further checked 

the imputation quality of this SNP and found that this SNP was genotyped in four of the 

10 studies (Supplementary Table S4). We examined the association using only genotyped 

data from these four studies and rs4756620 had p values of 9.79×10−7 (OR=0.61, N=7132) 

EAS and 6.49×10−2 (OR=0.70, N=1387) in AFR population. We believe the association at 

rs4756620 was reliable and we reported it as a novel susceptibility locus associated with 

never-smoking lung adenocarcinoma.

Table 2 displays detailed information for the variants associated with ever- or never-smoking 

lung cancer. rs62303696, located at 3’ UTR (untranslated region) of GABRA4, was 

identified in ever-smoking overall lung cancer with a joint p-value of 1.22×10−9 and OR 

(Odds Ratio) of 1.18. The evidence of association was detected in all three continental 

populations with P values of 2.71×10−7, 4.81×10−3, and 6.08×10−2 from the EUR, EAS, 

and AFR populations, respectively. The SNP rs58778970 was identified in ever-smoking 

small cell lung cancer (P=1.58×10−8, OR=1.34). The association evidence came from 

both European (P=1.50×10−7, OR=1.33) and AFR populations (P=2.40×10−2, OR=1.53). 

Three SNPs, rs4756620 (P=6.51×10−10, OR=0.59), rs1383429 (P=6.44×10−9, OR=0.67) and 

rs968516 (P=8.19×10−10, OR=0.34) were identified in never-smoking lung cancer. It was 

noted that all these three variants achieved genome-wide significance in the EAS population 

(P < 5×10−8) and were replicated in either the EUR or AFR population. We compared the 

risk effect between ever- and never-smoking groups for the newly identified variants, finding 

that all five of these novel variants were significant in either the ever- or never-smoking 

group and not significant in non-stratified analysis which explains why these variants were 

not discovered in prior GWAS studies (Figure 2A).

Some known variants were associated with lung cancer in only ever- or never-smoking 
population

Aside from the novel findings, the stratified analysis also found that some of the previously 

identified susceptibility loci were associated with lung cancer in only the ever- or never-

smoking group. Our previous study found evidence for an association between rs6757055 

at IKZF2 and squamous lung cancer in the East Asian population (OR=0.23, P=8.39×10−11, 

Figure 2A)16. Further, stratified analysis displayed this variant was more significant in the 
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never-smoking squamous lung cancer in the EAS population (OR=0.19, P=1.51×10−11) and 

not significant in the ever-smoking group (OR=1.05, P=0.37).

rs17879961, a rare variant located in the exon of the CHEK2 gene, has been reported to be 

negatively associated with squamous lung cancer16,21. The results from our study showed 

that it was non-significant in the non-smoking group (OR=0.59, P=0.56); and it had an OR 

of 0.25 and p-value of 2.93×10−11 in the ever-smoking group (Figure 2A). However, this 

variant had a less significant risk effect (OR=0.26, P=5.86×10−11) when combining ever- 

and never-smoking groups together. The sample size in the never-smoking squamous lung 

cancer cohort is relatively small (N=6,865) and further study is required before it can be 

determined if rs17879961 is associated with lung cancer in only ever-smoking individuals.

Validation of lung cancer susceptibility loci in never-smoking women using data from 
African-descent populations

VTI1A and ACVR1B were previously reported to be associated with never-smoking lung 

cancer in both Asian and European women10–11. However, there is no report about the 

association in AFR population due to the under-represented AFR participants in previous 

lung cancer GWAS studies. In our analysis, rs12265047, from VTI1A, had an OR of 0.63 

(P=4.64×10−5), 0.77 (P=4.53×10−13) and 0.63 (P=3.29×10−3) in never-smoking women 

from the EUR, EAS and AFR population, respectively (Table 2). The rs7962469, located 

in ACVR1B, was associated with elevated risk for lung adenocarcinoma in both EUR 

(OR=1.12, P=5.61×10−2) and EAS (OR=1.18, P=1.63×10−6) never-smoking women in our 

study, and a stronger risk effect in the never-smoking female in AFR population (OR=1.74, 

P= 3.14×10−3).

