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Abstract

We present a combinatorial indexing method PerturbSci-Kinetics for capturing whole 

transcriptomes, nascent transcriptomes, and single guide RNA (sgRNA) identities across 

hundreds of genetic perturbations at the single-cell level. Profiling a pooled CRISPR screen 

targeting various biological processes, we show the gene expression regulation during RNA 

synthesis, processing, and degradation, miRNA biogenesis, and mitochondrial mRNA processing, 

systematically decoding the genome-wide regulatory network that underlies RNA temporal 

dynamics at scale.

Cellular functions are determined by the expression of millions of RNA molecules, which 

are tightly regulated by their synthesis, splicing, and degradation. However, understanding 

how key regulators impact genome-wide RNA kinetics is constrained by existing tools, 

which provide only snapshots of the transcriptome1–8. To resolve this challenge, we 

developed PerturbSci-Kinetics, combining CRISPR-based pooled genetic screen, single-cell 

RNA-seq by combinatorial indexing, and RNA metabolic labeling, to uncover single-cell 

transcriptome dynamics across extensive genetic perturbations.

PerturbSci-Kinetics features a combinatorial indexing strategy (‘PerturbSci’) for targeted 

capture of sgRNA transcripts that carries the same cellular barcode with the whole 

transcriptome (Fig 1a). In brief, we adopted the modified CROP-seq vector5, and developed 

a strategy for capturing sgRNA sequences6,7 through reverse transcription using a sgRNA-
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specific primer followed by targeted enrichment of sgRNA sequences via PCR (Extended 

Data Fig 1, Supplementary Note 1–2, Supplementary Table 1). With extensive optimizations 

(Extended Data Fig 2), PerturbSci achieves a high knockdown efficacy with a potent dual-

repressor dCas9 (i.e., dCas9-KRAB-MeCP29), a high capture rate of sgRNA (i.e., up to 

99.7% of cells), and can readily scale up for profiling a large number of cells using the 

three-level combinatorial indexing approach10 (Fig 1b, Supplementary Note 3).

By incorporating 4-thiouridine (4sU) labeling11–17, PerturbSci-Kinetics retrieves time-

resolved nascent transcriptomes at the single-cell resolution, distinguishing newly-

synthesized transcripts from whole transcriptomes. The kinetic rates of mRNA such as RNA 

synthesis and degradation in each genetically-perturbed cell population were then inferred 

(Fig 1a, Methods). Our method incorporates several optimizations to reduce the cell loss 

(Extended Data Fig 2) and enhance the accuracy of nascent reads calling (Extended Data 

Fig 3). With three levels of combinatorial indexing, PerturbSci-Kinetics demonstrates orders 

of magnitude higher throughput than previous approaches coupling metabolic labeling and 

single-cell RNA-seq (e.g., scEU-seq, sci-fate, scNT-seq)18–22 (Fig 1b).

As a proof of concept, we established a human HEK293 cell line with inducible 

dCas9-KRAB-MeCP29 expression (HEK293-idCas9). We thoroughly validated the potent 

knockdown of target gene expression following Doxycycline (Dox) treatment (Fig 1c, 

Extended Data Fig 4a–c). Furthermore, we demonstrated the purity of the single-cell 

transcriptome and sgRNA capture of PerturbSci by profiling mixed human and mouse cells 

transduced with human and mouse-specific sgRNAs, respectively (Fig 1d).

We proceeded to validate the capability of PerturbSci-Kinetics in capturing the three-layer 

readout at the single-cell level. After 4sU labeling and chemical conversion, we observed a 

significant enrichment of T to C mismatches in the mapped reads, which is consistent with 

findings from our previous study20 (Fig 1e). A median of 22.1% of newly synthesized reads 

were recovered, in contrast to only 0.8% in control cells (Fig 1f). The proportion of reads 

mapped to exonic regions was also significantly lower in nascent reads compared with pre-

existing reads (p-value < 1e-20, Tukey’s test after ANOVA) (Fig 1g). Moreover, genes with 

a higher fraction of nascent reads were significantly enriched in highly dynamic biological 

processes23 while housekeeping genes were strongly enriched in genes with a lower fraction 

of nascent reads (Fig 1h–i). Notably, the chemical conversion step is fully compatible with 

sgRNA detection. We recovered sgRNAs from 97% of chemically converted cells (a median 

of 62 sgRNA UMIs per cell), in which 92.6% were annotated as sgRNA singlets (Fig 1j–k).

To dissect the impact of genetic perturbations on transcriptome kinetics, we performed a 

PerturbSci-Kinetics screening on HEK293-idCas9 cells. These cells were transduced with a 

library of 699 sgRNAs, which included 15 no-target controls (NTC), targeting a total of 228 

genes involved in diverse biological processes (Fig 2a, Supplementary Table 2). Following 

a 5-day puromycin selection, we harvested a proportion of cells for bulk library preparation 

(referred to as ‘day 0’ samples) and induced dCas9-KRAB-MeCP2 expression with Dox for 

seven more days. The screening window was carefully chosen to maximize gene knockdown 

efficiency, minimize population dropout8, and allow cells to attain transcriptomic steady 

states24 (Extended Data Fig 4d). We performed 200uM 4sU labeling for two hours at 
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the end of the screening and harvested samples for both bulk and PerturbSci-Kinetics 
library preparation. As a quality control, the activation of CRISPRi significantly altered 

the abundance of sgRNAs in the pool, which was consistent across replicates and aligned 

with previous studies25. For example, genes involved in essential functions (e.g., DNA 

replication, ribosome assembly) were strongly depleted after the screening (Extended Data 

Fig 4e–g). Reassuringly, the number of sgRNA singlets recovered by PerturbSci-Kinetics 
correlated well with read counts of bulk screen libraries (Pearson correlation r = 0.988, 

p-value < 2.2e-16) (Fig 2b).

We recovered 161,966 labeled cells with matched sgRNAs (88% of cells recovered in total), 

and 126,271 cells were annotated as sgRNA singlets (Extended Data Fig 4j). Despite the 

shallow sequencing depth (~8000 reads per cell), we achieved a median of 2,155 UMIs per 

cell. 698 out of 699 sgRNAs were successfully recovered, with a median of 28 sgRNA 

UMIs per cell. Subsequently, we excluded cells containing sgRNAs that demonstrated 

low knockdown efficiencies (<= 40% gene expression reduction compared to NTC) were 

excluded. The RT-qPCR validation on several individual sgRNAs corroborated the accuracy 

of our knockdown efficiency estimates (Extended Data Fig 4h–l). Ultimately, 98,315 cells 

were retained for downstream analysis, corresponding to a median of 484 cells per gene 

perturbation and a median knockdown efficiency of target genes at 67.7% (Fig 2c).

We next quantified gene-specific synthesis and degradation rates in each perturbation using 

an ordinary differential equation approach26 (Methods). As expected, genes targeted by 

the CRISPRi demonstrated substantially reduced synthesis rates, while their degradation 

rates exhibited only mild alterations (Fig 2c). As another validation, we observed 

significantly higher correlations of transcriptomes among sgRNAs targeting the same 

genes across multiple layers (e.g., whole/nascent transcriptome, synthesis/degradation rates, 

Extended Data Fig 5a). We then performed dimension reduction and Uniform Manifold 

Approximation and Projection (UMAP) visualization27 on aggregated whole transcriptomes 

of each perturbation. Perturbations targeting paralogous genes (e.g., EXOSC5 and EXOSC6) 

or related biological processes (e.g., RNA degradation, energy metabolism) were readily 

clustered together (Fig 2d). Similar analyses on gene-specific synthesis/degradation rates 

managed to group perturbations by their functions (Extended Data Fig 5b–c). Furthermore, 

by aggregating profiles of single cells carrying sgRNAs that target the same gene, we 

achieved robust estimations for both whole/nascent transcriptomes, as well as transcriptome 

kinetic rates (Extended Data Fig 5d).

