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Abstract

Introduction: Advances in digital technologies for health research enable opportunities 

for digital phenotyping of individuals in research and clinical settings. Beyond providing 

opportunities for advanced data analytics with data science and machine learning approaches, 

digital technologies offer solutions to several of the existing barriers in research practice that have 

resulted in biased samples.

Methods: A participant-driven, precision brain health monitoring digital platform has been 

introduced to two longitudinal cohort studies, the Boston University Alzheimer’s Disease 

Research Center (BU ADRC) and the Bogalusa Heart Study (BHS). The platform was developed 

with prioritization of digital data in native format, multiple OS, validity of derived metrics, 

feasibility and usability. A platform including nine remote technologies and three staff-guided 

digital assessments has been introduced in the BU ADRC population, including a multimodal 

smartphone application also introduced to the BHS population. Participants select which 

technologies they would like to use and can manipulate their personal platform and schedule 

over time.

Results: Participants from the BU ADRC are using an average of 5.9 technologies to date, 

providing strong evidence for the usability of numerous digital technologies in older adult 

populations. Broad phenotyping of both cohorts is ongoing, with the collection of data spanning 

cognitive testing, sleep, physical activity, speech, motor activity, cardiovascular health, mood, gait, 

balance, and more. Several challenges in digital phenotyping implementation in the BU ADRC 

and the BHS have arisen, and the protocol has been revised and optimized to minimize participant 

burden while sustaining participant contact and support.

Discussion: The importance of digital data in its native format, near real-time data access, 

passive participant engagement, and availability of technologies across OS has been supported by 

the pattern of participant technology use and adherence across cohorts. The precision brain health 

monitoring platform will be iteratively adjusted and improved over time. The pragmatic study 

design enables multimodal digital phenotyping of distinct clinically characterized cohorts in both 

rural and urban U.S. settings.
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1. Introduction

Longitudinal research paradigms generally involve in-clinic methodologies administered 

at various time points for the duration of the study period (Andersson et al., 2019). 

The ongoing pandemic caused an unprecedented transformation, which led to the 

implementation of telehealth and remote testing that exposed gaps in traditional research 
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frameworks (Neumann et al., 2021), the utility of remote assessment to increase 

participation, and the potential of technology to improve the feasibility of observational 

studies. Internet-connected applications and devices can enable a patient-driven focus that, 

combined with data-driven science, can offer better opportunities for healthcare providers to 

access real-time clinical information from patients and result in the collection of precision-

health data that can better inform treatment strategies (Leth et al., 2017).

The development of high-precision wearable technologies and the myriad of sensors 

embedded within smartphones provide more detailed data that can be collected continuously 

over the duration of longitudinal follow-up (Malwade et al., 2018; Mahajan et al., 2020). 

Thus, transitioning to the digital space and deploying remote and continuous evaluations 

has the potential not only to improve feasibility but to overcome barriers to participation 

in research such as geographic location (participation of rural populations), low SES 

(individuals who cannot afford workdays off/transportation) and disadvantaged race/ethnic 

groups (segregated communities) (Canhoto and Arp, 2016; Malwade et al., 2018).

Advances in analytical techniques have also made it possible to analyze the wealth of 

multi-dimensional data collected digitally (Site et al., 2021; Sunny et al., 2022). Sensors in 

technology devices create additional data streams that provide greater insights into disease 

stages when used in conjunction with conventional clinical measures. Previous studies 

have developed digital health ecosystems to address gaps in mental health-care (Spadaro 

et al., 2021), diabetes management (Heintzman, 2015), and Parkinson’s disease symptom-

monitoring and treatment (Ruokolainen et al., 2021). Among these, using machine learning 

models has shown great promise in predicting neurodegeneration in Parkinson’s disease and 

multiple sclerosis using digital technologies (Pratap et al., 2020; Zhang et al., 2020; Xue et 

al., 2021; Fröhlich et al., 2022).

Alzheimer’s disease (AD) and related disorders (ADRD) are well-suited for the 

implementation of digital-data collection ecosystems in clinical care and research settings. 

The heterogeneity of these conditions shows that there are multiple pathways by which 

an individual may develop disease. Etiological pathways tied to increased risk of ADRD 

include, but are not limited to, cardiovascular contributors (Stampfer, 2006), diabetes 

(Kroner, 2009; Michailidis et al., 2022), sleep disorders (Ju et al., 2013), and hearing 

problems (Lin et al., 2011; Liu et al., 2020). In fact, the recent Lancet Commission report 

indicated that across the life course, addressing a compilation of modifiable risk factors that, 

in combination, could reduce the risk for dementia/ADRD by as much as 40% (Livingston 

et al., 2020). The insidious nature of AD onset and progression is a natural setting in which 

to leverage digital health technologies that are sensitive enough to accurately detect the 

emergence of subtle clinical indicators (Kourtis et al., 2019; Sabbagh et al., 2020a).

Early diagnosis of AD has become the holy grail because of the presumption that treatment 

methods to date have been ineffective, given that interventions are too late and cannot 

reverse the pathological damage. The amyloid-tau-neurodegeneration (A/T/N) framework 

was developed to provide a diagnostic biomarker signature for the accurate diagnosis of AD 

at its earliest stage (Jack et al., 2016). However, currently accepted methods for detecting 

amyloid and tau are invasive and/or expensive and not even feasible in low-resource settings. 
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For example, Positron Emission Tomography (PET) scans can cost as much as $10,000 

per person per scan/tracer and require access to resources that are not scalable (Keppler 

and Conti, 2012; Al-Sharify et al., 2020). Cerebrospinal fluid (CSF) are currently the most 

accurate and least costly method for A/T/N verification, but participants frequently opt out 

because of the invasive nature of a spinal tap (Wojda, 2015). Moreover, neuropathological 

studies find that A/T/N biomarker positivity is not sufficient for a clinically expressed 

diagnosis (Carandini et al., 2019).

Neuropsychological (NP) testing to detect cognitive impairments is one of the most common 

methods for detecting clinically meaningful symptoms. However, NP testing requires 

training for standardized administration and scoring, placing a high burden on staff and 

individuals in clinical and research settings (Ruff, 2003). Many NP tests were developed and 

validated against a relatively homogenous population of European descent with relatively 

high education levels that is not applicable to the more general population, introducing 

bias and further increasing disparities in ADRD research (Loewenstein et al., 2008; Rivera 

Mindt et al., 2010; Fernandez, 2019). Thus, the utilization of remote digital technologies for 

NP testing provides the opportunity to reduce these barriers by providing access to highly 

specialized tools that can be operated at scale.