Evaluation of the impact of smoking on lung cancer risk

For the variants with association evidence in ever-smoking lung cancer, including the 

known variants identified from previous GWAS studies, we compared their lung cancer 

risk in never-, light- (packyr <= 20), and moderate-to-heavy-smokers (MtoH, packyr >20) 

in EUR, EAS, and AFR population, respectively. Due to the smaller sample size in the 

EAS and AFR population, there was limited power for most of the variants from these 

two populations, so we focused on the analysis in EUR population (Supplementary Table 

S5). The bar chart in Figure 2B displayed the ORs in different smoking groups for 

variants from 12 independent regions. Most of the known variants, such as TERT, TP63 
and ROS1, had association evidence from both ever- and never-smoking group and we 

observed similar risk effects across different types of smokers, so they were identified 

in prior non-stratified GWAS studies. rs55781567, located in CHRNA5, had association 

evidence from only ever-smokers and we observe similar lung cancer risk in MtoH-

smokers (OR=1.30, P=6.17×10−39) compared with light-smokers (OR=1.25, P=3.19×10−14). 

A similar pattern was observed in AFR population, OR=1.29 and P=9.68×10−4 in light-

smokers vs. OR=1.33 and P=1.28×10−4 in MtoH-smokers (Supplementary Figure S2 left). 

Some variants displayed slightly elevated risk in MtoH-smokers. For example, rs17879961 

at CHEK2 had an OR of 0.10 and P value of 5.18×10−3 in light-smokers vs. OR of 0.27 and 

a P value of 5.68×10−9 in MtoH-smokers; rs2523593 at HLA region had an OR of 1.16 and 

p value of 5.37×10−3 in light-smokers vs. OR of 1.30 and p value of 1.12×10−14 in MtoH-
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smokers. rs12337510 at MTAP showed higher OR in never smokers1.37 (P=6.28×10−7) 

compared with an OR of 1.14 (P=1.28×10−3) in MtoH-smokers. However, we did not see a 

similar pattern in either EAS or AFR population although it was significant in the other two 

populations (Supplementary Figure S2 right).

Functional analysis of identified novel variants

We first conducted functional annotation analysis using RegulomeDB to evaluate how these 

identified variants affect lung cancer risk. All five new variants are located in non-coding 

regions such as 3’ or 5’ UTR, intronic, and inter-genetic regions. The query from the 

RegulomeDB database showed that all five variants were located within peaks from more 

than one CHIP-seq, DNase-seq, or FAIRE-seq experiment suggesting that they were located 

within regulatory DNA regions (Supplementary Table S6). Two SNPs, rs62303696 located 

at the 3’ UTR in the GABRA4 gene, and rs1383429 located in the intronic region in 

LINC01088, are predicted to be regulatory variants with probability > 0.6. CHIP-seq peaks 

are also detected at both of these two SNPs suggesting they were located in binding sites 

for regulatory proteins such as transcription factors, histone modifications, etc. (Figure 3A). 

Position weight matrix (PWM) analysis predicted that rs1383429 was a highly conserved 

SNP in sequence motifs (Figure 3B).

We also evaluated and compared the RNA binding proteins (RBPs) with significant 

sequence motifs between reference and alternative alleles. Figure 3C displays the RBPs with 

significant motifs (P < 0.05) for novel variants located within coding genes. rs58778970 was 

located in an intergenic region and thus was removed from the analysis. We noticed different 

RBPs with significant motifs between reference and alternative alleles for the variants. For 

example, there were 13 RBPs for the reference allele of rs1383429 while only two were for 

the alternative allele. rs4756620 had 2 RBPs for the alternative allele but three additional 

RBPs for the reference allele. These findings, combined with the results from RegulomeDB, 

suggest that the two variants might regulate lung cancer risk by interacting with different 

regulatory proteins such as transcription factors and RBPs.