We then investigated how genetic perturbations influence global transcriptome dynamics 

(Fig 2e–g, Extended Data Fig 6a–c, 6e–g, Supplementary Table 5–7). As expected, 

the knockdown of genes encoding proteins involved in transcription initiation (e.g., 
GTF2E1, TAF2), mRNA synthesis (e.g., POLR2B, POLR2K), and chromatin remodeling 

(e.g., SMC3, RAD21) significantly downregulated the global synthesis rates but not the 

degradation rates. Conversely, perturbations targeting critical biological processes such 

as DNA replication (e.g., POLA2, POLD1), ribosome synthesis, and rRNA processing 

(e.g., POLR1A, POLR1B, RPL11, RPS15A), mRNA and protein processing (e.g., CNOT2, 

CNOT3, CCT3, CCT4) reduced both global RNA synthesis and degradation, indicating 

a compensatory mechanism for maintaining transcriptome homeostasis28 (Fig 2e–f). 

Xu et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moreover, we noted significant reductions in exonic read fractions in nascent transcriptomes 

following perturbations related to RNA processing (e.g., NCBP1, LSM2, LSM4, CPSF2, 

CPSF6) and energy metabolism (e.g., GAPDH, NDUFS2), signifying dysregulated splicing 

dynamics (Fig 2g).

Interestingly, the knockdown of AGO2, a recognized post-transcriptional regulator29, 

led to an increase in global synthesis, suggesting its potential role in transcriptional 

repression (Fig 2e). The re-analysis of public datasets30,31 corroborated our observation. 

Specifically, genes exhibiting enriched AGO2 binding at transcription start sites (TSS) were 

markedly upregulated following AGO2 silencing (Extended Data Fig 7a–b). Additionally, 

the enrichment of AGO2 binding was observed immediately downstream of TSS, and was 

positively correlated with transcriptional pausing (Extended Data Fig 7a–d). For validation, 

we employed SLAM-seq32 to examine the transcriptomic response after AGO2 knockdown, 

identifying 78 highly-paused genes significantly upregulated. Notably, the nascent RNA 

of these genes showed increased 3’ end coverages compared to NTC, indicative of more 

efficient transcriptional elongation (Extended Data Fig 7e–f). Collectively, our integrated 

analyses robustly support the unconventional function of AGO2 in transcriptional repression.

We next investigated regulators of mitochondrial RNA dynamics by quantifying the fraction 

of nascent reads in single-cell mitochondrial transcriptomes. A significant reduction in 

mitochondrial transcriptome turnover was observed after perturbing metabolism-associated 

genes, including those encoding proteins involved in glycolysis (e.g., GAPDH, FH, PKM), 

the TCA cycle (e.g., ACO2, IDH3A), and oxidative phosphorylation (e.g., NDUFS2, 

COX6B1) (Fig 2h, Extended Data Fig 6d, 6h, Supplementary Table 8). Notably, LRPPRC 

emerged as a key mitochondrial RNA dynamics regulator, as its knockdown led to 

substantial reduction in both turnover rates and expression levels across the majority of 

mitochondrial protein-coding genes, and mitochondrial functional defect (Extended Data 

Fig 8a–c, Supplementary Table 9). In contrast, nuclear-encoded genes were primarily 

regulated at the transcriptional level upon LRPPRC knockdown (Extended Data Fig 8d–

f). These kinetic changes in mitochondrial mRNA were validated through an independent 

PerturbSci-Kinetic experiment that profiled with LRPPRC knockdown (Extended Data Fig 

8g–i). Recent studies have reported similar findings, observing impaired mitochondrial gene 

expression and mitochondrial functional defects in the hearts of LRPPRC knockout mice33 

and in brown adipocyte-specific LRPPRC knockout mice34. This further corroborates the 

essential role of LRPPRC in maintaining mitochondrial mRNA homeostasis.

To further demonstrate the unique capacity of PerturbSci-Kinetics in unraveling the 

regulatory mechanisms that govern gene expression control, we identified 14,618 

differentially expressed genes (DEGs) across perturbations, with 22.9% of them exhibited 

significant changes in their synthesis or degradation rates (Supplementary Table 10–11, 

Methods). Among these, DEGs regulated by RNA degradation were associated with 

perturbations in mRNA surveillance/processing genes (Fig 2i). For instance, our study 

revealed a set of significantly overlapped DEGs upon knockdown of DROSHA and 

DICER135,36, genes encoding two crucial RNases in the miRNA biogenesis pathway37 

(Extended Data Fig 9a–c). These DEGs were regulated through distinct mechanisms: some 

genes were regulated by decreased degradation (e.g., genes encoding miRNA-mediated 
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silencing complex (RISC) components: TNRC6A and TNRC6B), while others are regulated 

through increased transcription (e.g., miRNA host genes: MIR181A1HG, FTX; genes 

encoding protein involved in miRNA biogenesis: DDX3X) (Fig 2j–l, Supplementary Table 

12). The RNA binding pattern of AGO2, a core component of RISC for miRNA-mediated 

mRNA degradation38, further validated our findings, exhibiting a strong enrichment in the 

UTRs of transcripts from degradation-regulated genes but not in synthesis-regulated genes 

(Fig 2m). This finding was further substantiated through PerturbSci-Kinetics profiling on 

individual sgRNA knockdown clones and SLAM-seq following 4sU chase labeling32 (Fig 

2n, Extended Data Fig 9d–g).

Finally, we delved into the effects of genetic perturbations on RNA dynamics during 

cell cycle progression. Using our validation dataset, we separated cells into five clusters 

representing different cell cycle stages using cell cycle-related genes39 (Extended Data 

Fig 10a–c), and then calculated stage-specific kinetic rates of genes. Employing mfuzz 

clustering40, we identified four gene clusters displaying discrepant cell cycle time-course 

synthesis dynamics patterns. Among these, only genes in cluster 1 exhibited evident steady-

state expression fluctuations (Extended Data Fig 10d). While their synthesis and degradation 

rates both increased along the cell cycle, the synthesis rates outpaced degradation rates, 

leading to an increase in steady-state mRNA levels from the S to the G2M stage. GO 

term analysis further supported the crucial roles of proteins encoded by these genes in 

cell cycle (Extended Data Fig 10e). Interestingly, in cells with DROSHA and DICER1 
knockdown, we observed a similar steady-state expression pattern for genes in cluster 1, 

but with unresponsive degradation and compensated synthesis during cell cycle progression 

(Extended Data Fig 10f), suggesting the existence of synthesis-degradation feedback loops 

for gene regulation. In contrast, LRPPRC knockdown did not impact cell cycle-dependent 

RNA degradation dynamics (Extended Data Fig 10g), aligning with our results that it 

specifically affects mitochondrial mRNA stability. Together, our study emphasizes the 

coordinated regulation of gene expression throughout the cell cycle progression and 

highlights the presence of intricate feedback loops between RNA synthesis and degradation.

In summary, PerturbSci-Kinetics allows for the quantitative analysis of the genome-wide 

mRNA kinetics across genetic perturbations in a massively-parallel manner. Of note, there 

are several potential limitations to consider: First, extended 4sU labeling might impact 

cell states and potentially hinder the identification of sgRNA sequences. To mitigate 

this, we opted for a relatively short-term (2 hours) treatment to minimize such effects. 

Second, RNA dynamics identified by PerturbSci-Kinetics may not directly reflect causality 

in gene regulation, partly due to the gradual nature of CRISPRi-based gene knockdown. 

This limitation could be mitigated by coupling the technique with large-scale chemical 

perturbations. Third, the perturbation of essential genes might lead to significant dropout, 

affecting dynamic rate estimations due to limited cells and reads. Moreover, apoptosis-

triggered mRNA decay might further complicate the analysis41. Therefore, we recommend 

excluding genetic perturbations that either lead to strong dropout effects or substantial 

disruption of cell cycle distribution during RNA dynamics analysis.

In spite of these limitations, our findings illuminate the distinct advantages of PerturbSci-
Kinetics over conventional assays. Its multi-layer readout provides a comprehensive 
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perspective on gene expression and RNA dynamics in response to genetic perturbations, 

facilitating high-throughput and parallel characterization of elements that govern gene-

specific RNA dynamics. Moreover, given the low cost and high sensitivity of PerturbSci, we 

envision the potential to systematically dissect cell-type-specific gene regulatory networks 

across various biological contexts with an unparalleled scale and resolution.