Despite the advantages of utilizing digital technologies in AD research and clinical care, 

there are concerns about uptake with older adults, since age remains the biggest risk 

factor for ADRD, and individuals with low technology literacy (Smith and Magnani, 2019). 

The prevailing mindset is that older adults will have difficulty or refuse to use digital 

technologies because they are unfamiliar with smart devices and unwilling to learn or get 

frustrated if the technology fails and stop participation, increasing the attrition rate of normal 

research/clinical use (Berenguer et al., 2017; Ware et al., 2017; Wild et al., 2019). Similarly, 

individuals with lower educational attainment tend and minoritized race/ethnic groups tend 

to have less engagement in technology health behaviors (Gordon and Hornbrook, 2016; 

Smith and Magnani, 2019). To address these concerns, it is essential to note that there are 

different classifications of technology that fall along the spectrum from active engagement to 

low/passive engagement.

Active engagement technologies require a participant to interact with the digital application/

device, such as completing a cognitive task on a smartphone or syncing data on a wearable 

device (Lancaster et al., 2020; Sabbagh et al., 2020b; Au et al., 2021). Passive engagement 

technologies involve little to no interaction; these include sensor-based devices that are 

placed in the home, and can detect mobility, sleep, and breathing patterns, or in the car to 

capture driving behaviors (Kaye et al., 2012; Roe et al., 2017; Piau et al., 2019; Vahia et 

al., 2020; Au-Yeung et al., 2022; Wu et al., 2022). Passive engagement technologies also 

include smartphone applications that collect typing behaviors while participants use their 

phones without engaging in the application (Strickland, 2018; Lam et al., 2020). This is of 

high relevance given that mobile phones are the most penetrating device globally, with 73% 

uptake among individuals 10 or older across all countries and a 95% uptake in high income 

countries.1
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Regardless of the instrument of digital data collection (e.g., smartphone, wearable, in-home 

device), it is important to rely on the same suite of sensors/functions from which to 

collect and interpret behavior (e.g., GPS, accelerometer, time-stamped coordinates, pressure, 

temperature, vibration, recorders, etc.). Thus, when using a suite of digital technologies, 

the same types of digital data streams are being collected from each of the instruments/

applications. As long as the data collection protocol includes collection of digital data in its 

native format, it is possible to allow participants to pick different combinations of digital 

technologies that are best suited to their technology-use comfort level and still collect the 

data needed to measure the clinical outcomes of interest. Moreover, these assessments are 

low touch, meaning they can be self-administered, reducing staff burden or need for specific 

clinical training or expertise. This, in combination with the selection of assessment protocols 

that minimize biases (i.e., education, socioeconomic status, language, culture), makes it 

more feasible to implement at economies of scale, exponentially decreasing the financial and 

time burden posed by implementing fluid biomarkers or imaging modalities.

Here we present our approach to measuring cognitive and other AD-related behaviors 

that harness the power of a digital technology ecosystem using a participant-driven 

approach. The technologies we have chosen span into a variety of behavioral modalities, 

such as cognitively related measures assessed via smartphone applications, in addition to 

cardiovascular and sleep measures, physical activity, typing behavior, gait and balance, 

and voice recordings collected with wearable devices and mobile device-based sensors. 

This digital platform was developed with a device- and application-agnostic methodology 

to maximize the reach of the platform across different brain health-related measures. As 

innovative technologies emerge, we continuously search and test new digital devices to 

incorporate them into the platform, which serves to either expand our selection of digital 

technologies or replace existing ones. Furthermore, the deployment across cohorts with 

diverse participant characteristics from different sociodemographic and geographic settings 

allows for further tailoring of the digital platform and implementation processes making 

it possible to implement a “truly global” protocol that is more reflective of the world 

population.

2. Methods

We developed a custom platform with diverse off-the-shelf digital collection modalities 

to capture brain health-related measures. Digital data collection began in 2021 at 

both the Boston University Alzheimer’s Disease Research Center (BU ADRC) and 

the Bogalusa Heart Study (BHS). These two distinct and unique study populations 

provided an opportunity to assess how digital-health study design strategies can maximize 

inclusivity across high-resource and low-resource urban settings in the United States 

(US). Technologies and assessments were selected based on validation, usability, and 

access to data in its native format. Evaluation of the technology landscape through the 

lens of these criteria led to the curation of a multimodal platform accessible through 

both sites that captures cognition, speech, gait and balance, and questionnaires at both 

1Facts and Figures 2022: Mobile phone ownership. | International Telecommunication Union. https://www.itu.int/itu-d/reports/
statistics/2022/11/24/ff22-mobile-phone-ownership/.
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sites. The higher resource setting of the BU ADRC provided additional opportunities for 

extensive data collection, using multiple physical activity- and sleep-track wearables, active 

engagement smartphone and computer applications, and passive engagement motor activity 

and cognition monitoring applications. Prioritizing inclusivity has led to several protocol 

adjustments over the study period, ensuring that study activities suit the specific context 

of each cohort and the individual participant circumstances, which are central goals of the 

study.

2.1. Study populations

The BU ADRC and the BHS offer unique opportunities for scientific discovery on their own. 

Together they allow the exploration of disease-related processes across diverse demographic 

characteristics by leveraging existent clinical data. In addition, each site’s unique setting and 

geographic location allow refining a digital platform that is applicable and relevant to more 

diverse settings in the US, and that might be able to target emerging global-scale issues of 

ADRD.

2.1.1. Boston University Alzheimer’s Disease Research Center—The BU 

ADRC is one of ~33 centers funded by the National Institute on Aging (NIA) that provide 

data to the National Alzheimer’s Coordinating Center (NACC) to promote collaborative 

research on AD. The study site is located in the urban area of Boston and includes 

community-dwelling older adults. Participants with and without cognitive impairment 

are longitudinally followed through annual neurological examinations, neuropsychological 

testing, clinical interviews, and additional procedures. A detailed description of the ADRC 

is provided elsewhere (Ashendorf et al., 2009; Gavett et al., 2012; Frank et al., 2022). 

A description of the NACC variables is available from the NACC website (National 

Alzheimer’s Coordinating Center, 2023). BU ADRC participants were invited to participate 

in our digital phenotyping project regardless of their cognitive status in order to include 

cognitively normal, mild cognitive impairment (MCI), or early AD individuals. All 

participants provided written informed consent, and Boston University Medical Center 

Institutional Review Board approved the digital protocol.