eQTL analysis was conducted to evaluate the association between lung cancer risk and 

nearby gene expression for each of the five novel variants. The z-score from the association 

between genotype and nearby gene expression data (GTEx) was plotted against the z-score 

from GWAS analysis showing a strong association between lung cancer risk and LCNL1 
gene expression for rs968516 and ~ 2,200 surrounding SNPs that were in strong LD with it 

(r2> 0.8). These results suggested rs968516 could affect lung cancer risk in never-smokers 

through regulation of LCNL1 gene expression (Figure 3D).

We performed DNA damage assays on each candidate gene following the procedures as 

displayed in Figure 4A. We found that overproduced EmGFP fusions of GABRA4 and 

NR2F1 promoted DNA damage, measured by sensitive flow cytometric assays (Figure 4B–

F). BaP is one of the cigarette smoke carcinogens involved in lung tumorigenesis. Because 

GABRA4 was nominated from the lung cancer smoking analysis, we hypothesized that 

BaP exposure might enhance GABRA4-induced DNA damage. BaP exposure for 72 hours 

significantly increased GABRA4-induced DNA double-strand breaks, but not in tubulin 

overproducing cells (Figure 4G–H). This observation supports the hypothesis that low-dose 
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environmental mutagens can further titrate out DNA repair and cause amplified DNA 

damage in cells that have elevated endogenous DNA damage (Figure 4I).

Discussion

Differences in genomic features have been identified in lung cancer between ever- 

and never-smokers such as genetic variants, gene mutation, gene expression and DNA 

methylation profiles, etc.6 For example, the well-known CHRNA5/A3/B4 gene region 

was associated with nicotine dependence and lung cancer in ever-smokers, both in prior 

studies and more definitively in this study7,15,21–22. Leveraging the genotype from three 

continental populations, we identified five novel susceptibility loci associated with lung 

cancer, including GABRA4 and inter-genic region 12q24.33 from ever-smokers; LRRC4C, 
LINC01088, and LCNL1 from never-smokers. All five variants have significant association 

in one smoking group and no effect in the other. These findings display heterogeneity 

in genetic predisposition to lung cancer between different smoking groups and highlight 

the complicated genetic architecture of this deadly disease. Gene-environment interaction 

analysis is another approach commonly used to identify variants with differential risk effects 

between groups. For the five novel variants, we further examined their interaction effect 

with smoking status in lung cancer risk using genotype data from CEU in the Oncoarray 

study, the study with the largest sample size of European individuals (N=29,905), and none 

of them were significant (P< 0.05) (Supplementary Table S7). These results illustrated that 

stratified GWAS was imperative for the identification of novel variants with effect only in 

subgroups that cannot be revealed by regular GWAS or genome-wide interaction studies and 

for prioritizing likely causal mechanisms as well.

IKZF2 was identified as a novel variant in lung cancer in our prior non-stratified GWAS 

study16. The re-evaluation of variants in IKZF2 showed it was involved in only never-

smoking lung cancer. rs6757055, located at IKZF2, is an uncommon variant with a minor 

allele frequency (MAF) of 0.091 in EAS population. Our collaborator at Nanjing, China 

further validated this signal using data from six independent study sites in China, including 

a total of 8,407 never-smokers, and the final joint analysis showed an OR of 0.56 and a 

p-value of 7.77×10−12 in never-smoking squamous lung cancer (Supplementary Figure S3, 

Supplementary Table S8)23. Five of the study sites have MAF varying from 0.003 to 0.006 

and one study site with MAF of 0.012.