Methods:

Cell culture

The 3T3-L1-CRISPRi cell line was obtained from the Tissue Culture facility at the 

University of California, Berkeley. The HEK293 cell line was a gift from the Scott Keeney 

Lab at Memorial Sloan Kettering Cancer Center. The HEK293T cell line and the NIH/3T3 

cell line were obtained from ATCC. All cells were maintained at 37 °C and 5% CO2 in 

high glucose DMEM medium supplemented with L-Glutamine and Sodium Pyruvate (Gibco 

11995065) and 10% Fetal Bovine Serum (FBS; Sigma F4135).

Cell lines generation

To generate HEK293 cells with Dox-inducible dCas9-KRAB-MeCP2 expression, the 

lentiviral plasmid Lenti-idCas9-KRAB-MeCP2-T2A-mCherry-Neo was constructed. After 

sequencing validation, the lentivirus was produced by co-transfecting Lenti-idCas9-KRAB-

MeCP2-T2A-mCherry-Neo with psPAX2 (Addgene #12260) and pMD2.G (Addgene 

#12259) into low-passage HEK293T cells in a 10cm dish using Polyjet (SignaGen 

SL100688). After lentiviral titration, HEK293 cells were transduced at MOI = 0.2 for 48 

hours. Cells were treated with 1ug/ml Dox (Sigma D5207) for 48 hours, and single cells 

with strong mCherry fluorescence were sorted for monoclonal generation.

The polyclone 3T3-CRISPRi cell line was generated in a similar way. pHR-SFFV-dCas9-

BFP-KRAB (Addgenes #46911) was co-transfected with psPAX2 and pMD2.G to generate 

dCas9-expressing lentivirus, and the transduction at MOI=0.2 was performed on 3T3 cells. 

BFPhi cells (top 35% in BFP+ population) were sorted and the sorting was repeated twice 

more after cell expansion to enrich cells with strong dCas9 expression.

Single gene Knockdown and efficacy examination

CROP-seq-opti-Puro-T2A-GFP was assembled by adding a T2A-GFP downstream of 

Puromycin resistant protein coding sequence on the CROP-seq-opti plasmid (Addgene 

#106280). Oligos for individual guides cloning were ordered from IDT with the following 

design:

Plus strand: 5’-CACCG[20bp sgRNA plus strand sequence]-3’

Minus strand: 5’-AAAC[20bp sgRNA minus strand sequence]C-3’

Oligos were phosphorylated using T4 PNK (NEB M0201S) and were annealed. The 

CROP-seq-opti-Puro-T2A-GFP was digested by Esp3I (NEB R0734L), then the linearized 

backbone and the annealed duplex were ligated using the Blunt/TA Ligase Master Mix 

(NEB M0367S). Transformation, clone amplification, sequencing validation, lentivirus 

generation, and titer measurement were done as stated above.
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Mouse 3T3-L1-CRISPRi cells and 3T3-CRISPRi cells were transduced with the lentivirus 

expressing non-target control (NTC) sgRNA or sgRNA targeting Fto. Human HEK293-

idCas9 cells were transduced with lentivirus expressing NTC sgRNA or sgRNA 

targeting IGF1R during technique development, and HEK293-idCas9-sgXPO5, sgAGO2, 

sgDROSHA, sgDICER1, sgLRPPRC cell lines were later established for validating 

significant hits from the screen. Transduction was carried out at MOI = 0.2 with 8ug/ml of 

Polybrene for 48 hours. Transduced cells were then selected by either FACS or Puromycin 

treatment.

For RT-qPCR validation, primer pairs were selected from PrimerBank (https://

pga.mgh.harvard.edu/primerbank/) and were synthesized from IDT. Total RNA of each 

sample was extracted using the RNeasy Mini kit (QIAGEN 74104). 1ug total RNA was 

then reverse-transcribed, and PowerUp™ SYBR™ Green Master Mix (Thermo A25742) was 

used for RT-qPCR following the manufacturer’s instructions. The data was analyzed and 

visualized by Graphpad Prism (9.2.0).

For flow cytometry validation, 1e6 cells of each sample were harvested and resuspended 

in 100ul of PBS-0.1% sodium azide-2% FBS. BV421 Mouse Anti-Human CD221 (BD 

565966) and BV421 Mouse IgG1 k Isotype Control (BD 562438) at the final concentration 

of 10 ug/ml were added, and reactions were incubated at 4 °C in the dark with rotation 

for 30 minutes. Cells were then washed twice using PBS-0.1% sodium azide-2% FBS, 

and fluorescence signals were recorded. The data was analyzed and visualized by FlowJo 

(10.8.1).

Construction of the pooled sgRNA library

Genes to be included in our sgRNA library were selected based on following considerations: 

1) essential and non-essential genes were identified using the bulk CRISPR screen data from 

a previous report25 and Depmap43, and both were included in the gene set. 2) To validate 

the ability of PerturbSci-kinetics to characterize gene-specific RNA dynamics, we selected 

genes involved in transcription, chromatin remodeling, RNA processing, and mRNA decay 

based on Gene Ontology terms44 and KEGG pathways45. 3) We ensured that all selected 

genes were expressed in the cell line to be used in our study. An in-house HEK293 EasySci-
RNA dataset was used to select expressing genes that met criteria 1 and 2.

sgRNA sequences targeting genes of interest were obtained from an established optimized 

CRISPRi sgRNA library (set A)25. Finally, 684 sgRNAs targeting 228 genes (3 sgRNAs/

gene) and 15 non-targeting controls were included in the present study.

The single-stranded sgRNA library was synthesized in a pooled manner by IDT in the 

following format:

5’-GGCTTTATATATCTTGTGGAAAGGACGAAACACCG[20bp sgRNA plus 

strand sequence]GTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTT-3’

100ng of oligo pool was amplified by PCR using primers targeting 5’ homology arm 

(HA) and 3’ HA. The PCR product was purified and the insert was cloned into Esp3I-

digested CROP-seq-opti-Puro-T2A-GFP by Gibson Assembly. In parallel, a control Gibson 
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Assembly reaction containing only the backbone was set. Both reactions were cleaned 

up by 0.75x AMPURE beads (Beckman Coulter A63882) and eluted in 5uL EB buffer 

(QIAGEN 19086), then were transformed into Endura Electrocompetent Cells (Lucigen 

602422) by electroporation (Gene Pulser Xcell Electroporation System, Bio-Rad 1652662). 

After recovery, cells of each reaction were spread onto an 245 mm Square agarose plate 

(Corning, 431111) with 100ug/ml of Carbenicillin (Thermo, 10177012) and was then grown 

at 32 °C for 13 hours. All colonies from each reaction were scraped from the plates and the 

CROP-seq-opti-Puro-T2A-GFP-sgRNA plasmid library was extracted using ZymoPURE II 

Plasmid Midiprep Kit (Zymo, D4200). The lentiviral library was generated as stated.

The pooled PerturbSci-Kinetics screen experiment

For each replicate, 7e6 uninduced HEK293-idCas9 cells were seeded. Two replicates were 

transduced at MOI=0.1 and another two replicates were transduced at MOI=0.2. At least 

1000x coverage was kept throughout the cell culture. At the end of the Puro selection, we 

harvested 1.4e6 cells in each replicate (2000x coverage/sgRNA) as day0 samples of the bulk 

screen and pellet down at 500xg, 4 °C for 5 minutes for genomic DNA extraction. For the 

rest of cells, the dCas9-KRAB-MeCP2 expression was induced by adding Dox at the final 

concentration of 1ug/ml, and L-glutamine+, sodium pyruvate-, high glucose DMEM was 

used to sensitize cells to perturbations on energy metabolism genes. Cells were cultured for 

additional 7 days. On day7, 6ml of the original media from each plate was mixed with 6uL 

of 200mM 4sU (Sigma T4509–25MG) dissolved in DMSO (VWR 97063–136) and was put 

back for nascent RNA metabolic labeling. After 2 hours of treatment, 1.4e6 cells in each 

replicate were harvested as day7 samples of the bulk screen, and the rest of the cells were 

fixed for PerturbSci-Kinetics profiling (see the next section).