2.1.2. Bogalusa Heart Study—The BHS is an ongoing, extensively characterized, 

population-based epidemiological cohort study that started in 1973. It has prospectively 

collected over five decades of repeated and longitudinal cardiovascular risk exposure data, 

in more than 1,000 individuals from childhood to midlife, with a high retention rate 

(Berenson, 2001). The substantial proportion of African Americans (35%), and the unique 

setting in the rural area of Bogalusa, Louisiana, have allowed thorough documentation 

of health disparities in cardiovascular risk over the life course (Freedman et al., 1988; 

Cruickshank et al., 2005; Wallace et al., 2013; Li et al., 2014). The BHS has collected 

midlife cognitive performance measures using traditional NP testing protocols as part of a 

previous examination (2013–2019), and are now entering their sixth decade of life. For the 

current study all participants provided written informed consent and the digital protocol was 

also approved by the Tulane Institutional Review Board.
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2.2. Digital precision brain health monitoring platform

We developed a platform of digital technologies that collectively would produce brain-health 

related measures and multimodal digital data streams. This platform includes computer and 

smartphone applications and wearable devices and will continue to incorporate in-home 

sensors. A robust version of this platform is being used at the BU ADRC, whereas a subset 

of digital technologies has been introduced to BHS participants. The digital precision brain 

health monitoring platform includes nine available technologies for remote use and three 

for use in the research clinic. Technologies were identified and selected for inclusion in the 

digital phenotyping platform based on several criteria.

2.2.1. Criteria for selection of technologies—Technologies were identified and 

selected based on several criteria including the validity of technology derived ADRD 

clinical measures, usability in older adults and individuals with low technological literacy, 

and access to raw digital data (e.g., in its native format) from the device or application. 

Operating system-agnostic technologies demonstrated the usability and existing validation 

for ADRD clinical measures.

2.2.2. Validation and usability of technologies—The validity of different 

technologies was assessed and supported by previously published literature. We established 

an ongoing iterative evaluation of existing research across a range of lifestyle factors and 

clinical measures linked to AD (e.g., sleep, physical activity, smartphone-based cognitive 

assessment, gait and balance, cardiovascular health evaluation, etc.), that continues in 

parallel with prospective data collection. However, a great amount of the existent literature 

comes from other brain related disorders [e.g., traumatic brain injury, multiple sclerosis 

and Huntington’s disease (Lang et al., 2021)]. There is scarce evidence for the validity of 

digital measures in older adults with cognitive impairment, and several technologies with 

validation of measurement quality and feasibility were done on previous technology versions 

that have now been updated. Similarly, there was little evidence written in English that 

provided precedent of digital measures for ADRD in low-resource settings. Along with 

these drawbacks, research literature lacks the description of a digital protocol that is more 

inclusive, in which the context of use includes low-income, low technology literacy, and 

non-English speaking older adults with cognitive impairment for whom broadband access is 

limited or unavailable.

While we prioritized technologies that could distinguish between individuals with and 

without AD, in diverse populations and with large samples, no technology reported in the 

literature met all of these criteria. With the increasing investment in digital technologies and 

the rapid emergence of more advanced and improved applications and devices, relying on 

existing validation and usability against previously accepted non-digital standards will delay 

opportunities in determining the scientific value of digital technologies and derived metrics. 

We also prioritized technologies that are applicable across multiple operating systems. This 

study’s research protocol uses a “bring your own device” approach for the smartphone-based 

assessment. Digital tasks needed to work on both iOS and Android operating systems in 

order to increase inclusiveness in the study sample. Thus, our study will provide additional 
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evidence for the validity and usability of digital technologies for ADRD used in a more 

diverse setting that is generalizable to more US population.

2.2.3. Access to native format—Digital data in its raw native format was prioritized 

in technology selection in order to ensure longitudinal data integrity. Recognizing that 

hardware and software evolve rapidly and will continue to do so (Mathews et al., 2019), 

longitudinal digital collection protocols cannot be reliant on individual providers and 

their derived measures. Collecting raw digital data files enables comparisons across study 

participants who elect to use different technologies since the sensors collecting these data 

are similar across devices. Raw digital data files also ensure the validity of longitudinal 

data analysis as the platform changes because it allows more straightforward harmonization 

(Martinez-Murcia et al., 2020). Additionally, digital data in its native format allows for 

continuous updating of current features to meet contemporary algorithm standards and 

new feature generation from multiple types of analytics. The emphasis on raw digital 

data acquisition is carried throughout each platform component to enable adjustments to 

the study protocol while maintaining the opportunity for longitudinal analyses. Examples 

include the capture of phone sensor data (i.e., accelerometer, gyroscope, etc.) for the gait 

measurement and the derived measures of gait and balance. The digital voice capture 

protocol was developed to prioritize unstructured speech generation. Unstructured speech 

elicitation tasks ensure greater language and cultural adaptability of the assessment.

2.3. Selected technologies for multimodal data collection

The technologies in our precision brain health digital platform were selected to suit two 

different settings: urban higher income and semi-rural lower income. The strategy was to 

create a robust digital platform to maximize the digital footprint in both high internet-access 

environments and in areas where direct internet access is significantly more limited. The 

platform had to be flexible enough to be adapted to each study site and to individual 

contexts/preferences, and consistent enough to capture similar metrics across all participants. 

To accomplish this goal, a single multimodal smartphone-based assessment application, 

Linus Participant, was introduced as an assessment at both study sites.

