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Abstract

Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) have revolutionized breast cancer therapy. 

However, <50% of patients have an objective response, and nearly all patients develop resistance 

during therapy. To elucidate the underlying mechanisms, we constructed an interpretable deep 

learning model of the response to palbociclib, a CDK4/6i, based on a reference map of 

multiprotein assemblies in cancer. The model identifies eight core assemblies that integrate 

rare and common alterations across 90 genes to stratify palbociclib-sensitive versus palbociclib-

resistant cell lines. Predictions translate to patients and patient-derived xenografts, whereas single-

gene biomarkers do not. Most predictive assemblies can be shown by CRISPR–Cas9 genetic 

disruption to regulate the CDK4/6i response. Validated assemblies relate to cell-cycle control, 

growth factor signaling and a histone regulatory complex that we show promotes S-phase entry 

through the activation of the histone modifiers KAT6A and TBL1XR1 and the transcription factor 

RUNX1. This study enables an integrated assessment of how a tumor’s genetic profile modulates 

CDK4/6i resistance.

Cell-cycle activation and sustained proliferation are hallmarks of cancer1. Cyclin-dependent 

kinases 4 and 6 (CDK4/6) trigger cells to pass the G1/S cell-cycle restriction point 

by phosphorylating the retinoblastoma (RB) transcriptional repressor and its paralogs. 

Inhibiting these kinases has been of high interest in cancer drug development2,3. Thus far, 

three CDK4/6 inhibitors (CDK4/6is) (palbociclib, ribociclib and abemaciclib) have been 

approved in combination with endocrine therapy for the treatment of hormone receptor-

positive, human epidermal growth factor (EGF) receptor 2-negative (HR+, HER2−) breast 

cancer, and clinical trials are underway in a spectrum of other tissue types4. In metastatic 

breast cancer, these agents have appreciably improved treatment outcomes, increasing 

progression-free and overall survival with manageable adverse effects4,5. However, objective 

tumor response is observed in <50% of patients who receive CDK4/6 inhibitors as first-line 

therapy, and nearly all initially responsive patients develop drug resistance with subsequent 

mortality6,7.

Studies of resistance to these drugs have largely defined two groups of molecular 

biomarkers: loss-of-function alterations to anti-proliferative CDK pathway genes (for 

example, CDKN2A/B/C or RB1) or gain-of-function alterations to progrowth genes (for 

example, CDK2, CDK4/6, CCND1, CCNE1, E2F or PIK3CA). These markers have 

been characterized predominantly in preclinical in vitro studies, with clinical assessments 

obtained primarily through retrospective analyses4,5. RB1 mutation bears the strongest 

burden of evidence, as it has been extensively associated with CDK4/6 drug resistance 

in cell lines and patient cohorts8. However, it and other markers have met with inconsistent 

results in prospective clinical trials8, suggesting that our understanding of this drug response 

is still incomplete.

Deep learning is a powerful general methodology in precision medicine, including the use of 

molecular profiles to predict drug responses9. Such models are typically trained to maximize 

the accuracy of outcome prediction (for example, whether a patient will respond to a drug) 

without attempting to reveal the internal cellular and molecular mechanisms by which that 

outcome is achieved. In this regard, it is notoriously difficult to interpret which molecular 
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features are relevant and even more difficult to describe how these features integrate with 

one another in the logic of molecular pathways10. To create models that are both predictive 

and interpretable11,12, we and others have advanced a series of ‘visible’ neural network 

(VNN) architectures13–16 that are guided by knowledge maps of cellular components and 

functions. For example, using such a model, Elmarakeby et al. found that metastatic 

outcomes in prostate cancer were well predicted by convergent genetic alterations within 

a mouse double minute (MDM)–tumor protein 53 (TP53) inhibition pathway, implicating 

MDM4 in resistance to antiandrogen therapy15.

Thus far, VNN models have been structured using Gene Ontology17 or Reactome18, two 

general human expert-curated databases of known cellular components and functions that 

have not been explicitly designed to capture the molecular pathways of cancer. To define 

and discover cancer mechanisms systematically, we recently developed a hierarchical map 

of multiprotein assemblies called NeST (Nested Systems in Tumors)19. To build this 

map, we used affinity purification–mass spectrometry (AP–MS) to interrogate the physical 

interactions of a broad set of frequently altered cancer proteins. These data were integrated 

with other systematic omics datasets to create a large cancer protein–protein association 

network. Structural analysis of this network revealed a hierarchy of protein assemblies in 

which small, specific complexes nest within larger communities corresponding to broad 

processes and organelles. NeST was defined as the final hierarchy of 395 assemblies found 

to be under significant selection pressure for somatic mutations in one or more adult tumor 

types (Fig. 1a)19. Beyond the identification of the mutated protein assemblies, NeST has not 

yet been used to inform drug response models.

Here, we use this experimentally derived NeST map as the foundation for a visible 

deep learning approach to understand how patterns of genetic alterations govern the 

tumor response to CDK4/6 inhibition. This model is functionally predictive of palbociclib 

treatment outcomes and can be structurally interpreted, revealing a focal set of protein 

assemblies on which common and rare cancer mutations converge to affect drug resistance 

or sensitivity (Fig. 1b).

Results

Implementation of a cancer-oriented VNN

We defined a set of 718 genes assessed by one or more clinical cancer gene panels 

and studies, including the FoundationOne CDx panel20, Tempus xT21 and Project GENIE 

(Genomics Evidence Neoplasia Information Exchange)22. We then queried NeST to extract 

a hierarchy of 131 protein assemblies containing proteins encoded by the clinically assessed 

genes. This hierarchy was used to guide the architecture of a VNN following a previously 

described approach13 (Fig. 1b, Extended Data Fig. 1a and Methods). This model of cancer 

cell structure and response, which we call NeST-VNN, allowed for three binary input 

features per gene, describing the presence or absence of point mutation/insertion/deletion, 

copy number amplification (CNA) or copy number deletion (CND) (Fig. 1b and Methods). 

These gene-level input features were integrated within their respective protein assemblies 

in subsequent layers of the NeST-VNN, with each assembly represented by a bank of 

artificial neurons, reflecting its biological state or ‘in silico activity’ (Extended Data Fig. 
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1a). Connections were also established between the neurons of an assembly and those of 

larger assemblies that contain it (Extended Data Fig. 1b), allowing for the flow of genetic 

information from small focal assemblies (for example, ‘CDK holoenzyme complex’) to 

larger-scale assemblies and superassemblies (for example, ‘cell cycle’). The final protein 

assembly at the root of the hierarchy represented the model output—the predicted drug 

response of a tumor sample given the input set of genetic alterations (Fig. 1b).

To train NeST-VNN, we leveraged drug response data for 1,244 genomically characterized 

tumor cell lines23, obtained by harmonizing the Cancer Therapeutics Response Portal 

(CTRP)24,25 and Genomics of Drug Sensitivity in Cancer (GDSC)26,27 databases (Methods). 

These data included the response to the CDK4/6i palbociclib, which had been well 

characterized in 947 cell lines. For comparative benchmarking, we also examined 50 non-

CDK-related drugs investigated in at least 200 cell lines, for which the cellular responses 

displayed sufficient variability, with many examples of sensitivity and resistance (Methods).

Evaluation of prediction performance

We constructed NeST-VNN drug response models for palbociclib and separately for 

each of the 50 benchmark drugs, using standard neural network learning procedures 

based on backpropagation (Methods). Each model was trained to use the gene alteration 

profile of a cell line to predict the corresponding area under the dose–response curve 

(AUC). Training and performance assessment was conducted using nested fivefold cross-

validation (Methods), with each fold setting aside 64% of cell lines for training, 16% 

for validation (used for tuning hyperparameters) and 20% for testing. Although nested 

cross-validation is computationally intensive, it fully insulates model testing from parameter 

tuning while maximizing the amount of testing that can be performed. We compared 

the NeST-VNN approach to three state-of-the-art alternatives: ElasticNet, random forest 

(RF) and a conventional black-box artificial neural network (ANN) (Extended Data 

Fig. 2a,b and Supplementary Table 1). The overall performance of NeST-VNN was 

generally comparable to that of the state-of-art models and often better, with NeST-VNN 

achieving the best performance for more than half of the tested drugs (62.7%; Extended 

Data Fig. 2a,b). NeST-VNN trained for palbociclib was one of the top-performing 

models, significantly outperforming the ElasticNet and ANN models and slightly, but not 

significantly, outperforming RF (Extended Data Fig. 2c and Supplementary Table 1).