Genomic DNA of bulk screen samples was extracted using Quick-DNA Miniprep Plus Kit 

(Zymo D4068T) following the manufacturer’s instructions. The bulk screen libraries were 

amplified from genomic DNA extracted using custom primers (Supplemental Note 2) for 

sequencing.

Step-by-step protocols for PerturbSci-Kinetics library preparation are included in 

Supplemental Note 1.

4sU pulse/chase labeling and SLAM-seq

HEK293-idCas9-sgAGO2 and sgNTC cells were induced with Dox for 7 days in 10cm 

dishes, and cells were labeled with 600uM 4sU for 20 minutes before total RNA extraction. 

HEK293-idCas9-sgDROSHA, sgDICER1, and sgNTC cells were induced with Dox for 7 

days, and were treated with Dox+ medium containing 100uM 4sU for 18h. The medium 

was refreshed every 6h. Then chase labeling was performed by using medium with 10mM 

uridine (Sigma U3750–1G). Following 2h and 4h incubation, total RNA was extracted.

2–5 ug of total RNA from each sample was used for chemical conversion. RNA was diluted 

into 15ul, and mixed with 5ul of 100mM IAA, 5ul of NaPO4 (pH 8.0, 500mM) buffer, 

and 25ul of DMSO. The reaction was incubated at 50 °C for 15 minutes and was then 

quenched with 1ul 1M DTT.After RNA purification using the Monarch RNA Cleanup Kit 

(NEB T2030L), samples were immediately used for library construction.
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Full-length and 3’end bulk SLAM-seq were used for different experimental purposes. For 

full-length bulk SLAM-seq library construction, the CRISPRclean Stranded Total RNA 

Prep with rRNA Depletion Kit (Jumpcode Genomics KIT1014) was used. For 3’end 

bulk SLAM-seq library construction, an in-house 3’end library preparation workflow 

was used. In brief, 250–500ng total mRNA was mixed with 1ul 100uM oligodT primer 

(ACGACGCTCTTCCGATCTNNNNNNNNNNTTTTTTTTTTTTTTT), 1ul 10mM each 

dNTP mix, 0.5ul SUPERase In and the volume was adjusted to 15ul with water. After RNA 

priming at 55C for 5min, 4ul 5xRT buffer and 1ul Maxima H Minus Reverse Transcriptase 

(Thermo EP0753) were added to the reaction, and reverse transcription was performed as 

recommended by the manufacturer. After 0.6x AMPURE beads purification, Second strand 

synthesis (NEB E6111L) was carried out by 1h incubation at 16 °C, then cDNA was 

purified by 0.6x AMPURE beads. Following Read2 tagmentation on 10ng cDNA using 1:20 

V/V Nextera Read2-Tn5, the reaction was quenched, and the final library was prepared as 

EasySci-RNA10.

Reads processing

For bulk CRISPR screen libraries, bcl files were demultiplexed into fastq files based 

on index 7 barcodes. Reads for each sample were further extracted by index 5 barcode 

matching. Every read pair was matched against two constant sequences (Read1: 11–25bp, 

Read2: 11–25bp) to remove artifacts. For all matching steps, a maximum of 1 mismatch was 

allowed. Finally, sgRNA sequences were extracted from filtered read pairs (at 26–45bp of 

R1), assigned to sgRNA identities with no mismatch allowed, and read counts matrices at 

sgRNA and gene levels were quantified using python (2.7).

For PerturbSci-Kinetics, after demultiplexing on index 7, Read1 were matched against 

a constant sequence on the sgRNA capture primer to remove unspecific priming, and 

cell barcodes and UMI sequences sequenced in Read1 were added to the headers of 

the fastq files of Read2, which were retained for further processing. After trimming 

polyA sequences and low-quality bases from Read2 by Trim_Galore (0.6.7)46, reads were 

aligned to a customized reference genome consisting of a complete hg38 reference genome 

(GRCh38.p13 from GENCODE) and the dCas9-KRAB-MeCP2 sequence using STAR 

(2.7.9a)47. Reads with mapping score >= 30 were selected by samtools (1.13)48. Then 

deduplication at the single-cell level was performed based on the UMI sequences and the 

alignment location, and retained reads were split into SAM files per cell. These single-cell 

sam files were converted into alignment tsv files using the sam2tsv function in jvarkit 

(d29b24f)49. After background SNP removal, we considered T>C mismatches with the 

CIGAR string “M” and quality scores > 45 as 4sU site. And only reads with > 30% of T>C 

mutations among all mismatches were identified as nascent reads, and the list of reads was 

extracted from single-cell whole transcriptome sam files by the Picard (2.27.4)50. Finally, 

single-cell whole/nascent transcriptome gene x cell count matrices were constructed by 

assigning reads to genes51.

Read1 and read2 of PerturbSci-Kinetics sgRNA libraries were matched against constant 

sequences respectively, allowing a maximum of 1 mismatch. For each filtered read pair, 

cell barcode, sgRNA sequence, and UMI were extracted from designed positions. Extracted 
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sgRNA sequences with a maximum of 1 mismatch from the sgRNA library were accepted 

and corrected, and the corresponding UMI was used for deduplication. De-duplication was 

performed by collapsing identical UMI sequences of each individual corrected sgRNA 

under a unique cell barcode. Cells with overall sgRNA UMI counts higher than 10 were 

maintained and the sgRNA x cell count matrix was constructed.

SLAM-seq reads were processed similarly. In brief, for 3’end SLAM-seq, UMI sequences 

in Read1 were extracted and were attached to the headers of Read2 by UMI-tools (1.1.2)52, 

and only read2 were further processed. After polyA and low quality base trimming 

by Trim_Galore, reads were aligned to the hg38 reference genome by STAR. In the 

scenario of high-concentration 4sU labeling, more loose alignment parameters were used (--

outFilterMatchNminOverLread 0.2 --outFilterScoreMinOverLread 0.2). Reads were filtered 

by samtools, and PCR duplicates in passed reads were further removed by UMI-tools. 

Nascent reads were identified and extracted, and gene counting on both whole transcriptome 

and nascent transcriptome were performed as mentioned above but at the sample level. For 

full-length SLAM-seq, reads were processed similarly but paired-end reads were retained.

sgRNA singlets identification and off-target sgRNA removal

Cells with at least 300 whole transcriptome UMIs, 200 genes, 10 sgRNA UMIs, and 

unannotated reads ratio < 40% were kept. sgRNA singlets were assigned based on the 

following criteria: the most abundant sgRNA in the cell took >= 60% of total sgRNA counts 

and was at least 3-fold of the second most abundant sgRNA.

Target genes with the number of cells perturbed >= 50 were kept. The knockdown efficiency 

was calculated at the individual sgRNA level to remove potential off-target or inefficient 

sgRNAs: whole transcriptomes of cells receiving the same sgRNA were merged, normalized 

by CPM, then the fold changes of the target gene expressions were calculated by comparing 

the normalized expression levels between corresponding perturbations and NTC. sgRNAs 

with >= 40% of target gene expression reduction relative to NTC were regarded as “effective 

sgRNAs”, and singlets receiving these sgRNAs were kept as “on-target cells”. Downstream 

analyses were done at the target gene level by analyzing all cells receiving different sgRNAs 

targeting the same gene.

UMAP embedding on pseudo-cells

The count matrix of the “on-target” cells described above was loaded into Seurat27, and 

DEGs of each perturbation (compared to NTC) were retrieved. Cells from perturbations with 

>= 1 DEG and cells from genetic perturbations involved in similar pathways of the top 

perturbations were kept. The FC of the normalized gene expression between perturbations 

and NTC were calculated, and were binned based on the gene-specific expression levels in 

NTC. The top 3% of genes showing the highest fold changes within each bin were selected 

and merged as features for Principal Component Analysis (PCA). The top 9 PCs were used 

as input for UMAP embedding.
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Differential expression analysis

Pairwise differential expression analyses between each perturbation and NTC cells were 

performed by Monocle 253. We selected significant hits (FDR < 0.05) with a >= 1.5-fold 

expression difference and CPM >= 5 in at least one of the tested cell pairs. More stringent 

criteria were used to obtain DEGs with high confidence: significant hits (FDR < 0.05) with 

a >= 1.5-fold expression difference and CPM >= 50 in at least one of the tested cell pairs 

were kept. For bulk RNA-seq libraries, genes with a minimum of 10 raw counts in at least 

one sample and expressed in at least a half of samples were kept, and EdgeR54 was used for 

bulk RNAseq DEGs analysis. Significant hits were selected at FDR < 0.05 level.