At the BU ADRC, the nine remote engagement technologies included can be broadly 

classified into four groups: active engagement smartphone and computer applications, 

passive engagement smartphone and computer applications, wearables (physical activity 

and/or sleep), and staff-administered assessments (see Table 1). Five of the digital platform 

technologies were identified through literature and internet searches along the criteria 

previously described (digital data in native format, multiple OS, validity of derived metrics 

and usability). These technologies include a wrist-worn accelerometer, SleepImage ring, 

two smartphone applications (Lumosity and Linus Participant), and the NeuraMetrix typing 

cadence computer application. The other four remote technologies comprise the current 

Early Detection of Neurodegeneration (EDoN) initiative toolkit (Frey et al., 2019). The 

toolkit includes the Fitbit Charge 4 smartwatch, the Dreem3 electroencephalogram (EEG) 

headband, and two smartphone applications (Mezurio and Longevity). In-clinic technologies 

include the APDM Mobility Lab using Opal wearable sensors for gait and balance 

measurement, a tablet for digital pen data collection, and a handheld voice recorder (Frey et 
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al., 2019). Staff-administered technologies include three iPad-based drawing tasks, a picture 

description and recall task using a digital voice recorder, and a gait task using wearable 

sensors. While several of the specific applications/devices included in the protocol are 

versions reported in the research literature (Tully et al., 2014; Thorey et al., 2020; Bezold 

et al., 2021; Zambelli et al., 2022), most of the technologies have since been updated, and 

the current versions have not been validated. The relatively long-time delay between data 

collection and publication of findings and frequent cycle of updates in the digital health 

technology landscape are a non-trivial concern in incorporating digital technology into 

longitudinal study designs. This conundrum reinforces the strategy of our digital platform 

design and further highlights the importance of collecting digital data in its raw native 

format, alongside any immediate derived measures of interest. Table 1 provides more details 

about the technologies employed in the digital protocol. Figure 1 offers an overview of the 

various types of data being collected via the platform.

2.4. Implementation of the digital technology platform

2.4.1. Fitting the technology to the cohort—The utilization of a core multimodal 

smartphone application protocol, that is applicable across multiple sites, and the 

opportunities to expand based on the context and resources of each site parallels the 

approach at NACC. NACC has a Uniform Data Set (Kiselica et al., 2020) that is in use 

across the ADRC network, with multiple centers collecting similar data. Linus Participant 

includes digital assessments that cover different cognitive domains, processing speed, 

reaction time and executive function, as well as measurements of gait and balance, digital 

voice capture, and questionnaires. This application was selected because it only requires 

internet connection via a smartphone, is multimodal in its digital data types, and the 

time burden can be customized to the preference of the participant (e.g., shorter 5–10-

min intervals, spread across multiple days or one 20–25 min test session). The speech 

elicitation tasks included in the platform have been adjusted toward more unstructured 

speech elicitation that are more culture, language and/or educational achievement agnostic 

(e.g., open-ended questions, picture description and recall, and semantic verbal fluency).

Participants at the BU ADRC site are given the option of selecting additional technologies 

from those listed in Table 1. All participants are presented with all available technologies 

that are in accordance with participant eligibility criteria (e.g., level of internet access).

At the Tulane BHS site, participants are recruited during in-clinic visits to the center 

that occur every 3–5 years. Study staff aids with the application’s setup and provides 

instructions for longitudinal use. The schedule for use is the same at the two sites. 

Additional technologies may be incorporated during the study period at the BHS site. 

Participants at both BU ADRC and BHS are asked to follow the customized digital protocol 

every 3 months across a 2-year period.

Over the initial 12 months of this project, a participant notification system was developed to 

ensure participants remained engaged with the study over time. At the BU ADRC, 3 weeks 

before each quarterly assessment period, participants are contacted to confirm availability at 

the planned time and to consider any changes to the selected personal technology schedule. 

This contact also offers an opportunity for troubleshooting with the participant. This is 
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not implemented at the BHS as the logistics of adjustments, and shipping is unique to 

the BU ADRC protocol. At both sites, a manual notification is distributed at the start of 

the 2-week assessment period to remind participants to begin completing assessments. The 

Linus Participant app has also been configured to distribute notifications each day that an 

assessment is available for participants at both sites. At the BU ADRC, a second reminder 

is sent 1 week into the assessment to ask participants to complete all remaining assessments. 

Lastly, a third reminder is provided at the end of the 2-week assessment detailing what data 

has been collected from the participant. These reports offer an opportunity to address any 

issues, unexpected data points, or data quality concerns.

The methods and frequency of data uploads from technologies in the platform are provided 

in Table 1. Internet-connected devices and applications typically provide real-time or daily 

cadence updates through secure platforms or automated database queries. Derived measures 

accompany the reports for several technologies to identify possible data issues. Any updates 

on unresolved issues from previous assessments are also addressed before the start of the 

next assessment to ensure preparedness. Participants have the option of being contacted 

by email, text, or call based on their preference. Contact logs are maintained for each 

participant to allow for personalized communication.

2.4.2. Personalizing the protocol to the individual—In addition to modifying 

the study protocol for the unique context and environment at each study site, protocol 

variations are implemented at the individual level to maximize inclusivity and longitudinal 

engagement. The personalization of the schedule is especially relevant to the BU ADRC site 

given the use of up to nine technologies and optional nature of technology selection.

Study staff describes how the technology is used, what measures are collected, and any 

benefits or risks of each device. The participant determines how many and which of the 

technologies they would like to use. A preferred schedule of use is offered, to use all 

technologies within 2-week assessment periods that occur every 3 months, but participants 

can adjust the schedule and period of use to meet their own preferences and need. The 

participant has the option to add and/or remove technologies throughout the study period. 

Participants are delivered a list of their selected technologies and affiliated manuals that 

include images to make instructions easier to comprehend and follow. Before their next 2-

week window, participants provide qualitative feedback on the usability of each technology 

and any related burden developed. If the participant is able to travel for an in-clinic visit, 

they are asked to use the three in-clinic technologies during an annual 1 h in-clinic visit.

2.4.3. Spectrum of usability and internet accessibility—Multiple devices were 

included across the key measurement domains of computerized cognitive assessment, 

passive digital phenotyping, physical activity measurement, cardiovascular health 

assessment, and sleep assessment in order to ensure the BU ADRC digital phenotyping 

platform is maximally flexible to participant preferences. Including multiple technologies 

that overlap in collecting similar measures help to ensure data for each measure of 

interest would be collected, despite individualized participant technology selections. Within 

each measurement domain, there are distinct characteristics which affect the participant 

experience. Many commercially available technologies include features that provide direct 
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feedback to the user, such as step counts or sleep duration from a physical activity 

monitor or daily scores for brain games applications. These technologies are more scalable 

because they are developed for a commercial market, but these commercial devices might 

also be biased toward those with greater internet access (e.g., broadband in the home, 

greater smartphone data plans) and greater familiarity with digital technology. For example, 

wearable devices providing user-facing activity and sleep measures typically require a 

Bluetooth connection to a personal device, some frequency of charging, and may require 

daily engagement with an affiliated application. Our platform includes devices that appeal to 

participants with more or less internet access and/or low to high technology experience. 