To translate predictions to discrete tumor response outcomes, we thresholded the AUC such 

that predictions below a value tlow were labeled ‘sensitive’, those above a value thigh were 

labeled ‘resistant’ and those between these two thresholds were labeled ‘undefined’ (Fig. 

2a). At the most inclusive setting, tlow = thigh = median(AUC), NeST-VNN could accurately 

discriminate between actual sensitive and resistant cell lines in heldout test data, with a 

diagnostic odds ratio (OR) of 6.0. Discriminative power increased substantially with more 

stringent thresholds. For instance, setting the thresholds 1 s.d. from the median (tlow, thigh 

= median(AUC) ± s.d.(AUC)) yielded a very high OR of 40.1, indicating that samples 

predicted as resistant were approximately 40 times more likely to test as resistant than 

samples predicted as sensitive (Fig. 2b). The trade-off for higher accuracy was that samples 
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were left undefined (66%), increasing specificity but decreasing sensitivity (Extended Data 

Fig. 2d).

Translation to patient-derived xenografts and patients

Next, we examined the performance of NeST-VNN in a study of patient-derived xenografts 

(PDXs)28, including n = 172 samples treated with a CDK4/6i (ribociclib). Each PDX sample 

was classified as sensitive, resistant or undefined using thresholds at 1 s.d. from the median 

(tlow, thigh = median(AUC) ± s.d.(AUC)). PDX samples predicted to be sensitive exhibited 

significantly longer progression-free survival (duration from the start of treatment to the 

doubling of tumor volume) than those predicted to be resistant, suggesting that predicted 

sensitivity was associated with impaired tumor growth (log-rank P = 0.04, hazard ratio 0.53, 

95% confidence interval 0.30–0.97; Fig. 2c and Methods).

After this analysis in xenografts, we evaluated model performance in predicting treatment 

outcomes for 226 patients with breast cancer from the GENIE metastatic breast cancer 

cohort22. These patients had been treated with baseline endocrine therapy with (n = 67) or 

without (n = 159) a CDK4/6i. Each patient was classified as ‘sensitive’ or ‘resistant’ using 

the threshold tlow = thigh = median(AUC) (no ‘undefined’ category was used because the 

number of treated samples was less than that for the earlier PDX or cell line analysis). 

The resistant category was further equally split to denote ‘partially resistant’ and ‘strongly 

resistant’ subgroups. For patients treated with a CDK4/6i, those predicted to be sensitive had 

significantly longer survival than those predicted to be strongly resistant (log-rank P = 0.02, 

hazard ratio 0.21, 95% confidence interval 0.05–0.91; Fig. 2d). Moreover, for the strongly 

resistant subgroup, the addition of the CDK4/6i failed to produce a significant increase in 

overall survival compared to baseline therapy (P = 0.37). These predictions outperformed 

single-gene markers of palbociclib resistance29 (RB1 mutation) or sensitivity30,31 (CCND1 
CNA) that had been previously suggested, consistent with the mixed results of these markers 

in clinical trials8 (Extended Data Fig. 2e,f). In patients who did not receive a CDK4/6i, 

no significant survival differences were observed among the predicted sensitive/resistant/

strongly resistant class labels (all comparisons with log-rank P > 0.1; Fig. 2d). These results 

indicate that the NeST-VNN palbociclib model translates to the population of patients with 

breast cancer and is specifically predictive of response rather than generally prognostic of 

patient survival.

Interpreting the model to identify important protein assemblies

Having seen that the NeST-VNN model was predictive of drug response in tumor cell lines, 

PDX samples and patients, we sought to interpret which protein assemblies were important 

to this process. Following a previous method13, we computed a quantitative importance 

score for each assembly according to how well its in silico activity was associated 

with the final drug response prediction (Fig. 3a, Supplementary Table 2 and Methods). 

Assemblies containing the primary CDK4 and CDK6 drug targets were of significantly 

higher importance than expected by chance, serving as positive controls (P = 5 × 10−5; 

Fig. 3a and Supplementary Table 2). For example, one of the important CDK assemblies 

was NeST:110 (CDK holoenzyme complex I; Fig. 3b,c), comprising the cyclin D–CDK4–

CDK6 complex along with upstream inhibitors (CDKN1/2 protein families) and downstream 
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targets (RB1). Positive control assemblies were also observed for other top-performing drug 

models; the model for the drug nutlin-3a, which targets TP53 activity through MDM2, 

placed high importance on assemblies containing these proteins (P = 6.8 × 10−10; Extended 

Data Figs. 2a and 3a).

For all drug models, assembly importance tended to increase with size and depth in 

the hierarchy, reflecting the progressive integration of genetic information. Assembly 

importance was similar between cell lines and patient tumors (Fig. 3d) or PDX samples (Fig. 

3e). In contrast, little correlation was observed between cell lines and clinical samples when 

examining the importance of individual gene mutations (Fig. 3f) or copy number aberrations 

(Extended Data Fig. 3b,c). These results are consistent with the premise that most individual 

genetic alterations are rare, with variable incidence across contexts32, and suggest that the 

effects of genetic alterations on protein assemblies can be substantially more stable.

Of 33 assemblies that were of high importance for palbociclib response prediction 

in cell lines (importance ≥ 0.5), we focused on eight distinct minimally overlapping 

assemblies whose importance scores remained significant under multiple-hypothesis 

correction (hereafter referred to as ‘core assemblies’; Methods). Beyond regulation of CDK 

activity, core assemblies spanned histone and chromatin regulation, DNA damage response 

and growth factor signaling (Fig. 3a), integrating rare and common genetic alterations across 

90 genes (Extended Data Fig. 3d). Most core assemblies were also important for predicting 

outcomes in clinical and PDX samples (Fig. 3d,e).

Systematic validation of core assemblies by loss-of-function screens

We next sought to validate the palbociclib core assemblies using two CRISPR (clustered 

regularly interspaced short palindromic repeat) loss-of-function screens (Fig. 4a): a 

published chemogenetic screen involving genome-wide knockout (KO) of single genes in 

combination with palbociclib treatment33 and a de novo dual CRISPR screen in which 

we paired gene KOs in selected NeST-VNN assemblies with a second gene KO targeting 

CDK4 or CDK6 (Fig. 4a and Methods). For the chemogenetic screen, we assessed each 

assembly in NeST for the enrichment of genes whose KOs modulate cell fitness in the 

context of palbociclib treatment (Methods). The enrichments of the eight core assemblies 

tended to be significantly higher than those of nonimportant controls (P = 0.005, Mann–

Whitney U test), with four of these assemblies in particular (regulation of CDK activity, 

histone-mediated transcription regulation, DNA damage response, promyelocytic leukemia 

(PML) body) showing stronger effects than any assembly in the control set (Fig. 4b and 

Supplementary Table 3). Such enrichment was due to KOs in a diversity of genes, including 

roughly a dozen with extreme loss-of-fitness phenotypes (Fig. 4c; for example, BCL6, 

CCND3, CDK4, CDK5, RAD51C, TOP2A, BARD, AURKA, AURKB) and several causing 

gain of fitness (for example, BRCA2, CTNNB1, CDKN2B, MSH6, MLH3). Enrichment 

was not observed for a genome-wide KO screen without palbociclib treatment34, indicating 

that at least some of the effect was due to gene–drug interactions rather than independent 

gene essentiality (Methods and Fig. 4d). We then moved on to our de novo dual CRISPR 

KO screen and noted that this screen and the earlier chemogenetic screen were reasonably 

consistent with respect to gene KO fitness effects (Pearson ρ = 0.48; Fig. 4e). Disruptions 
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in all six of the core assemblies with sufficient coverage in our gene KO panel displayed a 

trend toward increased cell fitness (Fig. 4f,g and Supplementary Table 3). Taken together, 

these results indicate that engineered genetic disruptions in protein assemblies identified by 

NeST-VNN can influence tumor cell growth in the setting of CDK4/6 inhibition, whether 

such inhibition is induced by a drug (Fig. 4b) or CDK4/6 KO (Fig. 4f,g).