One challenge in GWAS studies is that the variants identified in one population have often 

failed to be replicated in other populations. VTI1A was first discovered to be associated with 

lung cancer in Asian never-smoking women and then validated with nominal significance 

in European never-smoking women; ACVR1B was first reported in lung adenocarcinoma in 

European never-smokers and then reported in Asian women never-smokers9–11,24–25. Little 

is known about their association with lung cancer in the AFR population. We successfully 

validated their association in people with AFR ancestry for the first time as far as we 

know. These two variants, together with the novel variant at GABRA4 (rs62303696), are 

the only three susceptibility loci associated with ever- or never-smoking lung cancer in all 

three continental populations (Table 2). These findings demonstrate that the inclusion of 

AFRs in the multi-population GWAS is crucial for a better understanding of genomic and 
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environmental variations underpinning lung cancer. However, the AFR sample size is still 

limited (N=5,688) in our study which limits our ability to identify novel variants in this 

population.

For the variants with association evidence in ever-smoking lung cancer, we evaluated their 

risk effect in never-, light- and MtoH-smokers with European ancestry. Among the 12 tested 

variants selected from independently associated regions, some variants displayed consistent 

risk effects across the different smoking groups; some displayed risk effects in only ever-

smokers but not never-smokers; and some displayed slightly increased lung cancer risk in 

MtoH-smokers compared with light-smokers such as rs17879961 at CHEK2 and rs2523593 

from HLA region (Figure 2B). These observations suggested both tobacco smoking and 

genetic factors contribute to lung cancer risk and the heterogeneous disease mechanisms 

behind those susceptibility loci involved in smoking lung cancer.

As we step into the post-GWAS era, the ultimate goal is to understand the biological 

consequences of the statistical associations. We adopted multiple approaches for functional 

inference and obtained multiple layers of evidence supporting the regulatory role of the 

identified novel variants in ever- and never-smoking lung cancer. For example, rs968516, 

identified in never-smoking squamous lung cancer, was shown to affect lung cancer risk 

through regulation of nearby LCNL1 gene expression. It is also an eQTL in multiple tissues 

including the lung (Supplementary Figure S4). rs62303696, identified in ever-smoking lung 

cancer, is located in the 3’UTR region of GABRA4, a gene that has been reported to be 

related to alcohol use disorder in the European population26. A systematic study showed 

that ~ 3% of GWAS hits were located within the 3’ UTR region27. Genetic variations in 

3’ UTR may change the binding sites for RBPs and miRNAs and lead to differential gene 

expression. DNase-seq and CHIP-seq experiments showed that rs62303696 was located 

within regions sensitive to cleavage by DNase I and DNA binding sites for transcription 

factors NR2F1 and JUNB (Figure 3A). Further RBP analysis showed that the reference 

allele of rs62303696 enabled a binding motif for RBM6 while the alternative allele didn’t 

(Figure 3C). Aside from being reported as an alternative splicing factor and a putative tumor 

suppressor gene, RBM6 has been identified as a regulator involved in the repair of DNA 

double-strand breaks in a recent study28–31. We further discovered GABRA4 induced DNA 

damage in lung fibroblast cell line which offered one mechanistic explanation for lung 

cancer: increased DNA damage and mutagenesis caused by upregulation of GABRA4 may 

underlie tumorigenesis and poor clinical prognosis. These integrated results suggest that 

rs62303696 could affect lung cancer risk in smokers through increased DNA damage and 

genome instability (Figure 4).

In summary, we performed a multi-population GWAS stratified by smoking status in lung 

cancer, and we identified five novel variants associated with ever- or never-smoking lung 

cancer. The extensive functional analysis provided evidence for the functional roles of the 

identified variants and provided insights into the molecular mechanism underlying lung 

carcinogenesis. Our study highlighted the genetic heterogeneity between ever- and never-

smoking lung cancer and provided helpful etiological insights into the complicated genetic 

architecture of this deadly disease.
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Figure 1. 
Signals from genome-wide association analysis in ever- and never-smoking lung cancer. 