There are several passive applications included that require no engagement from the 

participant after the initial set up. There are both wrist-worn devices that provide consumer 

grade information about steps and sleep duration and wrist-worn devices that record 

continuous digital data in its native format and can do so without any phone connection 

and without requiring any recharging of the battery. In this way, ease of use is balanced 

against providing informative information to the participant and inclusion of any participant, 

regardless of level of internet connectivity or technology familiarity.

2.4.4. Recommended schedule and study flow—While both in-clinic and remote 

engagement opportunities were provided for participants, remote preference has become 

much more commonplace in the wake of the COVID-19 pandemic. Remote opportunities 

have facilitated additional engagement with individuals who have reduced mobility, who are 

outside of the Boston area, or who remain uncomfortable with extended in-clinic contact.

Parameters for use are provided to study participants. The parameters vary by technology 

according to the anticipated value of higher frequency collection as well as participant 

burden. Physical activity wearables in the protocol have a recommended schedule of 2 

weeks of continuous wear. Sleep wearables have a recommended schedule of at least three 

nights of use during the two-week study period. Participants are asked to use the sleep 

devices at a lower frequency because of the higher burden to the participant in using 

the devices, coupled with participant feedback that more frequent use may disrupt sleep 

duration and quality. For active engagement smartphone applications, there were variations 

in frequency of self-administration. Active engagement schedules range from completion of 

five games for about 15 min total use over the 2-week compliance window to completion 

of 5–10 min of tasks each day for 2 weeks. The Linus Participant app in use at both study 

sites involved 25 min of tasks, which participants are asked to complete once over a 2-week 

timeframe.

2.5. Adjusting to real-world context

This study aims to take a pragmatic approach to observational research, with goals 

of maximizing inclusivity and opportunities for longitudinal engagement. Changes were 

made to the study protocol at multiple timepoints over the study period in line with 

these goals. It is possible that these changes may affect the analysis of the digital data 

collected, but each change was ultimately necessary to enable progress toward the goals 

of inclusivity and engagement. The inter-cohort and inter-participant heterogeneity offers 
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exciting opportunities to address challenges that will continue to be present in digital 

collection protocols as they proceed to larger scale cohorts and real-world use.

The inclusion criteria at BU ADRC were modified to remove the requirement of smartphone 

ownership. These criteria excluded participants who had older phone models not considered 

to be “smartphones” or used another personal device, such as a tablet or a computer. 

This change was compatible with our study as several platform technologies were already 

accessible on a computer, tablet, or do not require any personal device.

Protocol modifications at the BU ADRC were instituted in efforts to ensure quality 

participant technology use while minimizing burden. Participant communication techniques 

were adjusted during the study period in line with participant preferences. Initially, only 

participants at the BU ADRC received notifications during their assessment period on 

account of the many technologies in use with the sample. This protocol was extended to 

the BHS site ~1 year after the initiation of data collection in order to improve adherence. 

The presence of staff contact has also been prioritized to provide clear opportunities for 

participants to notify study staff when technology glitches arise. In addition to notifications, 

data reports in the middle and at the end of 2-week assessment period were added for the BU 

ADRC site to provide feedback to participants and to provide an opportunity to readjust the 

protocol and schedule. The regular check-ins and weekly data reports support participants as 

the platform dashboard is tracking individual level participation.

Study activities have expanded over the course of the study period to include semi-formal 

interviews and general check-ins where participants can share their experiences with the 

technologies and any other aspect of the study. Individual assessments have been modified 

to account for ongoing evaluation of the possible biases included in testing prompts across 

multiple settings. Speech elicitation in the Linus Participant app has been adjusted at both 

study sites in order to replace structured prompts for unstructured prompts. Object recall, 

sentence reading, and story recall were replaced from the initial protocol for a picture 

description, picture description recall, and open-ended question tasks. Through avoiding 

tasks that ask participants to repeat provided stimuli, cultural biases in stimuli selection are 

now avoided.

Additional changes to the study recruitment criteria, study activities, and other aspects of 

the protocol will continue through the longitudinal follow-up period in line with the goals of 

maximizing inclusivity and longitudinal engagement.

3. Results

3.1. Recruitment and enrollment

Data collection was initiated in May 2021 at the BU ADRC and in September 2021 

at the BHS. Through December 2022, 55 participants from the BU ADRC and 94 

participants from the BHS have been recruited to participate in digital phenotyping. The 

demographic characteristics of the sample population at each site are provided in Table 

2. The demographic characteristics of the study populations reflect the differences across 

study sites. The mean age in the digital phenotyping sample from the BU ADRC is 72.0 
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years-old, compared to 56.2 years-old at the BHS. The BU ADRC sample is 54.5% female 

and 10.9% Black, and the BHS sample is 69.8% female and 18.6% Black. There were also 

distinct educational level differences between cohorts, at the BU ADRC 75% had completed 

college and above, compared to 43.2% at the BHS sample. Cognitive diagnostic information 

is only available for the BU ADRC, and 20.0% of the sample has some diagnosed cognitive 

impairment.

3.2. Technology uptake

BU ADRC participants have been offered nine technologies for remote use over their 

enrollment period. The majority of participants (n = 54, 98.2%) have expressed interest 

in using multiple technologies, with an average participant selection of 5.9 technologies. 

Uptake across the data collection modalities has been high which has resulted in a broadly 

phenotyped cohort. There was 87.3% (n = 48) uptake of at least one sleep device, 90.9% (n 
= 50) uptake of at least one physical activity device, and 98.2% (n = 54) uptake of at least 

one active engagement cognitive assessment application or web-based assessment. Across 

these technologies, 43 participants (78.2%) were engaged in parallel monitoring of sleep, 

activity, and active engagement applications measuring cognition (see Figure 2A).

BHS participants have been offered a smartphone-based application to date. Among the 

94 participants who have opted into the study and have registered into the Linus App, 

62 participants (68.1%) have completed at least one task using the Linus Participant 

smartphone-based platform. Among the 47 BU ADRC participants who have opted into 

the study and selected the Linus Participant app, 46 (97.9%) have completed at least one 

task.

3.2.1. Technology withdrawals—The participant-driven technology selection has 

provided the opportunity to identify barriers to use, and what leads to technology 

acceptability. Based on opt-out decision patterns across technologies, the key factors that 

influenced the selection were the goals of the research project, the participant’s perceived 

value of the technology, and the device burden. The Dreem3 headband had the highest 

opt-out rate (60%) across initial technology selection and participant decision to opt-out 

after use (Figure 2A). Each technology included in the platform had at least a 10% opt-out 

rate.