Exploration of gain-of-function alterations in a histone transcriptional assembly

An open question is how CDK4/6 and the G1/S transcriptional program interact with 

other cell functions, including upstream modulators and downstream effectors. A notable 

assembly in this regard was NeST:85 (histone-mediated transcription regulation), a densely 

connected complex of 15 proteins with roles in histone acetylation, deacetylation and 

transcriptional activation (Fig. 5a). This assembly was important for the CDK4/6i response 

in cell lines (Fig. 3a), PDX samples (Fig. 3e and Extended Data Fig. 4b) and patients 

(Fig. 3d). It had also been validated by CRISPR loss-of-function analysis (Fig. 4b and 

Supplementary Table 3). However, most of the frequent genetic alterations affecting this 

assembly in tumor cell lines or patients were not loss-of-function events but gene CNAs 

(Fig. 5b), which were especially prevalent in lung, oropharyngeal and gynecologic tumors 

(frequencies 15–35%; Extended Data Fig. 4a). CNAs also accounted for the top five genetic 

alterations in this assembly that were most predictive of palbociclib resistance, in particular 

those of MYC, TERT, KAT6A, TBL1XR1 and RUNX1 (Fig. 5c and Methods). Each 

of these amplifications had a resistance OR of approximately 2.0, indicating that cells 

harboring CNAs are twice as likely to exhibit resistance to palbociclib than cells without 

CNAs (Fig. 5c).

Motivated by these findings, we turned to the technique of CRISPR activation (CRISPRa), 

which uses the dCas9 (dead Cas9 endonuclease)–VPR (VP64–p65–Rta) transcriptional 

activator to increase expression from gene promoters targeted with CRISPR single guide 

RNAs (Fig. 5d). For these experiments, we selected A549 lung carcinoma epithelial 

cells, which harbor few genetic alterations in the NeST:85 assembly compared to many 

other common tumor cell models for which multiple genes are already amplified (Fig. 

5b). We transfected short guide RNAs (sgRNAs) targeting KAT6A, TBL1XR1, RUNX1, 

TERT or MYC into A549 cells expressing dCas9–VPR and confirmed by qPCR that 

constructs exhibited substantial overexpression of the target gene compared to nontargeting 

control (NTC) sgRNAs (all except for MYC; Extended Data Fig. 4c). sgRNAs targeting 

MYC did not have a significant effect, consistent with prior reports that this gene is 

already highly expressed in A549 cells35. We used the thymidine analog 5-ethynyl-2′-
deoxyuridine (EdU) to count the fraction of cells undergoing active DNA replication in 

the S phase. Overexpression of the histone modifiers KAT6A and TBL1XR1 produced 

significant increases in the proportion of cells entering the S phase under palbociclib 

treatment compared to the untreated group (Fig. 5e,f; approximately 2.5-fold; P < 0.05); 

the transcription factor RUNX1 also led to significant increases, albeit to a lesser degree 

(1.5-fold). We also examined the effects of KAT6A or TBL1XR1 overexpression on the 

phosphorylation status of RB1, the direct target of the CDK4–CDK6–cyclin D complex. 

Capillary western blot analysis demonstrated that overexpression of these factors is indeed 

associated with a more than twofold increase in phospho-RB levels (Fig. 5g,h, Extended 
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Data Fig. 4d and Methods). Together, these results indicate several NeST:85 genes whose 

overexpression serves to promote the cell cycle, supporting our earlier observation (Fig. 5c) 

that CNAs in these genes are predictive of palbociclib resistance.

Discussion

CDK4/6 inhibitors are a well-studied class of drugs for which numerous candidate 

biomarkers have been identified8. Why has the prediction of CDK4/6i responses remained 

challenging? One reason is that markers with promise in cell lines (for example, CCND1 
amplification) do not consistently translate to patient populations30,31. Another is that 

individual genetic alterations that are clinically predictive may occur too rarely to have 

broad utility (for example, RB1 deletion or mutation). A wider, more integrative analysis is 

needed to understand CDKi resistance fully5,8.

Toward this goal, NeST-VNN synthesizes both rare and common genetic events across a 

repertoire of drug response pathways, with the aim of facilitating a quantitative, integrated 

assessment of drug response. The modeling process begins with a map of tumor cell 

components, which is used to guide the topology of deep neural network models as they 

learn to translate genetic alterations to drug responses (Extended Data Fig. 1). The key 

subcellular assemblies of models that accurately capture drug responses in vitro and that 

translate to in vivo (for example, PDX) and clinical settings (Fig. 2) can be validated through 

directed CRISPR loss-of-function and/or activation screens (Figs. 4 and 5). Assemblies that 

pass this validation pipeline are a source of candidate biomarkers in downstream precision 

medicine applications. Alternatively, a model can be used in its entirety to produce a single 

resistance score integrating the mutational status of all proteins and assemblies.

NeST-VNN is based on NeST, a whole-cell map of cancer protein complexes derived 

from systematic proteomics data (see the ‘Structural architecture of the NeST-VNN model’ 

section in Methods). Previous drug response models have generally not incorporated outside 

knowledge of cell structure (many approaches, reviewed here9,36) or have modeled structure 

using databases of cellular components or pathways drawn from literature curation9,14,15. 

Biological insights informed by NeST-VNN are uniquely dependent on the composition 

of NeST, generating both strengths and limitations. One strength is that the model can 

incorporate information from numerous rare mutations in predicting a drug response insofar 

as these rare alterations aggregate to affect the activity of commonly altered protein 

assemblies with documented cancer relevance. A limitation is that NeST almost certainly 

does not include all relevant protein assemblies (false negatives), and some assemblies that 

are included may be imperfect or irrelevant to a given tumor population (false positives). 

Regardless, the NeST knowledgebase positions the precision medicine model as a dynamic 

entity, which can be updated either functionally with new incoming drug response data or 

structurally as NeST (or another future map) is improved by additional data. These new 

data need not be limited to AP–MS experiments (the primary source informing NeST thus 

far37) but, in the future, might incorporate information from complementary proteomics 

technologies such as proximity ligation38, size-exclusion chromatography39,40 or spatial 

imaging41. While pathway databases are sometimes treated as gold standards (especially 
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literature-curated databases such as Gene Ontology and Reactome), knowledge of molecular 

pathways remains incomplete, particularly as it relates to specific tumor states and subtypes.

Using this platform, we identified a set of eight core assemblies for which genetic alterations 

are associated with anti-CDK4/6 response, seven of which were validated by one or 

more CRISPR screens (Figs. 4 and 5). These assemblies are not focused solely on cyclin-

dependent control of the cell cycle (Fig. 3a). Nonetheless, ample literature support can 

be found for the involvement of many of these other assemblies in anti-CDK responses, 

such as those related to androgen receptor (AR) signaling42, EGF/fibroblast growth factor 

(FGF) signaling43, DNA damage response44 and the MDM2–p53 pathway45. Regarding the 

identification of an EGF/FGF signaling assembly, recent studies have found that the EGF 

receptors EGFR and ERBB2 are associated with palbociclib response46 and that the genetic 

alteration status of FGFR1/2 and their associated FGF ligands has promise as a marker of 

acquired resistance43. Furthermore, ongoing clinical trials are assessing the combination of 

anti-CDK4/6 treatments with insulin-like growth factor inhibition (trial no. NCT03099174) 

or with EGFR inhibition (trial no. NCT03065387) in various tumor types. In NeST-VNN, 

the EGF/FGF complex combines each of these alterations, which have largely been reported 

separately, into a single integrated effect including alterations in yet additional receptor 

tyrosine kinases (for example, ERBB3/4).