Synthesis and degradation rates calculation

After the induction of CRISPRi for 7 days, we assumed new transcriptomic steady states 

had been established at the perturbation level before the 4sU labeling, and the labeling didn’t 

disturb these new transcriptomic steady states. The following RNA dynamics differential 

equation is used for synthesis and degradation rates calculation similar to the previous 

study26:

d R
d t = α − R ⋅ β

(1)

In which R is the mRNA abundance of each gene, α is the synthesis rate of this gene, and β 
is the degradation rate of this gene. Since the RNA synthesis follows the zero-order kinetics 

and RNA degradation follows the first-order kinetics in cells, d R
d t  is determined by α and 

R·β.

As steady states had been established, the mRNA level of each gene didn’t change. We can 

get:

d R
d t = 0

(2)

R = α
β

(3)

Under the assumption that the labeling efficiency was 100%, all nascent RNA were labeled 

during the 4sU incubation, and pre-existing RNA would only degrade. So, for nascent RNA 

(Rn), Rn(t = 0) = 0 and αn = α. For pre-existing RNA (Rn), Rp t = 0 = R = α
β  and αp = 0. 

Based on these boundary conditions, we could further solve the differential equation above 

on nascent RNA and pre-existing RNA of each gene.
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Rn = α
β 1 − e−β ⋅ t

(4)

Rp = α
β e−β ⋅ t

(5)

As both R and Rn were directly measured in PerturbSci-Kinetics, and cells were labeled by 

4sU for 2 hours (t = 2), β can be calculated from equation 3 and 4. Then α can be solved by 

equation 3.

Due to the shallow sequencing and the sparsity of the single cell expression data, synthesis 

and degradation rates of DEGs were calculated at the target-gene pseudo-cell level. DEGs 

with only nascent counts or degradation counts were excluded from further examination 

since their rates couldn’t be estimated.

To examine the significance of synthesis and degradation rate changes upon perturbation, 

regarding the different cell sizes across different perturbations and NTC, which could affect 

the robustness of rate calculation, randomization tests were adopted. Only perturbations 

with cell number >= 50 were examined. For each DEG belonging to each perturbation, 

background distributions of the synthesis and degradation rate were generated: a subset of 

cells with the same size as the corresponding perturbed cells was randomly sampled from 

a mixed pool consisting of corresponding perturbed cells and NTC cells, then these cells 

were aggregated into a background pseudo-cell, and synthesis and degradation rates of the 

gene for testing were calculated as stated above, and the process was repeated for 500 

times. Rates = 0 were assigned if only nascent counts or degradation counts were sampled 

during the process (referred to as invalid samplings), but only genes with less than 50 (10%) 

“invalid samplings” were kept for p-value calculation. The two-sided empirical p-values 

for the synthesis and degradation rate changes were calculated respectively by examining 

the occurrence of extreme values in background distributions compared to the rates from 

perturbed pseudo-cell. Rate changes with p-value < 0.05 were regarded as significant, 

and the directions of the rate changes were determined by comparing the rates from the 

perturbed pseudo-cell with the background mean values.

Global changes of key statistics upon perturbations

For global synthesis and degradation rate changes, considering the noise from lowly-

expressed genes, we selected top1000 highly-expressed genes from NTC cells, then 

calculated their synthesis rates and degradation rates in NTC cells and all perturbations 

with cell number >= 50. K-S tests were performed to compare rate distributions between 

each perturbation and NTC cells. The distributions of exonic reads percentage in nascent 

reads from cells with the same target gene knockdown and NTC cells were compared 

using the K-S tests to identify genes affecting RNA processing. The proportion of nascent 

mitochondrial read counts to total mitochondrial read counts was calculated in each single 
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cell, and its distributions between cells with knockdown and NTC cells were compared by 

the K-S tests to identify the master regulator of mitochondrial mRNA dynamics. In all global 

statistics examinations, Benjamini–Hochberg multiple hypothesis correction was performed, 

and comparisons with FDR <= 0.05 were considered as significant. The median value from 

each perturbation and NTC cells were compared to determine the direction of significant 

changes.

Coverage analysis

We reprocessed the raw data of AGO2 eCLIP obtained from Hela cells from Zhang, K et, 

al42. After adapter trimming, UMI extraction, mapping, and UMI-based deduplication, bam 

files were transformed to the single-base coverage by BEDtools55. The transcript regions 

of genes-of-interest were assembled based on the hg38 genome annotation gtf file from 

GENCODE. Briefly, for each gene, the exonic regions were extracted and were redivided 

into 5’UTR, CDS, and 3’UTR by the 5’most start codon and the 3’most stop codon 

annotated in the gtf. The AGO2 binding coverages of these designated regions were obtained 

by intersection and were binned. The gene-specific signal in each bin was normalized by 

the number of bases in each bin, and the binned coverage of each gene was scaled to 

be within 0–1. After aggregating scaled coverages of synthesis/degradation-regulated genes 

respectively, the lowest point within CDS was used as the second scaling factor.

Meta-gene coverage analysis was conducted to visualize the gene body distribution of newly 

transcribed RNA in NTC and AGO2-knockdown samples. Genomic coordinates of protein 

coding genes on chromosome 1–22 and chromosome X were retrieved from the hg38 

genome annotation gtf file from GENCODE. Gene bodies were binned into 50 bins, ordered 

bins were exported as bed files. For input reads, two nascent reads BAM files per group 

from the pulse-labeling full-coverage SLAM-seq were merged using samtools, then reads 

with FLAG = 83/163 were assigned to genes on the plus strand, and reads with FLAG = 

99/147 were assigned to genes on the minus strand. The gene-specific binned coverages 

were counted using the bedtools intersect command. Binned counts of each gene were 

normalized by total counts in the gene body, and the coverage of any group of genes was 

finally drawn by averaging the normalized signals across genes.

Public ChIP-seq, shRNA RNA-seq, GRO-seq data analysis

Genes with detectable expression were identified from shControl/shAGO2 bulk RNA-seq in 

ENCODE. Processed gene counts quantification tables were downloaded from the ENCODE 

portal. Only genes with mean transcript per million (TPM) > 1 across 4 samples and with 

detected expression in at least 3 of 4 samples were included. Log2 fold changes of each gene 

upon AGO2 silencing were calculated by dividing the mean TPM in the shAGO2 group with 

the mean TPM in the shControl group.

AGO2 ChIP-seq bam and narrow peak files from ENCODE were merged for identifying 

TSS binding of AGO2. TSS regions of genes with detectable expression (defined as 4kb 

around TSS) were retrieved, and genes were classified into AGO2 TSS peak+/− genes based 

on the overlap between their TSS regions with merged AGO2 ChIP-seq narrow peaks. 
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The binding patterns were then visualized using the computeMatrix function in deepTools 

(3.5.1)56.