Opt-out rates are provided as a proportion of person-technology combinations, a 

representation of each unique technology selected by each unique participant. This measure 

is reflective of how the characteristics of each technology (e.g., user feedback, charging 

requirement, time commitment) interact with characteristics of each participant (e.g., 

technology familiarity, work schedule, specific research contribution interest). There were 

23 instances of a participant opting out of a device or application across 330 total 

person-technology combinations. The Dreem3 headband had the highest opt out rate of 

any technology with six opt-outs, and participants consistently attributed their decision to 

discomfort with the headband and/or effects on sleep. There were six total instances in 

which a participant decided to cease the use of a smartphone application, and all were 

driven by frustration with the functionality of the application or the completion of tasks. 
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Technological glitches are an expected element in digital health research but can have 

significant effects on adherence and use. Overall, participants were more likely to opt-out of 

a wearable device after use than any of the smartphone applications. Of 188 total participant-

app uses, six (3.2%) resulted in the participant deciding to opt out of the technology. Of 

142 total participant-wearable uses, 17 (12.0%) resulted in the participant deciding to opt out 

of the technology. One factor contributing to participant opt-outs for wearable technologies 

was concern about the security of shipping devices back and forth due to participant’s living 

situations. At the BHS site, three participants opt-out of the Linus health platform. One 

participant stated that they no longer owned a smartphone, and the other two had no time to 

complete the assessments every 3 months.

3.2.2. Technology ineligibility and issues—At the BU ADRC, the majority (58.1%) 

of participants had personal devices that would not allow the use of at least one technology. 

The NeuraMetrix computer typing cadence application had the highest percentage of 

ineligibility and the most stringent inclusion criteria; it can, at this stage, only be used 

by individuals with a Windows personal computer that only the participant used or through 

which the participant has their own Windows User Account. At the BHS site, 32 participants 

were unable to set up and register into the Linus Participant smartphone application at the 

time of enrollment due to internet connectivity issues. A set of instructions were provided 

via text messages and phone calls to complete the registration remotely. From these, a 

total of 14 (43.8%) participants have set up and started using the application remotely by 

following the instructions provided. Since sending the instructions, 18 (56.3%) participants 

remain unregistered, and these individuals are not included in the total of 94 participants 

who are engaged in the study. Since conducting the participant outreach, 14 (43.8%) of 

participants did not respond, 3 (9.4%) participants opted out of the study because of lack of 

time, and 1 (3.1%) opted out due to lack of cellular service.

Exclusion criteria vary across the technologies included in the platform. All devices 

have minimal operating system requirements, and all devices require available storage on 

participants’ personal devices. Operating system requirements resulted in one participant 

only being eligible for one application among the five which they had opted in for use.

3.2.3. Longitudinal follow-up to date—Participants are scheduled to use the remote 

technologies for a 2-week assessment period every 3 months. As of December 2022, a total 

of 178 assessment periods have passed for 55 participants with a range of one to seven 

assessment periods per participant at the BU ADRC study site. Data has been collected in 

171 (96.1%) of the assessment periods. Four (2.2%) assessment periods were skipped due 

to participant’s request (e.g., illness, planned vacation) and three (1.7%) were canceled due 

to no response. It is worth noting that data from passive technologies were still collected 

during these missed assessment periods. There have been 42 participants (76.4%) that have 

had at least two assessment periods during the study. Figure 2B indicates the Longitudinal 

Adherence Percentage for each technology—a measure describing the proportion of BU 

ADRC participants that have produced data at multiple time points for a given technology 

among those who have been enrolled for over 3 months. These figures demonstrate the 

variability in technology engagement over time. The technologies with the highest rate of 

Anda-Duran et al. Page 14

Front Dement. Author manuscript; available in PMC 2024 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



use both in terms of participant selection and longitudinal follow-up are the smartphone 

and computer-based applications. Lumosity notably has the highest uptake and is the only 

technology that includes smartphone and computer interfaces, which expands the proportion 

of the sample which is eligible to include those with older operating systems.

There were 30 total instances of participants opting into a technology and not having at 

least two uses across the study period at the BU ADRC. The most common reason (n = 

15, 50%) for a lack of longitudinal data is that a participant simply failed to complete 

their assessment. Missed assessments occur due to participant life events, such as loss of 

a family member or illness, as well as vacation, or simply forgetting to do a task and 

missing all notifications. Other causes for longitudinal data include opting out after a single 

use period (23.3%), technology issues preventing completion (6.7%), participants opting 

in after the beginning of the study period (16.7%), and participants purchasing their own 

device and ceasing study contributions (3.3%). The Longitudinal Adherence Percentage can 

be expected to increase over time for most of these cases, as participants have assessment 

periods remaining to re-engage with technologies.

At the BHS study site, 94 participants have been enrolled for more than 3 months as 

of December 2022. Among these individuals who have been asked to complete multiple 

self-guided assessments, 24 participants (38.1%) have completed assessments at multiple 

timepoints to date. Individuals that have not completed multiple assessments to date 

may still engage longitudinally. Longitudinal engagement is higher the longer participants 

are involved in the study. Among participants enrolled for five assessment periods, nine 

(47.4%) have completed tests at multiple timepoints. Among participants enrolled for four 

assessment periods, 16 (44.4%) have completed tests at multiple timepoints, and among 

participants enrolled for three assessment periods, 19 (41.3%) have engaged longitudinally.

4. Discussion

Use of the digital phenotyping platform in these two distinct observational cohorts 

demonstrates the feasibility of multimodal measurement. In the high-resource environment 

of the BU ADRC, high rates of uptake (>85%) across each modality of active engagement 

applications, sleep wearables, and activity wearables support the feasibility of robust 

digital data collection in older adult populations. With 78.2% of populations using at least 

one tool in each modality, the participant-driven pragmatic approach has demonstrated 

success in expanding the frequency and variety of data that can be collected from 

research participants. The BHS site has a comparatively lower rate of engagement with 

the multimodal smartphone app (68.1%), but the longitudinal use of the app also supports 

the feasibility of digital phenotyping in more semi-rural and low-resource environments. 

Changes were necessary throughout the study period to expand recruitment, engagement, 

and improve adherence. These lessons learned and the additional changes that will be 

needed for sustainable growth of these cohorts are described throughout the discussion.