The model also highlights a notable role for NeST:85 (histone-mediated transcription 

regulation), which integrates both well-known and understudied factors. Treatment 

with CDK4/6 inhibitors induces chromatin structure remodeling mediated by histone 

acetyltransferases and histone deacetylases (HDACs), leading to the expression signatures 

of senescence and cell differentiation3. Accordingly, genetic alterations affecting proteins 

of the NeST:85 assembly, including the histone acetylases CREBBP and EP300 (ref. 47), 

the HDACs HDAC1 and HDAC2 (ref. 48), and transcription factors such as TP53 (ref. 49) 

and MYC50, have been previously documented to modulate the anti-CDK4/6 drug response. 

Using CRISPRa to model the effects of CNAs, we observed that increased expression of 

KAT6A and TBL1XR1, which are also components of the NeST:85 assembly, leads to 

increased S-phase entry (Fig. 5). KAT6A, also known as MYST3/MOZ, encodes a histone 

lysine acetyltransferase that is amplified in many cancer types51 (Fig. 5b). Relevant to the 

NeST:85 assembly, KAT6A has been previously documented to regulate cell-cycle arrest 

and differentiation through the transcription factors p53 (ref. 52) and RUNX1 (ref. 53); it is 

a frequent translocation partner of other assembly members such as EP300 and CREBBP54. 

TBL1XR1, also known as TBLR1, is an F-box-like protein involved in the recruitment 

of the ubiquitin conjugation system to histone modifier and transcriptional repression 

complexes55,56. Subsequent proteasomal degradation of these complexes is essential for 

transcriptional activation by AR, as captured by the NeST:85 assembly, as well as other 

transcription factors such as the estrogen receptor (ER)57. Notably, increases in KAT6A 
and TBL1XR1 expression were associated with higher phosphorylation levels of RB, the 

central transcriptional repressor targeted by CDK cell-cycle control (Fig. 5g,h), suggesting 

that they may promote drug resistance by increasing the transcription, abundance or activity 

of the upstream CDK4–CDK6–cyclin D regulatory complex. The possible combination 

of HDAC inhibitor therapies with cell-cycle inhibitors has been previously proposed48; 

this study further underscores this potential and delineates alternative targets. Indeed, 
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KAT6A inhibitors are under development and have demonstrated promising effectiveness 

for inducing cellular senescence58–60 (clinical trial NCT04606446). In the tumor cells 

characterized here (A549; Fig. 5), TBL1XR1 has a T290A missense mutation of unknown 

significance whose impact will require further investigation.

In summary, the predictive models presented in this study build from and substantially 

develop the concept of an integrated response to therapy. In such an integrated response, 

diverse effects converge on biological machinery at multiple levels to produce an overall 

treatment outcome. This concept may explain the difficulty in identifying individual genetic 

biomarkers of palbociclib drug response. It also speaks to the challenge of patient-to-patient 

heterogeneity and illustrates one means by which knowledge of cellular machinery can 

be used to score a diverse population of cancer patients presenting unique patterns of 

mutational aberrations. Such an integrated model may provide a worthwhile asset in 

achieving improved outcomes for patients and in efforts to evaluate novel therapeutics to 

overcome resistance.

Methods

Drug response data for model training

Drug response data were retrieved from the GDSC and CTRP databases24–27, covering a 

total of 692,859 cell line–drug pairs comprising 1,244 cell lines and 888 drugs. The data 

from the two datasets were harmonized as follows. Drug information: each molecule’s 

published name, synonym or SMILES (Simplified Molecular Input Line Entry System) 

string was queried using PubChemPy. The associated InChIKey was extracted and used 

to identify duplicate drugs (within or between datasets). Cell viability data: for CTRP, 

the vehicle control-normalized average percent viability files were used. For GDSC1 and 

GDSC2, data were normalized to ‘cells-only’ and ‘dimethyl sulfoxide (DMSO) control’ 

wells, respectively, on a per-plate basis. Data were averaged across replicates within each 

dataset. For drug response measurement, we used AUC, in which AUC = 0 corresponds to 

complete cell killing and AUC = 1 corresponds to no cell killing; AUC > 1 represents a 

growth advantage conferred by the drug. AUCs calculated in this study agreed with AUCs 

reported by the original consortia (Pearson correlations of 0.92, 0.83, 0.91 and 0.91 for 

CTRP1, CTRP2, GDSC1 and GDSC2, respectively). For multiple AUCs for the same drug 

across different consortia, we used each replicate sample as a separate training instance. 

Genetic alteration data: a panel of 718 clinical genes was assembled from the union of genes 

assessed by FoundationOne CDx20, Tempus xT21, PALOMA-3 trial61 or Project GENIE22, 

each of which assesses mutations and/or copy number aberrations. To compile genotypes for 

all cell lines, we extracted nonsynonymous coding mutations and copy number alterations 

for the 718 clinical panel genes from the Cancer Cell Line Encyclopedia (CCLE, release 

22Q1)23. Genes were marked as either mutated (‘1’) or unmutated (‘0’), with mutations 

filtered for the following types: missense/nonsense/nonstop mutations, frameshift insertions/

deletions, splice site/region variations and in-frame insertions/deletions. Similarly, genes 

were marked as amplified (‘1’) or unamplified (‘0’) and deleted (‘1’) or undeleted (‘0’). 

Together, mutations, CNAs and CNDs served as features for each of the clinical panel 

genes. Of the 888 drugs available from the CCLE and/or GDSC, we selected the 51 drugs 
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(palbociclib and 50 others) with the highest variation in the observed drug responses across 

cell lines (corresponding to s.d. ≥ 0.3).

Structural architecture of the NeST-VNN model

Construction of the NeST hierarchy of cancer protein assemblies has been thoroughly 

detailed elsewhere19. Briefly, AP–MS protein interaction data for 61 known cancer proteins 

were integrated with a compendium of other systematically generated datasets informing 

protein–protein associations, including protein–protein interaction, mRNA coexpression, 

protein coexpression, genetic codependency and sequence similarity. Such integration 

resulted in a large network of approximately 1.8 × 108 protein–protein interactions among 

19,035 proteins. Multiscale community detection was performed to detect approximately 

2,300 densely connected sets of proteins, herein called protein assemblies. Assemblies 

were nested (that is, organized hierarchically), with larger assemblies containing smaller 

ones, forming ‘parent–child’ assembly relations. This hierarchy has been used earlier19 to 

perform a comprehensive analysis of somatic coding mutations in The Cancer Genome 

Atlas (TCGA)62, identifying significant convergence of mutations on a set of 395 protein 

assemblies, named NeST19. Here, we filtered the NeST hierarchy to identify the subset 

of assemblies encoded by at least five genes represented on the 718-gene clinical panel, 

producing a final hierarchy of 131 assemblies distributed over seven layers.

Model training

The filtered NeST hierarchy was used to embed a deep neural network for drug response 

prediction, which we refer to as NeST-VNN (Extended Data Fig. 1a). We define an m × 3
input matrix as I, where Ii, j ∈ 0, 1 , with m denoting the number of genes and 3 the number 

of gene alteration types (mutation, CNA and CND). For any input sample (tumor cell line, 

PDX or patient tumor), somatic genetic alterations for each gene and type are marked by 

1 and otherwise 0. The first layer in NeST-VNN converts these input features to gene-level 

representations, Ig ∈ ℝm, as follows:

Ig = BatchNorm tanh Linear I

‘BatchNorm’ indicates batch normalization63; ‘tanh’ indicates a hyperbolic tangent function; 

and ‘Linear’ indicates a linear transformation. Here, the linear transformation is applied for 

each row in I so that the three gene alteration values for each gene are converted into a 

single value. The remaining seven layers of NeST-VNN follow the structure of the NeST 

protein assembly hierarchy, where each assembly is represented by some number of neurons 

N, a hyperparameter. A dropout64 of 0.3 (selected through hyperparameter optimization) 

was added to the last four layers. Assembly state is defined as a function of the states of its 

K child assemblies and M additional genes (genes for which the protein products are not 

present in any descendant assemblies). Denoting an assembly input vector as Is and an output 

vector as Os, we have

Os = BatchNorm tanh Linear Dropout Is
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Here, Is has dimension N × N × K + M  and Os has dimension N. We define ‘in 

silico activity’, a representative singular value for assembly state, as the first principal 

component65. The NeST-VNN objective function (Loss) aggregates the mean squared error 

(MSE) across every assembly in the hierarchy:

Loss = MSE Linear Oroot , y + α
s ≠ root

MSE Linear Os , y + β ∥ W ∥

The parameter α was set to 0.3; β is a tuned hyperparameter. y represents the actual 

AUC.’Linear’ denotes the linear function used for transforming the vector Oi to a scalar. 