GRO-seq data was downloaded from GEO and were reprocessed to depict the transcriptional 

pausing status of genes. 3’end of reads were trimmed against polyA by Cutadapt (3.4)57, 

and reads were then aligned to the hg38 reference genome using Bowtie2 (2.3.0)58. After 

filtering out unmapped reads using samtools, bam files were imported to R. TSS proximal 

regions and transcriptional elongation regions of protein coding genes with gene lengths >= 

1kb were extracted, and the getPausingIndices() function from the BRGenomics package 

(3.17)59 was used to calculate the pausing indices of genes. Genes detected in both replicates 

were ranked by the pausing index within the replicate, and an averaged rank was used to 

study the association with AGO2 TSS binding.
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Extended Data

Extended Data Fig. 1. 
a. The vector system used in PerturbSci for dCas9 and sgRNA expression. The expression 

of the enhanced CRISPRi silencer dCas9-KRAB-MeCP29 was controlled by the tetracycline 

responsive (Tet-on) promoter. A GFP sequence was added to the original CROP-seq-opti 

plasmid6 as an indicator of successful sgRNA transduction and for the lentivirus titer 

measurement. The CROP-seq vector utilizes the self-replication mechanism of lentivirus 

during the integration for amplifying the sgRNA expression cassette. In this lentiviral 

plasmid, the sgRNA expression cassette replaced the U3 region of the 3’LTR5. During the 

lentiviral integration, the shortened 5’LTR of reverse-transcribed lentiviral genomic DNA 

was extended by using its 3’LTR as a template, and the sgRNA expression cassette is self-

replicated to the 5’LTR62. The self-replicated sgRNA expression cassette at 5’LTR generates 

functional sgRNA for guiding dCas9, and the original expression cassette at 3’LTR is 
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transcribed as a part of the Puro-GFP fusion transcript driven by the EF-1α promoter. b. 
The library preparation scheme and the final library structures of PerturbSci, including 

a scalable combinatorial indexing strategy with direct sgRNA capture and enrichment 

that reduced the library preparation cost, enhanced the sensitivity of the sgRNA capture 

compared to the original CROP-seq5, and avoided the extensive barcodes swapping detected 

in Perturb-seq6. c. A schematic comparison of chemistries between PerturbSci, CROP-seq5, 

and Direct-capture Perturb-seq7.

Extended Data Fig. 2. 
a. sgRNA primers of different designs were mixed with polyT primers respectively for RT. 

CB, cell barcode. P_R1, partial TruSeq read1 sequence. b-c. After RT, the capture efficiency 

of sgRNA by different RT primers was evaluated by “Direct PCR”, and the efficiency 

of by-product removal was examined by “sgRNA-only PCR”. 3 independent experiments 
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were conducted. d. Different post-multiplex PCR purification strategies were tested. 3 

independent experiments were conducted. e. A representative gel image of libraries of 

PerturbSci. 5 independent experiments were conducted. f-g. Boxplots showing sgRNA UMI 

counts (f) and the cell number recovered (g) from different sgRNA primer concentrations 

(n=230, 181, 149, 529, 512, 445, 299 cells from 100nM to 10uM groups for sgNTC cells, 

n = 499, 399, 246, 1237, 1215, 904, 537 cells from 100nM to 10uM groups for sgFto 

cells). h. Scatterplot showing the correlation between log2-transformed counts per million 

(CPM) profiled by PerturbSci and EasySci10 in the 3T3L1-CRISPRi cell line. i. Barplots 

showing effective knockdown in mouse 3T3-CRISPRi-sgFto cells and human HEK293-

idCas9-sgIGF1R cells computationally assigned in the species-mixing experiment (Fig 1d). 

j-l. Barplots showing the cell identities fraction (j), whole transcriptome (k) and sgRNA 

UMI counts (l) detected per cell in different fixation conditions (n = 1508, 1132, 1247, 

1084 cells for conditions from the left to the right). Tukey’s tests after one-way ANOVA 

were performed. m-n. Dotplots showing the relative recovery rate (n = 4, mean ± SEM) 

of HEK293-idCas9 cells in different fixation conditions following HCl permeabilization 

(m) and chemical conversion (n). Dunnett’s test after one-way ANOVA was performed. o. 
Boxplot showing the effect of chemical conversion on whole transcriptome UMI counts 

under 4°C PFA+BS3 fixation condition (n = 1988 cells in the control group, n = 4831 

cells in the converted group). Two-sided Wilcoxon rank sum test was performed. p. 
Mapping statistics of reads from PerturbSci-Kinetics. q-r. Boxplots showing single-cell 

whole transcriptome UMI counts (q) and gene counts (r) under different sequencing depth 

(n = 500 cells in each subsampling group). Boxes in boxplots indicate the median and IQR 

with whiskers indicating 1.5× IQR.
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Extended Data Fig. 3. 
a-c. Barplots showing the normalized mismatch rates of all 12 mismatch types detected 

in unconverted cells (a), converted cells (b), and the original sci-fate A549 dataset20 (c) 

at different positions of the reads using the original sci-fate mutation calling pipeline20. 

d-f. Barplots showing the normalized mismatch rates of all 12 mismatch types detected in 

unconverted cells (d), converted cells (e), and the original sci-fate A549 dataset20 (f) at 

different positions of the reads using the updated mutation calling pipeline. Considering 

the different sequencing lengths between the present dataset and sci-fate, the Read2 from 

sci-fate were trimmed to the same length as the present dataset before processing. Compared 

to the original pipeline, the updated pipeline further filtered the mismatch based on the 

CIGAR string and only mismatches with “CIGAR = M” were kept. Normalized mismatch 

rates in each bin, the percentage of each type of mismatch in all sequencing bases within 
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the bin. g-h. Statistics of T>C mutations in PerturbSci-Kinetics reads. Histogram showing 

the number of T>C mutations on reads that were identified to be from newly synthesized 

transcripts (g). For each read with high-quality mismatches identified, the fraction of 

mismatches from T>C mutations was calculated, which clearly separated the reads with 

background mutations and mutants introduced by 4sU in the plot (h). 30% was set as 

the cutoff to assign nascent reads as sci-fate20. i-j. Downsampling comparison between 

sci-fate20 and PerturbSci-Kinetics. A subset of raw reads in sci-fate A549 dataset20 were 

randomly selected to generate a downsampled dataset with the same single-cell raw reads 

number distribution with PerturbSci-Kinetics, and both datasets were processed using the 

same pipeline (n = 200 cells for each dataset). The single-cell whole transcriptome UMI 

counts (i) and the nascent reads proportions (j) between two datasets were compared. Boxes 

in boxplots indicate the median and IQR with whiskers indicating 1.5× IQR.
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Extended Data Fig. 4. 
a-d. Inducible IGF1R mRNA and protein knockdown were further validated by RT-qPCR 

(a) after 3-day Dox induction (n=4 biologically independent samples, data are presented 

as mean ± SEM. Dunnett’s test after one-way ANOVA was performed.) and by flow 

cytometry (b-d). The representative gating strategy for flow cytometry is shown in (b). 

Cells were treated with Dox+/Dox- media for 7 days before the flow-cytometry assay (c). 

To find the minimal time of Dox induction with stable knockdown, sgIGF1R and sgNTC 

cells were induced for either 4 days or 7 days and the IGF1R abundance was examined. 

Isotype, isotype control. αIGFIR, anti-IGF1R. e. Heatmap showing the Pearson correlations 

of normalized sgRNA read counts between the plasmid library and bulk screen replicates. 

f. Boxplot showing the reproducible trends of deletion upon CRISPRi between the present 

study and a prior report25 (n = 10, 57, 45, 49, 68 genes in each bin from left to right). 

g. Barplot showing the knockdown of genes with higher essentiality resulted in stronger 

cell growth arrest. h-i. Dotplots showing the expression fold changes of target genes upon 

CRISPRi induction compared to NTC in the single-cell PerturbSci-Kinetics dataset. Each 

dot represents a sgRNA. Fold change < 0.6 was used for sgRNA filtering, and genes 

with 3, 2, 1, 0 on-target sgRNA(s) were visualized in b-e, respectively. FC, fold change. 

j. Histogram showing the distribution of the fraction of the most abundant sgRNA in 

singlets (78%) and doublet cells (22%). k-l. The accuracy of sgRNA targeting efficiency 

in PerturbSci-Kinetics was further confirmed by RT-qPCR. Individual HEK293-idCas9 

clones expressing 5 sgRNAs with high efficiency and 1 off-target sgRNA were established. 

RT-qPCR was conducted after 3-day Dox induction (n=3 biologically independent samples). 

Data are presented as mean ± SEM, and two-sided Student’s t-test were performed (k). 

Mean expressions of target genes in NTC and corresponding cells in the original PerturbSci-
Kinetics dataset were exhibited (l). Boxes in boxplots indicate the median and IQR with 

whiskers indicating 1.5× IQR.
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Extended Data Fig. 5. 
a. Boxplots showing the pairwise correlation coefficients of sgRNAs targeting the 

same/different genes, computed using aggregated whole transcriptomes, pre-existing 

transcriptomes, nascent transcriptomes, gene-specific synthesis rates and degradation rates. 