4.1. Lessons learned

Successful enrollment and follow-up have relied on the use of a participant-driven 

approach. Digital phenotyping is a novel mechanism for data collection. Use of multimodal 
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measurement for monitoring of brain health has required changes from the initial protocol 

that was established. Changes over the course of the study period include expanding 

participant eligibility to improve inclusivity, standardization of participant communication, 

schedule changes to reduce participant burden, and the expansion of the digital technology 

platform to include more applications and internet connected devices.

4.1.1. Protocol design—The first challenge in pursuing this participant-driven 

scheduling with the BU ADRC was ensuring that proper IRB approval and consent language 

was in place. Introduction of off-the-shelf internet-connected digital health devices for 

human subject research will be a novel undertaking for many IRBs. Especially novel in 

this case is the introduction of over ten technologies within one study. Concerns from an 

institutional review perspective include the security of data stored by third-party vendors and 

the burden on study participants of multimodal engagement. Data privacy is addressed here 

through avoiding the sharing of identifiable data with technology vendors whenever possible 

through the use of coded IDs. In the case of technologies which may access identifiable data, 

institutional security reviews of vendor policies are required. Participant burden, in the BU 

ADRC study, is addressed through the optional nature of the digital technology platform.

4.1.2. Recruitment—Recruitment into the digital phenotyping project has produced 

demographically distinct samples from the two study sites, with each providing 

opportunities for novel discovery. The BU ADRC sample has an average age of 72 years and 

includes participants with a diagnosed cognitive impairment. The age of the cohort provides 

further evidence of the feasibility of digital data collection in older adult populations, 

building off of the existing literature (Wilson et al., 2022). The BHS sample has a higher 

proportion of Black participants, a lower average age of 56 years, and is less-educated with 

only 43.2% of the sample with completed college. Through the successful recruitment of 

participants at the BHS site, the feasibility for the novel study design in semi-rural settings is 

supported.

Pragmatic evaluation of the study design produced the successful recruitment effort to date. 

Iterative protocol modifications described in the Section Adjusting to real-world context 

including expanding recruitment criteria, and utilizing a participant-centric design have 

supported efforts to build these digitally-phenotyped cohorts. These experiences demonstrate 

the importance of being device agnostic and considering back-dated operating systems in 

determining which technologies to include in digital phenotyping platforms. Discussion 

of participant burden candidly with prospective participants supported recruitment and 

follow-up also. Study staff highlighted several key points including that participation can 

be completely remotely for those who may not be comfortable or unable to come in-clinic.

4.1.3. Reducing burden through tech use—Participant communication has been 

vital as is the case for any research study. Digital technologies offer opportunities for 

reducing burden through remote engagement, passive measurements, and self-administered 

testing. With participants at the BU ADRC using an average of 5.9 distinct remote 

technologies, burden remains a concern for this multimodal collection approach. Many 

participants at the BU ADRC typically did not engage with technology in their daily life, 
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so feedback has been valuable to ensure the participant that their effort is leading to usable 

data.

Implementation of methods such as quarterly phone check-ins with participants and mid-

assessment technology reports have helped to alleviate participant burden at the BU ADRC. 

Contact logs maintained for each participant and documentation of changes in technology 

use provide the most descriptive assessment of burden to date. Additional strategies for 

capturing participant burden through structured questionnaires are in development at both 

study sites, and a more detailed description of participant benefits and concerns are a future 

aim of this study.

Notably, the highest longitudinal engagement is demonstrated for passive applications 

that collect data in the background during participant’s typical use of their computer or 

smartphone. Passive monitoring is a promising tool for providing this opportunity for 

longitudinal engagement with minimal action needed from participants.

4.1.4. Participant contact—The extent of participant communication is contingent on 

staffing, and has led to differing strategies for the two study sites. Manual reminders before, 

during, and after assessments for all participants are distributed for BU ADRC participants. 

At the BHS study, notifications are included during the assessment only for those who miss 

assessments in order to increase adherence. At the BHS study site, staff are responsible 

for multiple studies including recruitment and enrollment for another core clinical study. 

The BHS study also has a larger study sample, which makes individualized messaging less 

feasible. Participants at both sites are encouraged to contact study staff if they experience 

any issues with the technology.

Consistent communication procedures have improved participant engagement, information 

retention, and participant-staff interaction. The rate of longitudinal follow-up adherence is 

very likely attributable to the level of personal engagement. Empirical studies exploring the 

influence of personal contact as compared to automated engagement would be beneficial in 

further understanding the influence of personal contact on adherence (Killikelly et al., 2017; 

Lee et al., 2020).

4.1.5. Monitoring and adherence—Results regarding participant’s longitudinal 

engagement, reasons for opting out, and reasons for non-adherence would not be available 

without frequent adherence evaluations conducted by staff. The ability to collect and upload 

data in real-time is an important factor for consideration when selecting technologies 

for research or clinical use. Without real-time (or near real-time) data flows, tracking 

adherence and data quality may only be accessible after data loss has occurred. Detailed 

documentation for derived estimates of adherence or data quality is also an important factor 

for consideration, as bias in these estimates could result in inaccuracies in generated data. 

It may also be the case that inability to use technology appropriately or according to a 

defined schedule may be indicative of significant cognitive impairment (Sanborn et al., 

2019). Therefore, initial adherence followed by reduced adherence over time may be data, 

apart from any data collected from the digital application/device. Additional research on 

non-adherence and error rates in technology use as an indicator of cognitive impairment 
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and pathological neurodegeneration are needed. Failure to remember the schedule for self-

guided assessments or confusion over application instructions could also be indicative of 

changes in cognition. Focusing solely on digital data capture without tracking approaches 

to increase adherence may be a missed opportunity for detecting an important behavioral 

change.

4.1.6. Smart automation—A key benefit of digital monitoring is the opportunity to 

conduct studies at a larger scale with less resources devoted to study staff and infrastructure. 