W  denotes the weights of the neural network. Weight optimization was performed using 

AdamW66.

Model benchmarking

For baseline benchmarking, we trained the RF67, ElasticNet68 and black-box ANN69 

(allotted the same number of neurons and layers as the NeST-VNN model) models 

using the Python scikit-learn package70. For all models, including NeST-VNN, we used 

nested fivefold cross-validation71, producing five models for each drug. For each fold 

setting, we split 64% of cell lines as a training set, 16% as a validation set (used for 

hyperparameter tuning) and 20% as a test set, ensuring that cell line replicate measurements 

(for example, from different datasets) were not split between the test and training sets. 

Hyperparameters were optimized with Optuna72. NeST-VNN was implemented in PyTorch 

and trained using five GPU (graphics processing unit) servers containing four NVIDIA Tesla 

V100s, each with 5,120 CUDA (Compute Unified Device Architecture) cores and 32-GB 

GDDR6 random access memory. All five NeST-VNN models were evaluated in downstream 

analyses.

Translation to cancer patients

Data from the American Association for Cancer Research Project GENIE metastatic breast 

cohort22 were used to validate the performance of the NeST-VNN model in retrospective 

clinical application. We extracted nonsynonymous coding mutations, CNAs and CNDs 

across 360 genes for 226 patients with ER+, HER2− metastatic breast cancer along with their 

overall survival (months) and censorship information. We did not consider gender or sex. Of 

these patients, 67 had been treated with CDK4/6i plus endocrine therapy. The remaining 159 

patients were treated with endocrine therapy alone. Patients were excluded if they had been 

treated with additional targeted therapies, such as mammalian target of rapamycin (mTOR) 

or AKT inhibitors. Tumor genomic data were converted to calls (0 = unaltered, 1 = altered) 

for all gene mutation, CNA and CND features. Features used by NeST-VNN that were not 

assessed in the clinical trial were represented as unaltered. We predicted patient response to 

CDK4/6 inhibition using the average AUC over the five pretrained palbociclib models and 

then thresholded this value as described in the main text (Fig. 2d). Patients whose status 

label was ‘living’ at 120 months were censored.
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Translation to PDXs

We analyzed a PDX dataset28, which contained 172 tumor samples treated with a CDK4/6i 

(ribociclib) across five tumor types (breast carcinoma, non-small cell lung carcinoma, 

cutaneous melanoma, colorectal cancer and pancreatic ductal carcinoma). Treatment 

responses had been measured by changes in the volume of the tumor xenograft over time, 

with an accompanying determination of treatment time and a classification according to the 

RECIST (Response Evaluation Criteria in Solid Tumors) standard (including categories of 

progressive disease, stable disease, partial response and complete response). PDX samples 

had been genomically characterized, covering 660 of the 718 genes in the NeST-VNN gene 

set. Similar to the procedure for cell lines and patients, tumor genomic data were converted 

to calls (0 = unaltered, 1 = altered) for all gene mutation, CNA and CND features. Features 

used by NeST-VNN that were not assessed in the PDX data were represented as unaltered. 

We predicted the responses of PDX tumors to CDK4/6 inhibition as the average AUC over 

the five pretrained NeST-VNN models for palbociclib and then thresholded this score as 

described in the main text (Fig. 2c).

Model dependence on the number of genes used for prediction

Given the difference in the number of genes used for prediction in cell lines (n = 718) 

versus GENIE analysis (n = 360) or PDX analysis (n = 660), we systematically studied the 

dependence of model performance on the number of genes for which genetic alteration data 

are provided. We computed the average predictive performance of the pretrained NeST-VNN 

model when it is supplied with data for diminishing numbers of genes (Extended Data Fig. 

5a). We found that, at a gene set size of 350 (similar to the number of genes characterized 

in the GENIE study), the average performance is only slightly less than that obtained when 

using all genes (ρ = 0.30 versus ρ = 0.33), with a more precipitous fall in performance seen 

for 200 genes or fewer. A similar pattern was observed when we compared the assembly 

importance scores with their enrichments for gene KOs that modulate the response to 

palbociclib treatment (Extended Data Fig. 5b). Notably, we also found that the precise panel 

of genes used by GENIE performs better than expected compared to a random subsampling 

(Extended Data Fig. 5).

Identifying important assemblies and genes (model interpretation)

To determine which assemblies were important for drug response prediction in cell lines, 

PDX or clinical samples, we adopted a variation of the ‘relative local improvement in 

predictive power’ method as previously reported13. Each assembly was modeled using linear 

regression, with the aim of evaluating how well its NeST-VNN neuron values capture the 

NeST-VNN overall drug response prediction. Each assembly k was assigned a g × N
matrix Pk, where g is the number of samples and N is the number of neurons. Pk was 

then used in a linear ridge regression73 model to predict the NeST-VNN drug response D, 

creating models M1, M2, …, Mk. The following function was minimized for each model:

minw∥ Pkw − D ∥2
2 + α ∥ w ∥2

2
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where w is a vector of the coefficients of length N and α imposes an L2 penalty on 

coefficient complexity. Assembly ‘importance’ (Fig. 3 and Extended Data Figs. 3 and 5) 

is the Spearman correlation ρ  between Mk and D. The mean correlation of the five NeST-

VNN models was reported. A higher score indicates an assembly whose neuron values 

contributed more strongly to NeST-VNN predictions and can, therefore, be considered 

important. To assess statistical significance, we generated a null distribution of assembly 

importance scores, as follows. We randomly rearranged gene assembly memberships in the 

NeST-VNN while preserving the assembly size and parent–child relationships. We trained 

500 null models with these random rearrangements and calculated assembly importance for 

each null. One-tailed t tests were used to evaluate whether the assembly importance scores 

from the five NeST-VNN models were greater than the assembly importance scores from the 

nulls, with a Benjamini–Hochberg control for false discovery rate (FDR; Fig. 3a). Finally, 

we defined ‘core assemblies’ as those with an importance score of ≥0.5 and an FDR of ≤0.1, 

while excluding less important redundant assemblies (Jaccard similarity > 0.5). To identify 

specific genetic alterations in the NeST:85 assembly associated with palbociclib resistance 

(Fig. 5c), we performed L1-norm regularized logistic regression74,75. Genetic alterations 

(mutations, CNAs, CNDs) for the 15 assembly genes were used as regression features to 

predict AUCs. AUC values in the top 30% were encoded as 1 to represent resistance, 

whereas AUC values in the bottom 30% were encoded as 0 to represent sensitivity. Nonzero 

coefficients from the fitted model were recognized as important alterations governing 

drug response, with the sign indicating whether the presence of alterations contributed 

to resistance (plus) or sensitivity (minus). We used scikit-learn70 with logistic regression 

settings of penalty = ‘l1’, C = 0.01 (default for other parameters).

Comparison of the interpretability of NeST-VNN and RF

We systematically evaluated the assembly importance scores provided by NeST-VNN 

versus RFs67 using the genome-wide loss-of-function screen for palbociclib treatment. 

To determine the assembly importance score for the RF models, we performed gene set 

enrichment analysis (GSEA76, implemented using GSEApy77) on the gene list ranked 

according to the gene-level feature importance scores derived from the RF models. The 

absolute normalized enrichment scores generated from GSEA were used as assembly 

importance scores for the RF models. Assembly importances in the NeST-VNN versus 

RF models were moderately but not completely correlated (ρ = 0.31; Extended Data Fig. 