A, Manhattan plot (left) and QQ-plot (right) of signals from the analysis. The y-axis was 

truncated at 17 in the plots denoted by red *. The known lung cancer variants were labeled 

in black and novel variants identified in this study were labeled in red. Some variants with 

joint P values < 5×10−8 and with association evidence from only one population were not 

labeled in the plot. X-axis was truncated at 5 in QQ-plots. Lambda value was calculated 

for each analysis. Both normal lambda and lambda adjusted by sample size (indicated by #) 

were calculated for each stratum except for never-smoking small-cell lung cancer where the 

number of cases was < 1000. No inflated type I error rate was detected. B, regional plots 

of signals identified in each population and meta-analysis. The color intensity reflected the 

extent of linkage disequilibrium index (r2) with the target SNP denoted in purple.
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Figure 2. 
Heterogeneous effect of genetic variants in lung cancer. A, forest plot of association in ever-, 

never-smoking and non-stratified analysis for new variant identified in the study. B, bar 

chart of lung cancer risk in never, light (pack year <= 20) and moderate to heavy smokers 

(packyear > 20) for variants with association in ever-smoking lung cancer in EUR. *, novel 

variants identified in this study. y-axis was truncated at 4. 95% error bars were plotted for 

each measurement. The variants are divided into four groups according to the risk pattern in 

different smoking groups.
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Figure 3. 
functional analysis of the novel variants identified in ever- and never-smoking lung 

cancer. A, CHIP-seq peaks were identified at rs62303696 and rs1383429 by query from 

RegulomeDB. 0.61 and 0.69 in the brackets indicated the calculated probability of being a 

regulatory variant. B, the predicted sequence motif including the highly conservative allele 

at rs1383429. C, annotation results from RBPmap. The RBPs (RNA Binding Proteins) with 

significant sequence motifs (P < 0.05) between reference (yellow) and alternative (green) 

alleles were displayed for each variant located within coding gene. The size of circle 

indicates the significance of the sequence motif. D, eQTL analysis for rs968516 and LCNL1 

gene. The X axis denotes the Z-score from association analysis between genotype and 

LCNL1 gene expression from GTEx data from lung tissues. Y axis denotes the Z-score from 

GWAS analysis. The color intensity reflected the extent of linkage disequilibrium index (r2) 

with SNP rs968516 denoted by arrow.
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Figure 4. 
DNA damage assay at GABRA4 and NR2F1. A-F, GABRA4 and NR2F1 are lung-cancer-

associated DNA damageome proteins. A, Endogenous DNA damage assay scheme. B, 

GABRA4 and NR2F1 overproduction promotes DNA damage, respectively, quantified by 

H2AX levels using flow cytometry. DNA damage levels are compared and normalized to 

Tubulin overproducing cells. Bar: median. n>=7. Two sample two-sided t-test assuming 

equal variances. * P=0.0273, *** P=0.0003. 3–5, gating strategy and representative flow 

cytometric density plots. C, mock transfection. D, Tubulin overproduction. E, NF2F1 

overproduction. F, histograms showing that NF2F1 overproduced cells increase high-DNA 

damage subpopulations compared to Tubulin in GFP+ cells. G-I, Benzo[a]pyrene (BaP) 

potentiates GABRA4-induced DNA damage. G, Endogenous and exogenous agent DNA 

damage assay scheme. H, BaP exposure sensitizes GABRA4-induced DNA damage. 8uM 

BaP exposure for 72 hours induces additional DNA damage in GABRA4 overproduced 

but not Tubulin overproduced cells. n>=7. Two sample two-sided t-test assuming equal 

variances. ns, not significant, P=0.7047, * P=0.0137, ** P=0.0034. I, Model: GABRA4 

overproduction increases endogenous DNA damage and then potentially overloads DNA 

repair pathways. The addition of an exogenous agent (BaP, for example) causes more DNA 

damage that cannot be repaired and lead to DNA damage catastrophe.
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Table 1.

Sample size distribution from each population in the study.