Considering the data sparsity and different cell numbers across perturbations, 150 cells per 

sgRNA were assembled into one pseudobulk for downstream analysis. Spearman correlation 

coefficients were calculated using DEGs between perturbations and NTC in the pooled 

screen. Two-sided Welch’s t-tests were performed. b-c. UMAP of pseudobulk perturbations 

by inferred synthesis rates (b) and degradation rates (c). DEGs between all perturbations-

NTC pairs were combined, and their synthesis and degradation rates were calculated for 

each perturbation. Only genes with calculable synthesis or degradation rate in at least 

75% of pseudobulk perturbations were used for dimension reduction. The top 12 and 

15 principal components from the synthesis and degradation rates matrix were used for 

UMAP visualization, respectively. These UMAPs showed meaningful patterns. For example, 

RNA exosome genes (e.g., EXOSC2, EXOSC5, EXOSC6), nonsense-mediated mRNA 

decay pathway members (e.g., SMG5, SMG7), ribosomal biogenesis genes (e.g., NOP2, 
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RPL30, RPL11, POLR1A, POLR1B), miRNA biogenesis pathway members (e.g., DICER1, 
DROSHA, XPO5, and AGO2) were in relative proximity in both UMAPs. Chromatin 

remodelers (e.g., HDAC1, HDAC2, STAG2, RAD21, KMT2A, KDM1A, ARID1A) were 

closely clustered in synthesis rates-derived UMAP, while m6A regulators (e.g., METTL3, 
METTL16, ZC3H13, IGF2BP1) and polyadenylation factors (e.g., CPSF6, CSTF3) were 

closer to each other in degradation rates-derived UMAP. d. Boxplots showing effects of 

cell number on the estimation of the pseudobulk whole/nascent transcriptome expression, 

gene-specific half-life, and synthesis rate. We conducted 50 random samplings for each cell 

number on sgDROSHA cells, then we aggregated profiles of sampled cells and retrieved 

pseudobulk expression levels and estimated RNA dynamics rates. We calculated the Pearson 

correlation coefficients between each downsampled pseudobulk group and unsampled 

pseudobulk sample. Boxes in boxplots indicate the median and IQR with whiskers indicating 

1.5× IQR.

Extended Data Fig. 6. 
a-d. For each gene category, we calculated the fraction of genetic perturbations 

associated with significant changes in global synthesis rates (a), global degradation 

rates (b), proportions of exonic reads in the nascent transcriptome (c), and proportions 

of mitochondrial nascent reads (d). Overall global transcription could be affected by 

more genes than degradation. Perturbation on essential genes, such as DNA replication 

genes, could affect both global synthesis and degradation. Perturbations on chromatin 

remodelers only specifically impaired the global synthesis rates but not the degradation 

rates, supporting the established theory that gene expression is regulated by chromatin 

folding. In addition to the enrichment of genes in transcription, spliceosome and mRNA 

surveillance, perturbation on OXPHOS genes and metabolism-related genes also affected 

the RNA processing, consistent with the fact that 5’ capping, 3’ polyadenylation, and RNA 

splicing are highly energy-dependent processes. That knockdown of OXPHOS genes and 

metabolism-related genes could reduce the mitochondrial transcriptome dynamics and also 

supported the complex feedback mechanisms between energy metabolism and mitochondrial 

transcription63. e-h. Scatterplots showing the relationships between dropout effects and 

global synthesis rates (e), global degradation rates (f), proportions of exonic reads in the 
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nascent transcriptome (g), and mitochondrial RNA turnover (h). A linear regression line 

was fitted and ±95% confidence intervals are visualized for each metric. Dropout rank, 

the ascending rank of gene-level sgRNA counts log2FC from the bulk screen. Directions 

were assigned as shown in Figure 2e–h. Both global synthesis and degradation rates showed 

strong negative correlations with dropout, indicating knocking out essential genes generally 

resulted in impaired global RNA synthesis and degradation. In contrast, proportions of 

exonic reads in the nascent transcriptome were much more stable across perturbations, and 

were only specifically affected by genes functioning in RNA processing. Proportions of 

mitochondrial nascent reads were also prone to be affected by genetic perturbation, but 

directions of changes depend more on the functions of perturbed genes than the essentiality 

of genes.

Extended Data Fig. 7. 
a. The density plot (top) and heatmap (bottom) show the density of AGO2 ChIP-seq reads 

around TSS of genes with or without enriched AGO2 TSS binding peaks. b. Boxplot 

showing the log2FC of gene expression between AGO2-silenced and control groups of 

genes with (n = 7315 genes) or without AGO2 TSS binding peaks (n = 3615 genes). Two-

sided Wilcoxon rank sum test was performed. c. Boxplot displaying the positive correlation 

between PI of genes and normalized AGO2 ChIP-seq coverage within corresponding TSS 

regions. c-d. Genes were separated into 4 bins based on the average ranks of PI in two 

replicates (Methods). The Venn diagram highlights the significant association between 

AGO2 TSS binding and the strong pausing status of genes. One-sided Fisher’s Exact Test 

was conducted with the alternative hypothesis that the true odds ratio is greater than 1. 

Highly-paused genes, genes with top 10% of average PI ranks. e-f. Highly-paused genes 

were split into two groups, 1) significantly-upregulated genes upon AGO2 knockdown or 2) 

genes without significant expression changes. We then calculated the nascent RNA coverage 

of these two groups of genes in sgNTC and sgAGO2 cells. Notably, only genes in group 

1 displayed increased 3’ end enrichment upon AGO2 knockdown (f). Boxes in boxplots 

indicate the median and IQR with whiskers indicating 1.5× IQR.
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Extended Data Fig. 8. 
a. Heatmap showing the relative FC of gene expression, synthesis and degradation rates 

of mitochondrial protein-coding genes upon NDUFS2, CYC1, BCS1L and LRPPRC 
knockdown compared to NTC cells. b. The heatmap (left) showed mean z-scored 

mitochondrial gene expression changes between wild-type and LRPPRC-knockout mice 

heart tissue samples reported by Siira, S.J., et al.33. The DEG statistical examination 

was conducted by the original study. The heatmap (right) showed the FC of the mRNA 

secondary structure increase upon LRPPRC knockdown observed in the same prior report33, 

which positively correlated with the accelerated degradation of mitochondrial genes detected 

in our study (coefficient of Pearson correlation = 0.708, p-value = 6.8e-3). c. Boxplot 

showing the distribution of integrated stress response scores of single cells (n = 2758, 

478, 768, 631, 504 cells in each group from left to right). Dunnett’s test after one-way 

ANOVA was performed. ISR, integrated stress response. ISR score, the average normalized 

expression of genes within the ISR transcription program identified by Genome-wide 

Perturb-seq8. d. Barplot showing the fraction of genes regulated by synthesis, degradation or 

both in mitochondrial/nuclear-encoded DEGs. e. Barplot showing the enrichment of ATF4/

CEBPG motifs at promoter regions of DEGs with/without significant synthesis changes. We 
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identified two transcription factors (ATF4 and CEBPG) that were significantly upregulated 

upon LRPPRC knockdown, and motifs of their protein product were significantly over-

represented in TSS regions of the synthesis-regulated nuclear-encoded DEGs. Nc DEGs 

w/o synth changes, Nuclear-encoded DEGs without synthesis changes. Nc DEGs w/ synth 

changes, Nuclear-encoded DEGs with synthesis changes. f. The transcriptional regulatory 

network in LRPPRC perturbation inferred from our analysis. It was consistent with the prior 

study64 that ATF4 was regulated at both transcriptional and post-transcriptional levels. g. 
Single-cell UMAP of HEK293-idCas9-sgNTC/sgLRPPRC cells in the validation dataset. 

h-i. Correlations of synthesis and degradation rate changes of mitochondrial mRNA upon 

LRPPRC knockdown between the original screen and the validation dataset. A linear 

regression line was fitted and ±95% confidence intervals are visualized for each metric. 

r, coefficient of Pearson correlation. Boxes in boxplots indicate the median and IQR with 

whiskers indicating 1.5× IQR.