6a). Relevant to the differences, we found that the NeST-VNN importance of an assembly 

was also moderately correlated with its enrichment for gene KOs conferring palbociclib 

sensitivity or resistance (ρ = 0.33; Extended Data Fig. 6b); in contrast, RF assembly 

importance showed a correlation that was substantially weaker (ρ = 0.07; Extended Data Fig. 

6c). Thus, while RF models can achieve comparable predictive performance by identifying 

individual gene mutations that are indicative of drug response (Extended Data Fig. 2a,c), 

NeST-VNN demonstrates its strength by integrating the effects of such mutations within 

predictive cancer protein assemblies.
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Genome-wide CRISPR KO chemogenetic screen

Core protein assemblies were validated using a genome-wide CRISPR–Cas9 screen in 

MCF7 cells exposed to palbociclib treatment33 (Fig. 4a) (Gene Expression Omnibus 

accession no. GSE192525). This screen had been run previously using the GeCKO 

(genome-wide CRISPR KO) v2 library. Gene-level z scores (referred to as ‘normZ’) from 

that study were used to indicate the effects of gene KO on cell fitness in the context of 

CDK4/6 inhibition (Fig. 4b). As a reference, the cell fitnesses of gene KOs (provided as 

Chronos scores78) in the MCF7 cell line in the absence of CDK4/6i treatment (Fig. 4c) were 

obtained from the DepMap (Dependency Map) project34 (https://depmap.org/portal/).

Dual CRISPR KO combinatorial screen

The genome-wide chemogenetic data (above section) were complemented by a de novo 

dual CRISPR screen performed in-house in MCF7 (HTB-22), MCF10A (CRL-10317) 

and MDAMB231 (CRM-HTB-26) cell lines from American Type Culture Collection 

(ATCC) (Fig. 4a). Cells were grown in DMEM with 10% FBS, screened for Mycoplasma 
contamination by PCR and verified by short tandem repeat (STR) testing (IDEXX 

BioAnalytics). CRISPR–Cas9 nuclease was stably integrated by a lentivirus. LentiCas9-

Blast (Addgene plasmid no. 52962) and lentiCRISPR v2 (Addgene plasmid no. 52961) were 

gifts from F. Zhang79. Blasticidin was used to select Cas9 stable integrants. Cas9 protein 

expression was confirmed by capillary western blot analysis (Wes, ProteinSimple). We 

constructed a library of double gRNA constructs targeting druggable targets (such as CDK4 

and CDK6), tumor suppressors and oncogenes. Here, we analyzed a subset of data from 

individual genes from core assemblies (sgRNA1) together with CDK4 or CDK6 (sgRNA2) 

(Supplementary Table 3). The library was packaged into lentiviruses, and cells were infected 

to achieve a multiplicity of infection of 0.3. Puromycin (2.5 mg ml−1) selection was started 

2 days after transduction. Selection continued for 7 days, after which puromycin was 

removed for the remainder of the screen. Cells were maintained in exponential growth 

by isolating and removing a fraction of cells every 2–3 days. We analyzed data from two 

time points at approximately 14 and 21 days. DNA was extracted from cells with a Blood 

and Cell Culture DNA Mini kit (Qiagen). To assess the relative frequencies of gRNAs 

before and after selection, we amplified gRNA sequences from genomic DNA by PCR 

and prepared them for HiSeq 4000 sequencing (Illumina). Standard Illumina primers were 

used for library preparation, and 100-bp paired-end reads were collected. Data quality was 

assessed with FastQC. The fitness effects of gene KOs at a time point were determined 

as the fold enrichment of a construct compared to the relative abundance of that construct 

in the plasmid library. Fitness measurements were normalized to the median fitness for 

nontargeting guides. The mean z score across two biological replicates, two time points and 

genes in each assembly was then determined and plotted (Fig. 4f,g).

Production of a dCas9-expressing stable cell line

CRISPRa experiments were performed in A549 cells stably expressing dCas9 together with 

the VPR transcriptional activation complex. For this purpose, 293T cells (CRL-3216, ATCC) 

were cotransfected with a second-generation packaging plasmid (pCMV-dR8.2, Addgene 

8455), vesicular stomatitis virus-G envelope-expressing plasmid (pMD2.G, Addgene 12259) 
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and dCas9–VPR lentiviral plasmid (hCMV-Blast-dCas9-VPR, Horizon Discovery) using 

Lipofectamine 3000 (Invitrogen, L3000015). Viral supernatant was collected and cleared 

of cell debris by centrifugation and Steriflip column (Millipore, SE1M003M00). Lentivirus 

was concentrated using Amicon Ultra-15 centrifugal filters (Millipore, Z706345). Viral 

titer was determined through serial dilution. Subsequently, A549 cells (CCL-185, ATCC) 

were grown in a virus-containing medium (DMEM/F12: 10% FBS, 100 IU ml−1 penicillin/

streptomycin) with 8 μg ml−1 polybrene for 72 h, followed by medium washout and 

selection with blasticidin (3.5 μg ml−1) for 6 days. After selection, cells were cultured 

with maintenance-dose blasticidin (0.35 μg ml−1) every other passage. The identity of stable 

dCas9 A549 cells was confirmed by STR testing (IDEXX BioAnalytics, August 31, 2020).

CRISPRa screen

A custom panel of sgRNA expression plasmids targeting genes in the NeST:85 assembly 

was obtained from Horizon Discovery (Fig. 5 and Supplementary Table 4). Controls 

included an NTC sgRNA and an overexpression (positive control) sgRNA targeting OCT4 

(not a component of NeST:85). dCas9–VPR stable A549 cells were plated in a complete 

medium and transfected the next day with sgRNA plasmids for 24 h using FuGENE HD 

(Promega). Cells were selected with puromycin (0.44 μg ml−1) for 48 h and then lifted onto 

appropriate plates for further experimentation, where they were permitted to recover for 72 

h. RNA was collected using the TRIzol reagent (Invitrogen, 15596026) and the RNeasy 

Mini kit (Qiagen, 74104). cDNA was synthesized using the iScript cDNA kit (Bio-Rad, 

1708891). qPCR was performed using SYBR green, and cycle threshold (Ct) values were 

compared for genes overexpressed by CRISPRa versus NTC samples (Extended Data Fig. 

4c and Supplementary Table 4).

EdU assays for S-phase entry

Transfected cells were plated in collagen-coated glass-bottom 96-well plates in a complete 

medium containing palbociclib (4 μM) for 24 h. Components of EdU Click-iT (Thermo 

Fisher Scientific, C10337) were prepared as instructed. Cells were labeled for 4 h with 

10 μM EdU-labeling solution in the medium and then counterstained with Hoechst dye 

(1:10,000) for 10 min. Cells were fixed in 3.75% formaldehyde for 10 min at room 

temperature and then washed, permeabilized and stained according to the manufacturer’s 

instructions. Images were collected using a Keyence microscope (BZ-X800) fitted with a 4× 

objective and green fluorescent protein/fluorescein isothiocyanate (Chroma, C209879) and 

DAPI (Chroma, C209877) filters. Images were processed in bulk using scikit-image80. Cells 

were identified using Hoechst counterstain and then assessed for EdU incorporation (Fig. 

5e,f).