EUR EAS AFR

Strata CONTROL CASE Total CONTROL CASE Total CONTROL CASE Total

Ever-smokers

Overall 16165 22018 38183 1032 1495 2527 2309 1804 4113

ADE 16165 7838 24003 1032 586 1618 2309 734 3043

SQC 16165 5619 21784 1032 514 1546 2309 436 2745

SCLC 16165 1919 18084 1032 88 1120 2309 111 2420

Never-smokers

Overall 6396 2207 8603 4335 5561 9896 1405 170 1575

ADE 6396 1268 7664 4335 4019 8354 1405 105 1510

SQC 6396 189 6585 4335 771 5106 1405 12 1417

SCLC 6396 60 6456 4335 4 4339 1405 2 1407

Sample size of each strata is displayed in the table. EUR, European population; EAS, East Asian population; AFR, African population. Overall, 
overall lung cancer; ADE, lung adenocarcinoma; SQC, squamous lung cancer; SCLC, small-cell lung cancer.
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Table 2.

Variants associated with lung cancer in only ever- or never-smokers.

Strata SNP Position Gene EAF EUR|
EAS|AFR

Weighted 
score

OR _P EUR|EAS|AFR Joint effect size 
(p-value)

Q

Ever-smokers

LUNG rs62303696* 4p12 GABRA4 0.074|
0.275|0.028

0.94 1.17 (2.71×10−7)|
1.22 (4.81×10−3)|1.33 
(6.08×10−2)

1.18 (1.22×10−9) 0.62

LUNG rs55781567 15q25.1 CHRNA5 0.414|
0.039|0.299

0.99 1.31 (5.67×10−69)|
0.99 (9.65×10−1)|1.32 
(8.51×10−8)

1.31 
(1.66×10−74)

0.65

SQUAM rs17879961# 22q12.1 CHEK2 0.002|
0.000|0.000

0.89 0.25 (2.93×10−11)| NA|NA 0.25 
(2.93×10−11)

NA

SCLC rs58778970* 12q24.33 Intergenic 0.134|
0.007|0.190

0.92 1.33 (1.50×10−7)|
0.77 (8.05×10−1)|1.53 
(2.40×10−2)

1.34 (1.58×10−8) 0.67

Never-smokers

ADE rs4756620* 11p12 LRRC4C 0.998|
0.977|0.810

0.91 0.76 (5.62×10−1)|
0.57 (1.37×10−8)|0.64 
(1.28×10−2)

0.59 
(6.51×10−10)

0.74

SQC rs6757055# 2q34 IKZF2 0.962|
0.909|0.917

0.96 1.44 (1.94×10−1)|0.56 
(1.51×10−11)|0.71 
(6.49×10−1)

0.61 (1.11×10−9) 0.01

SQC rs1383429* 4q21.21 LINC01088 0.909|
0.878|0.492

0.97 0.73 (8.74×10−2)|
0.64 (5.57×10−9)|1.56 
(3.13×10−1)

0.67 (6.44×10−9) 0.12

SQC rs968516* 9q34.3 LCNL1 0.947|
0.966|0.923

0.86 0.62 (4.10×10−2)|
0.36(8.07×10−10)|0.92 
(9.47×10−1)

0.34 
(8.19×10−10)

0.12

Never-smoking women

Overall rs12265047 10q25.2 VTI1A 0.949|
0.701|0.626

0.93 0.63 (4.64×10−5)|0.77 
(4.53×10−13)|0.63 
(3.29×10−3)

0.75 
(1.10×10−17)

0.68

ADE rs7962469 12q13.13 ACVR1B 0.684|
0.674|0.443

0.90 1.12 (5.61×10−2)|
1.18 (1.63×10−6)|1.74 
(3.14×10−3)

1.18 (3.73×10−8) 0.03

The risk variants with association evidence from only ever- or never-smoking individuals (not from both groups) were listed in Table 2. 
EAF, effective allele frequency. Q indicates the heterogeneity p value. EUR: European population; EAS: East Asian population; AFR: African 
population. Weighted score indicated the imputation quality score weighted by sample size from the studies.

#
known variants identified from previous studies but shown to be related to lung cancer in only ever- or never-smoking group.

*
novel variants identified in this study.
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