The responsibilities associated with study upkeep have grown steadily as participation 

has increased. The study team utilizes a project management tool to automate and track 

different aspects of the study including recruitment, participant adherence, shipping and 

receiving, and troubleshooting. Smart automations remind staff and generate tasks for 

when participants have an upcoming assessment period or need a technology adherence 

report. This infrastructure supports the study staff on a day-to-day basis and maintains 

consistency across all participants despite the variability in technology selection and 

communication preferences. Similar management systems may not be practicable or 

accessible in all research or clinical environments. Moving forward, an additional factor 

in technology selection will be the capacity of technologies to provide effective participant 

adherence monitoring and support without staff oversight. Most technologies have some 

automatic reminder system, but the contrast in adherence between the BU ADRC and 

BHS sites demonstrates the difference in effectiveness for universal reminders (such as the 

daily reminders from the Linus Participant app) compared to personalized check-ins and 

reminders (such as BU ADRC weekly data reports). Further research is needed to explore 

what features of participant notifications can drive participant engagement. Some variations 

identified across the BU ADRC digital technology program include personalized timing 

of notifications, modifiable text for notifications, and notification method (e.g., phone call, 

text message, email, app push notification). Challenges in maintaining standardized and 

sufficient contact with study participants provide support for the importance of passive 

monitoring technologies. Passive engagement applications require minimal effort from staff 

and participants. The current major caveat is greater concerns over personal privacy and data 

security. At the BU ADRC, interestingly, uptake rates for passive monitoring technologies 

have been influenced by technology incompatibility rather than concerns for security.

4.2. Next steps

4.2.1. Characteristics of an ideal technology—Experiences with platform 

technologies to date will inform the identification of new technologies to implement across 

the study sites. Moving forward, we plan to prioritize passive data collection technologies 

and smartphone applications for inclusion in the platform. Technology uptake rates and 

longitudinal use demonstrate the greater uptake of applications as compared to wearable 

devices. Applications are also more scalable to low resource settings where the cost of 

additional hardware for wearable technologies may not be feasible. Passive data collection 

will be prioritized as it can be conducted with minimal engagement, but privacy and 

increased data security issues need to be addressed in tandem. All platform technologies 

need to work across different operating systems.
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4.2.2. Data management and sharing—The multimodal nature of the platform and 

the participant-driven technology selection will require advanced analytic tools for reliable 

analyses. The heterogeneity of techniques used by participants poses a challenge to the 

comprehensive utilization of multimodal information using traditional analysis methods 

(Mohr et al., 2013). Novel procedures will need to be developed for the capturing, storing, 

cleaning, processing, analyzing, and sharing of both derived digital metrics and the raw 

digital data streams (Mohr et al., 2013). Future plans include processing all data and 

sharing data through various interoperability platforms, such as the Alzheimer’s Disease 

Data Initiative (ADDI). Collaborative efforts with academic and industry partners, as well as 

citizen scientists will be needed to capitalize on global analytic expertise. Through providing 

a range of complex, real-world data streams, the BU ADRC and BHS digital programs can 

enable creation of processing and quality control systems that are applicable across a range 

of technologies. The development of these systems within a pre-competitive academic center 

will facilitate widespread use.

Current efforts are underway to share the digital data in its native format through ADDI 

(2022), but do so in a way to maximally protect privacy and confidentiality. The digital 

data will be accompanied with documentation and tools for processing across the data 

management and analysis pipelines. Providing raw data through the ADDI and other data 

sharing platforms will also enable the global research community with opportunities to 

develop and test their own processing pipelines and extract information from collected data 

that no single team may consider. The various technologies included in the platform will 

likely provide data that is useful beyond the scope of this project. To extend the utility of 

the digital data collection, an additional element of the research protocol is the development 

of consent language that permissions longitudinal use of digital data for use beyond those 

anticipated at the time of participant enrollment.

4.2.3. Fitting the analysis to the method—Traditional biostatistics analytic 

approaches are not well-suited to fully capture the rich, but heterogenous digital 

data captured through this participant-driven protocol. Inconsistency in the selection of 

technologies will limit the sample size for evaluating associations between measures from 

specific sensors and clinical outcomes. Analyzing the full scope of the digital phenotypes 

captured by the different sensors (gait, reaction time, voice, etc.) will require substantial 

efforts in novel harmonization in research data. Our efforts will seek to expand upon recent 

work in harmonization of intensive longitudinal data (Chow et al., 2023). In addition to 

providing a rich data resource, this project also aims to provide a system through which 

digital data could be collected, processed, and later analyzed at scale.

5. Conclusion

Longitudinal engagement with multimodal digital health applications in demographically 

heterogenous samples supports the hypothesis that digital technologies can act as a tool for 

further equity in research. Utilization of a pragmatic, cohort-adapted, and participant-driven 

study design enabled engagement with digital collection via a multitude of digital sensors at 

the BU ADRC and the BHS. Ongoing data collection offers opportunities for refining digital 

technology selection criteria and digital phenotyping protocol development. Collected data 
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will be instrumental in the development of novel systems for the processing, storage, QC, 

and future analysis of multimodal digital data streams.
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FIGURE 1. 
BU ADRC digital precision brain health platform data description.
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FIGURE 2. 
BU ADRC technology opt-in and longitudinal engagement description. (A) Description of 

participant technology selection. Definition of categories. Using: Participant is using the 

technology for prospective assessments as of December 2022. Not Offered: Technology 

was not presented to the participant as an option for selection as it was unavailable at 

time of enrollment. Used/Opted Out: Participant selected the technology and used it during 

an assessment period before opting to not use it for further assessments. Incompatible: 

Participant smartphone or computer characteristics prohibited use of technology. Opted 

Out: Participant was presented with the technology but opted not to use it. Has Own: 

Participant owns the technology and is not using it for study data collection. (B) Description 

of use of digital technologies among participants who have been followed across multiple 

measurement periods (N = 42). *Longitudinal adherence percent is presented as the percent 

of participants that have generated data at multiple check-in periods among those enrolled 

over multiple time points using a technology at any point.
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TABLE 2

Demographic characteristics of study populations.

Variable BU ADRC* (N = 55) BHS (N = 94)

Age

Mean (SD) 72.0 (8.0) 56.2 (4.5)

Sex

Female 30 (54.5%) 60 (69.8%)

Male 22 (40.0%) 26 (30.23%)

Race

Black or African American 6 (10.9%) 16 (18.6%)

White 46 (83.6%) 70 (81.4%)

Education

Less than high school degree (<12 years ed) – 4 (3.76%)

Less than college degree (12–15 years ed) 13 (25.0%) 44 (41.36%)

College degree and above (16+ years ed) 39 (75%) 46 (43.24%)

Cognitive status

Cognitive normal 41 (74.5%) NA

Cognitively Impaired 11 (20.0%) NA

*
Information for the BU ADRC sample is still being compiled. Demographic information for 52 participants is provided.

NA, Not applicable. Participants are relatively young and come from an observational cohort study of community-dwelling adults with no clinical 
diagnosis of cognitive impairment.
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