Capillary western assays for RB status

Transfected cells were treated with palbociclib for 24 h and then trypsinized and washed 

in cold PBS; pellets were frozen at −80 °C. Protein was extracted in a hot 1× MES 

SDS running buffer (Invitrogen, NP0002) for 10 min. Cooled samples were vortexed for 

2 min with glass beads (Sigma, G8772). cOmplete EDTA-free protease inhibitor cocktail 

(Roche, 04693132001) and PhosSTOP (Roche, 4906845001) were added to the cleared 

lysate. Protein was quantified using the Pierce 660-nm protein assay reagent (Thermo Fisher 
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Scientific, 22662). Protein analysis was performed on a capillary-based western blot system 

(Wes, ProteinSimple, product no. 004–600) according to the manufacturer’s instructions 

using the 12- to 230-kDa separation module (ProteinSimple, SM-W001) and either the 

anti-rabbit detection module (ProteinSimple, DM-001) or the anti-mouse detection module 

(ProteinSimple, DM-002). Protein samples were diluted to 1 μg ml−1 in 0.1× sample buffer 

(ProteinSimple, 042–195) and then mixed with fluorescent master mix and heated at 95 

°C for 5 min. Anti-phospho-RB Ser807/811 (mouse monoclonal antibody, clone D20B12, 

1:100, Cell Signaling, 8516) or anti-actin (rabbit polyclonal antibody, 2 μM, Novus, NB600–

532) was used as the primary antibody, whereas a horseradish peroxidase-conjugated 

anti-rabbit antibody (ProteinSimple, DM-001) was used as a secondary antibody. Program 

settings were as follows: separation at 375 V, 25 min; blocking reagent, 15 min; 20-s wash 

(for runs with phospho-RB only); primary antibody blocking, 35 min; two 150-s washes; 

secondary antibody blocking, 35 min; 150-s wash; chemiluminescence detection, from 1 

to 512 s. Electropherograms (Fig. 5g,h) were inspected to check whether automatic peak 

detection required manual correction.

Statistics and reproducibility

All wet laboratory experiments were performed in biological duplicates with three to four 

technical replicates. No statistical method was used to predetermine sample sizes. The 

experiments were not randomized. The investigators were not blinded to allocation during 

experiments or outcome assessments. EdU assays were evaluated computationally with 

data-quality threshold filters as described above. For the survival analysis, patients were 

excluded if they had been documented to receive a targeted therapy other than a CDK4/6i 

(that is, an mTOR or AKT inhibitor), as these other targeted therapies were not the focus of 

our study. Statistical tests were performed as described in each section assuming data were 

normally distributed where appropriate, but this was not formally tested.
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Extended Data

Extended Data Fig. 1 |. NeST-VNN schematic.
a, The first layer of NeST-VNN incorporates gene-level features, including gene mutations, 

copy number amplifications (CNA), and copy number deletions (CND). Subsequent 

assembly layers aggregate gene-level features into assembly-level information, guided by 

the hierarchical relationships defined by the NeST map. The output state of each gene (g) 

and assembly (O) is represented by artificial neurons (one neuron per gene, multiple neurons 

per assembly). b, Position of the assemblies detailed in panel a within the greater NeST 

map. Each node indicates a protein assembly. An example path of information flow, from the 

neurons of CDK holoenzyme complex to Cell cycle through to the model Root, is shown in 

red.
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Extended Data Fig. 2 |. Supplemental model performance analysis.
a, Dot plot of model performance for each of 51 drugs for NeST-VNN (red) versus 3 

alternate models: ElasticNet (green), Random Forest (purple), and a conventional Artificial 

Neural Network (ANN, blue). Palbociclib model highlighted in pink. b, Boxplot of 

performance for all drugs. Box plots show the 25th, 50th, and 75th percentiles of Pearson 

correlation. P-values reflect results of a one-tailed t-test assessing whether NeST-VNN 

outperforms baseline models. c, Bar chart of performance for palbociclib models. Error 

bars represent 95% confidence intervals with mean as the midpoint. P-values reflect results 
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of one-tailed t-test. d, ROC curves for predicting resistance (yellow) or sensitivity (blue) 

to palbociclib. Marked points indicate cutoffs used to label samples as “resistant” or 

“sensitive” at different stringencies. Values in parenthesis indicate the (x,y) coordinate. e, 

Survival curves for CDK4/6i-treated patients stratified by somatic mutations or copy number 

deletions in RB1. f, Survival curves for CDK4/6i-treated patients stratified by somatic copy 

number amplifications in CCND1.

Extended Data Fig. 3 |. Supplemental model interpretation.
a, NeST-VNN interpretation of the Nutlin-3a response. Nodes indicate assemblies; node 

sizes indicate assembly sizes in numbers of proteins; node colors indicate degrees of 

importance for response prediction; squares inside the nodes indicate whether the assembly 

contains TP53 and MDM2, drug targets of Nutlin-3a. b, Scatter plots of gene importance 

based on copy number amplifications (CNA) in clinical vs. cell line contexts (x vs. y). c, 

same as panel b except the gene importance is based on copy number deletions (CND). d, 

Alteration frequencies of genes within core assemblies. Includes somatic mutations, CNA, 

and CND observed in the TCGA/ICGC pan-cancer data.
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Extended Data Fig. 4 |. Supplemental analysis of Histone-mediated transcription regulation 
(NeST:85).
a, Alteration frequency of NeST:85 genes across tumor types. Frequency (y-axis) and type 

(color) of genetic alterations in NeST:85 genes KAT6A, MYC, RUNX1, TBL1XR1, and 

TERT, displayed across tumor cohorts documented by the cBioPortal (x-axis). Downloaded 

from cbioportal.org on 14 July 2023. b, Waterfall plot illustrating NeST:85 prediction 

(y-axis) in PDX samples (x-axis, n = 41). The prediction was determined from the first 

principal component (PC1) of the in-silico activity of the NeST:85 assembly, thresholded 

(median ± stdev) to assign class labels (predicted sensitive/undefined/predicted resistant). 

Bar color represents true response of a PDX sample on a CDK4/6 inhibitor (ribociclib) 

based on the RECIST categories (yellow, resistance (PD); blue, sensitive (CR, PR, or SD)). 

c, Bar plot depicting fold increase in mRNA expression level due to overexpression of 
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specific gene targets relative to non-targeting control (NTC). Bars indicate means of repeat 

experiments, with technical replicate data points shown (n = 2). d, Full capillary western 

blot image of phospho-RB (pRB) level for nominal conditions (non-targeting control, NTC), 

TBL1XR1 overexpression, or KAT6A overexpression. A representative image from two 

independent experiments.

Extended Data Fig. 5 |. Supplemental analysis of NeST-VNN robustness.
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a, Predictive performance of NeST-VNN according to the number of genes used 

for prediction. Predictive performance is defined by the Pearson correlation between 

the predicted and actual drug responses. Each point represents the average predictive 

performance (y-axis) from 10 repeated experiments, with each experiment drawing a 

different random selection of genes of a given set size (x-axis). The error bar indicates 

the standard deviation of the predictive performance across these experiments. The orange 

point indicates the predictive performance (Pearson ρ = 0.33) using the GENIE gene 

panel (n = 360) for prediction. b, Correlation (Pearson ρ) between the importance of 

protein assemblies for model prediction and their enrichments for gene KOs that modulate 

palbociclib response (y-axis) as a function of the number of genes used for prediction (x-

axis). Each point represents the average Pearson correlation from 10 repeated experiments, 

with each experiment drawing a different random selection of genes of a given set size. 