Extended Data Fig. 9. 
a. Illustration of the canonical miRNA biogenesis pathway. After the transcription of 

miRNA host genes, the primary miRNA (pri-miRNA) forms into a hairpin and is processed 
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by DROSHA. Processed precursor miRNA (pre-miRNA) is transported to the cytoplasm by 

Exportin-5. The stem loop is cleaved by DICER1, and one strand of the double-stranded 

short RNA is selected and loaded into the RISC for targeting mRNA35. b. Venn diagram 

showing the overlap of upregulated DEGs across perturbations on four genes encoding 

main members of the miRNA pathway. The knockdown of DROSHA and DICER1 in this 

pathway resulted in significantly overlapped DEGs (p-value = 2.2e-16, one-sided Fisher’s 

exact test). In contrast, AGO2 knockdown resulted in more unique transcriptome features. 

XPO5 knockdown showed no upregulated DEGs, consistent with a previous report in which 

XPO5 silencing minimally perturbed the miRNA biogenesis36. c. Bar plot showing the 

fraction of upregulated DEGs driven by synthesis/degradation changes upon DROSHA, 

DICER1, and AGO2 perturbations. While DROSHA and DICER1 knockdown resulted 

in increased synthesis and reduced degradation, AGO2 knockdown only affected gene 

expression transcriptionally, consistent with our finding that AGO2 knockdown resulted 

in a global increase of synthesis rates (Fig 2e), and further supported its roles in nuclear 

transcription regulation65–67. As DROSHA is upstream of DICER1 in the pathway, we 

observed stronger effects of DROSHA knockdown than DICER1 knockdown, which was 

supported by the previous study36. d-e. UMAP of sgNTC cells and single cells with 

individual miRNA biogenesis pathway genes knockdown. f. Reproducible steady-state 

expression, synthesis rate, and degradation rate changes of synthesis/degradation-regulated 

genes in the validation dataset. g. Example genes showing unchanged (transcription-

regulated genes: FTX, YY1AP1) and enhanced (degradation-regulated genes: SHCBP1, 
PRTG)
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Extended Data Fig. 10. 
a. UMAP embedding of cells with miRNA pathway genes knockdowns and NTC cells 

reflected the cell-cycle progression. b. Stacked barplot showing the cell cycle distribution of 

cells from each perturbation. c. The expression changes of cell cycle marker genes in cell 

cycle clusters. d. The cell cycle time-course synthesis rates, degradation rates, and steady-

state expression changes of 4 gene clusters. Solid lines with dots, the mean values and the 

average trend of all genes within the cluster. e. The top enriched GO terms of genes in the 

cluster 1 identified in GO enrichment analysis. f. Averaged trends of cell cycle time-course 

synthesis rates, degradation rates, and steady-state expression changes of cluster 1 genes 

in HEK293-idCas9-sgNTC, sgDROSHA, sgDICER1 cells. g. Averaged trends of cell cycle 

time-course synthesis rates, degradation rates, and steady-state expression changes of genes 

in cluster 1 in HEK293-idCas9-sgNTC and sgLRPPRC cells. Considering potential strong 

batch effects from distinct genetic perturbation, cell cycle clustering analysis in (g) was 

performed independently of (a), and cell cycle clusters in (g) were not fully synchronized 

with clusters in (f).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PerturbSci-Kinetics enables joint profiling of transcriptome dynamics and high-
throughput gene perturbations.
a. Scheme of PerturbSci-Kinetics. IAA, iodoacetamide. *4sU, chemically modified 4sU. 

R and Exp, steady-state expression. α and Synth, RNA synthesis rate. β and Deg, RNA 

degradation rate. b. Barplot showing the cell numbers profiled in this study and those 

from published single-cell RNA-seq coupled with metabolic labeling20–22. c. Left: the log-

transformed normalized expression of dCas9-KRAB-MeCP2 in untreated (n = 3,344 cells) 

or Dox-induced HEK293-idCas9 cells (n = 1,419 cells). Right: the normalized expression 

of IGF1R in Dox-induced HEK293-idCas9 cells transduced with sgNTC (n = 688 cells) or 

sgIGF1R (n = 820 cells). d. An equal number of induced HEK293-idCas9-sgIGF1R cells 

and 3T3-CRISPRi-sgFto cells were mixed and were profiled using PerturbSci. Scatterplot 

showed the concordance between percentage of transcriptome and sgRNA reads mapping 

to human and mouse genomes and human and mouse sgRNA, respectively, for each cell. 

e. Barplot showing the sequencing-depth-normalized percentages of single-base mismatches 

in reads from sci-fate20, and PerturbSci-Kinetics on chemically converted or unconverted 

cells. f. Boxplot showing the fraction of nascent reads recovered from single cells without 

4sU labeling and chemical conversion (n = 1,498 cells), 4sU-labeled cells without chemical 

conversion (n = 1,008 cells), and 4sU-labeled/converted cells (n = 2,568 cells). g. Boxplot 

showing the proportion of nascent, pre-existing, and whole-transcriptome reads mapped to 

exons of the genome across single cells (n=4,115 cells). h-i. Barplots showing the enriched 

Gene Ontology (GO) terms in genes with low (h) or high (i) nascent reads fractions. 

One-sided Fisher’s Exact Tests were conducted with the alternative hypothesis that the true 
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odds ratio is greater than 1. j. Boxplot showing the sgRNA UMI counts/cell in cells with 

(n = 2,568 cells) or without the chemical conversion (n = 2,506 cells). k. Stacked barplot 

showing the fraction of converted/unconverted cells identified as sgNTC/sgIGF1R singlets, 

doublets, and cells with no sgRNA detected. Boxes in boxplots indicate the median and 

interquartile range (IQR) with whiskers indicating 1.5× IQR.
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Figure 2. Characterizing the impact of genetic perturbations on gene-specific transcriptional and 
degradation dynamics with PerturbSci-Kinetics.
a. Scheme of the experimental design. b. The scatterplot shows the correlation between 

perturbation-associated cell count from PerturbSci-Kinetics and sgRNA read counts from 

bulk screen libraries. c. Boxplot showing the log2-transformed fold changes of gene 

expression, synthesis rates, and degradation rates of sgRNA-targeted genes (n = 203 genes) 

in perturbed cells expressing the corresponding sgRNA, compared to NTC. d. UMAP 

visualization of perturbed pseudobulk whole transcriptomes profiled by PerturbSci-Kinetics. 

We aggregated single-cell transcriptomes in each perturbation, followed by dimension 

reduction using PCA and visualization using UMAP. Population classes, the functional 

categories of genes targeted in different perturbations. e-h. Scatterplots showing the extent 

and the significance of changes on the distributions of global synthesis (e), degradation 

(f), proportions of exonic reads in the nascent transcriptome (g), and proportions of 

mitochondrial nascent reads (h) upon perturbations compared to NTC cells. The fold 

changes were calculated by dividing the median values of each perturbation with that 
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of NTC cells and were log2 transformed. i. Scatterplot showing the number of synthesis/

degradation-regulated DEGs from different perturbations. nDEGs: the number of DEGs. j-k. 
Venn diagrams showing the number of merged DEGs with significantly enhanced synthesis 

(j) or impaired degradation (k) between DROSHA and DICER1. One-sided Fisher’s Exact 

Tests were conducted with the alternative hypothesis that the true odds ratio is greater 

than 1. l. Heatmaps showing the steady-state expression, synthesis and degradation rate 

changes of genes included in j-k. Tiles of each row were colored by fold changes of 

values of perturbations relative to NTC. m. Lineplot showing the AGO2 binding patterns 

on transcripts of protein-coding genes in j-k revealed by eCLIP signal intensity. Data was 

obtained from a prior study42. n. Boxplots showing the relative proportion of labeled mRNA 

of transcription- (n = 8 genes) and degradation-regulated genes (n = 12 genes) after chase 

labeling for different time in HEK293-idCas9-sgNTC, sgDROSHA, and sgDICER1 cells. 

Two-sided student t-tests were performed between knockdown groups and the NTC group. 

Boxes in boxplots indicate the median and IQR with whiskers indicating 1.5× IQR.
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