The error bar indicates the standard deviation of the Pearson correlation across these 

experiments.
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Extended Data Fig. 6 |. Supplemental comparison of NeST-VNN versus Random Forest models.
a, Scatter plot of assembly importances from a Random forest-GSEA approach (x-axis) 

versus a NeST-VNN approach (y-axis). b, Scatter plot of assembly importance in the 

NeST-VNN model (y-axis) versus enrichment of gene KOs modulating cell fitness under 

palbociclib treatment (x-axis). Each dot represents an assembly (n = 130). Rho (ρ) indicates 

the Pearson correlation. c, Same as panel b except the y-axis indicating Random Forest-

GSEA importance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Architecture and features of the visible deep learning model.
a, Workflow depicting the construction of the NeST hierarchy of cancer protein assemblies 

by Zheng et al.19. AP–MS data for 61 cancer protein baits were combined with a 

compendium of other systematic proteomics and omics datasets to produce an integrated 

protein network. This network was analyzed by multiscale community detection to identify 

a hierarchy of nested protein assemblies. Those assemblies under mutational selection 

pressure in different tumor types were then identified, yielding the NeST map. b, VNN 

architecture for translating tumor genetic alterations (top) to drug responses (bottom) by 

genetic flow through the NeST map (middle). NeST is reduced to the 131 assemblies that 

involve genes measured by clinical gene panels (see text).
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Fig. 2 |. Predictive performance of the palbociclib model.
a, Scanning cell survival to measure a continuous AUC that is thresholded to assign class 

labels (sensitive, undefined or resistant). b, Waterfall plot showing the true dose responses 

of tumor cell lines, with colors indicating the predicted class of each. Predicted AUC is 

thresholded to produce class labels (sensitive, resistant; see text). c, Survival curve analysis 

for predicting the sensitive or resistant status of PDX samples. *P < 0.05 by log-rank 

test. d, Survival curve analysis for GENIE clinical trial patients treated with CDK4/6i plus 

endocrine therapy (left) or endocrine therapy alone (right). Colors denote class labels for 

predicted CDK4/6i-sensitive (blue) and CDK4/6i-resistant (yellow/orange) patients, with 

additional stratification of a strongly resistant category (orange). Patients not treated with 

CDK4/6i therapy are shown in gray. The hazard ratio was 0.21 for strongly resistant versus 

sensitive predicted subgroups. *P < 0.05 by log-rank test.
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Fig. 3 |. Interpretation of palbociclib response mechanisms.
a, NeST-VNN interpretation of the palbociclib response. Nodes indicate assemblies, 

whereas node sizes indicate assembly sizes in numbers of proteins. Colors indicate the 

degree of importance for response prediction: yellow, assemblies with importance > 

0.5; red, ‘core’ assemblies, which bring the additional requirement of FDR ≤ 0.1 and 

exclude redundant assemblies of lesser importance (Jaccard similarity > 0.5). Assemblies 

containing CDK4 or CDK6 are marked with small black squares. b, Protein interaction 

network defining the CDK holoenzyme complex I (NeST:110), which contains CDK4 and 
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CDK6. Edges represent biophysical protein–protein associations, with the edge thickness 

reflecting the strength of the evidence for association. c, Diagram of known functional 

associations among NeST:110 proteins in the context of cell-cycle progression. The cyclin 

D–CDK complex inhibits RB1 by phosphorylation, such that it no longer transcriptionally 

represses genes required for S-phase entry and subsequent DNA replication. d, Scatterplot 

of assembly importance in the clinical versus cell line contexts (x axis versus y axis). e, 

Scatterplot of assembly importance in the PDX versus cell line contexts (x axis versus y 
axis). f, Scatterplot of gene mutation importance in the clinical versus cell line contexts (x 
axis versus y axis). DREAM, dimerization partner, RB-like, E2F and multivulval class B; 

MAPK, mitogen-activated protein kinase; RTK, receptor tyrosine kinase; Reg., regulation; 

tx, transcription; med., mediated; stim., stimulation.
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Fig. 4 |. Systematic validation of palbociclib response mechanisms.
a, Schematic overview of CRISPR screens in MCF7 breast tumor cells. Individual sgRNAs 

targeting genes in protein assemblies were combined with palbociclib (CDK4/6i) or a 

second sgRNA targeting CDK4 or CDK6. Cells harboring the Cas9 nuclease were infected 

with lentiviral-packaged sgRNAs and propagated under selection. The palbociclib screen 

was from Carpintero-Fernández et al.33; CDK4 and CDK6 KO screens were newly 

generated in the present study. b, Violin plots illustrating the enrichment of assemblies 

for gene KOs modulating cell fitness in the context of palbociclib treatment, comparing 
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core assemblies defined by NeST-VNN versus the same number of nonimportant assemblies 

(randomly selected among those with importance < 0.5). **P < 0.01 by one-tailed Mann–

Whitney U test. GSEA76 was conducted to calculate enrichment scores. c, Left, violin plot 

illustrating the effects on cell fitness due to CRISPR KO of each gene in the top four 

enriched assemblies shown in b. Point color indicates the assembly relevant to each gene. 

Right, similar plot showing the effects for gene KOs in nonimportant assemblies (negative 

control). Cell fitness is z score normalized across all tested gene KOs, with z > 0 indicating 

increased fitness relative to average and z < 0 indicating decreased fitness. *P < 0.05 by 

two-tailed Mann–Whitney U test. d, Violin plots illustrating the enrichment of assemblies 

for gene KOs modulating cell fitness without palbociclib treatment, comparing the core 

assemblies versus the same number of nonimportant assemblies. NS, not significant by 

one-tailed Mann–Whitney U test. e, Scatterplot of cell fitness of gene KOs in the context of 

CDK4/6i (x axis) versus CDK6 KO (y axis). Genes shown are from the top four assemblies 

in b (n = 18). f, Violin plots illustrating the mean fitness across gene KOs in core assemblies 

versus the same number of gene KOs from nonimportant assemblies in combination with 

CDK4 KO. **P < 0.01 by two-tailed Mann–Whitney U test. g, Same as f, except gene KOs 

are combined with CDK6 KO. *P < 0.05 by two-tailed Mann–Whitney U test. In f and g, 

two core assemblies did not have sufficient coverage in the gene panel; thus, six of the eight 

core assemblies were tested.
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Fig. 5 |. Exploring the NeST:85 histone-related assembly in the palbociclib response.
a, Network diagram of NeST:85 depicting the histone-mediated transcription regulation 

assembly. Edges show protein–protein biophysical associations, with the edge thickness 

corresponding to the strength of the evidence for association. Three subgroups of protein 

functions are indicated in boxes. b, OncoPrint illustrating the genetic alteration patterns 

of NeST:85 genes (rows) in patient tumors from the TCGA/ICGC (International Cancer 

Genome Consortium) pan-cancer cohort (columns) along with representative cell lines (far 

right columns). Genes are sorted based on relative importance for drug resistance and then 
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by alteration frequency (Freq) within each important or nonimportant group. c, ORs of 

important gene amplifications (amp) in NeST:85 with respect to palbociclib resistance in 

the TCGA/ICGC pan-cancer cohort. Error bars indicate the 95% confidence interval. d, 

Schematic overview of the CRISPRa gene overexpression screen. sgRNAs targeting the 

promoter regions of target genes were transfected into cells expressing the dCas9–VPR 

transcriptional activator. Effects were characterized by an EdU assay, which quantifies the 

number of cells undergoing active DNA synthesis, and by the phosphorylation status of 

RB, the molecular target of CDK4/6. Both palbociclib-treated and palbociclib-untreated 

conditions were examined. Created with BioRender.com. e, Cell microscopy images from 

an EdU incorporation assay for NTC (left), TBL1XR1 overexpression (middle) or KAT6A 
overexpression (right). EdU-positive cells indicating active DNA synthesis are stained in 

green versus nuclei stained in blue with DAPI. Images are shown for palbociclib-untreated 

(top) versus palbociclib-treated (bottom) cells. f, Bar plot depicting the fold increase in cells 

undergoing active DNA synthesis (S phase) due to overexpression of specific target genes (x 
axis) relative to NTC. *P < 0.05 by two-tailed Welch’s t test. Bars indicate mean; error bars 

indicate ±standard error; individual replicates are shown. Circle points indicate biological 

replicate 1 (n technical replicates = 3), and square points indicate biological replicate 2 (n 
technical replicates = 3). g, Capillary western blot analysis of phospho-RB levels for NTC, 

TBL1XR1 overexpression or KAT6A overexpression in palbociclib-treated or Palbociclib-

untreated (DMSO) conditions. A representative image from two independent experiments 

is shown. h, Bar plot depicting the fold increase in relative phospho-RB level (phospho-RB/

actin) for the overexpression of specific target genes (x axis) relative to NTC. *P < 0.05 by 

two-tailed Welch’s t test. Bars indicate mean; error bars indicate ±standard error; individual 

replicates are shown. Circle points indicate biological replicate 1 (n technical replicates = 3), 

and square points indicate biological replicate 2 (n technical replicates = 4).
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