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Abstract

Eye tracking provides direct, temporally- and spatially-sensitive measures of eye gaze. It can 

capture visual attention patterns from infancy through adulthood. However, commonly used 

screen-based eye tracking (SET) paradigms are limited in their depiction of how individuals 

process information as they interact with the environment in “real life”. Mobile eye tracking 

(MET) records participant-perspective gaze in the context of active behavior. Recent technological 

developments in MET hardware enable researchers to capture egocentric vision as early as 

infancy and across the lifespan. However, challenges remain in MET data collection, processing, 

and analysis. The present paper aims to provide an introduction and practical guide to starting 

researchers in the field to facilitate the use of MET in psychological research with a wide range 

of age groups. First, we provide a general introduction to MET. Next, we briefly review MET 
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studies in adults and children that provide new insights into attention and its roles in cognitive and 

socioemotional functioning. We then discuss technical issues relating to MET data collection and 

provide guidelines for data quality inspection, gaze annotations, data visualization, and statistical 

analyses. Lastly, we conclude by discussing the future directions of MET implementation. Open-

source programs for MET data quality inspection, data visualization, and analysis are shared 

publicly.

1. Introduction

Eye movements provide a window into one’s perception, cognition, and visually-guided 

behavior. Eye movements can indicate the deployment of visual attention (Henderson, 

2003). Attention, in turn, acts as a processing mechanism that filters out excessive 

information from the environment by biasing selection based on the individual’s current 

goals (Desimone & Duncan, 1995) and affective states (Todd et al., 2012). Visual 

experiences influence downstream cognition, learning, action, and affect (Crick & Dodge, 

1994). Controlled laboratory experiments often study visual attention in isolation. However, 

in everyday life, visual attention is closely linked to the individual’s ongoing behavior and 

experiences of the physical and social environments (Franchak, 2020a; Hayhoe & Rothkopf, 

2011). While we have gained tremendous insights from screen-based tasks, without studying 

attention in situ, we can only approximate how attention, action, and social information 

dynamically influence each other in real-time and in real-life environments.

Head-mounted, or mobile eye tracking (MET), records eye movements embedded in an 

individual’s free-flowing behaviors as they interact with the environment. The technology 

has been pioneered in adults since the early 1900s (Land, 2006). MET systems have 

become more portable and robust with technological advancement. This recent development 

facilitates research into attention during active visual exploration (Ballard et al., 1997), 

especially in infants and young children (Franchak, 2017; Franchak, 2019). MET typically 

consists of a scene camera that captures the wearer’s first-person view and one or two 

eye cameras that support monocular or binocular eye tracking, respectively. The MET 

system records the wearer’s gaze direction and maps the three-dimensional gaze point to the 

two-dimensional space of the scene camera, allowing researchers to visualize the point of 

gaze overlaid on the scene camera recording (Macinnes et al., 2018).

The use of MET yields several key advantages. Compared to video recordings, MET 

provides a more proximal, temporally and spatially sensitive measure of attention from the 

first-person perspective (Franchak, 2019; Franchak, 2020b; Fu & Pérez-Edgar, 2019; Pérez-

Edgar, MacNeill, & Fu, 2020). MET captures rich micro-longitudinal data by sampling 

looking locations within self-generated behavior for extended periods of time (see Section 6 

Data Visualization). MET data can then be used to probe within-person changes of attention 

over time and capture the moment-to-moment dynamics between the environmental inputs, 

individuals’ attention, and behavior (see Section 7 Data Analysis). Hence, MET studies may 

provide new understandings of human cognition operating within the individual’s active 

motor and social behaviors (Ballard et al., 1997; Gibson, 1979; Yoshida & Burling, 2011).
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The present paper provides an introduction and practical guide for MET data collection, 

processing, and analytic methods to new researchers in the field. Existing literature has 

highlighted the utility and advantages of MET (Franchak, 2019; Franchak, 2020a; Pérez-

Edgar, MacNeill, & Fu, 2020; Yoshida & Burling, 2011), technical challenges (Hessels, 

Niehorster, et al., 2020; Niehorster et al., 2020; Valtakari et al., 2021), and provided practical 

guides in MET data collection and data quality inspection (Franchak & Yu, 2022; Hooge 

et al., 2023; Niehorster et al., 2023; Slone et al., 2018). The present paper complements 

and extends existing method papers by providing a review of current MET methodologies 

and practical guidance that are applicable to MET research that covers a wide age span 

from infancy to adulthood. We will briefly review studies that illustrate the utility of 

MET as an integral tool for understanding attentional processes in locomotion, learning, 

and social interactions in adults, children, and infants (Section 2). This is followed by 

recommendations on MET data collection (Section 3), data quality assessment (Section 4), 

gaze annotation methods (Section 5), visualization of looking events (Section 6), and data 

analysis approaches (Section 7). Methods introduced in these sections are applicable to MET 

research with adults, children, and infants. Finally, we will discuss remaining challenges 

and future directions (Section 8). In addition to reviewing existing tools, the present 

paper also provides computer programs and example data for demonstrating methods for 

data quality assessment, data visualization, and data analysis (https://github.com/xiaoxuefu/

MET_methods). The example MET data were collected from two research projects: the 

iTRAC study that enrolled 5- to 7-year-olds and the ACTION study that involves infants at 4 

and 8 months of age. Descriptions of the two projects are provided in the GitHub repository. 

Table 1 also lists information on open-access MET data and data analytic tools provided by 

studies cited in the present paper.

2. The Utility of MET Technology

2.1. MET as a tool to examine cognition embodied in individuals’ sensorimotor systems

MET research has provided empirical evidence for embodied cognition (Ballard et al., 1997; 

Yoshida & Burling, 2011). The ecological approach suggests that visual attention operates in 

conjunction with a whole-body locomotor system (Gibson, 1979). Research has historically 

studied attention and active locomotor behavior as two separate, encapsulated systems. MET 

opens the opportunity for examining the “what” and “when” of visual attention during 

sequences of actions carried out during everyday activities (Hayhoe, 2017; Hayhoe, 2018; 

Hayhoe & Rothkopf, 2011) or other fieldworks (e.g., fly a plane: Socha et al., 2022; perform 

a clinical procedure: Wright et al., 2022). MET research in adults reveals the tight spatial 

and temporal coupling between attention, action, and task demands (Hayhoe et al., 2003; 

Land, Mennie, & Rusted, 1999). For example, when adults walk on complex terrain, they 

gaze at the point at which they would place their foot two steps ahead (Domínguez-Zamora 

& Marigold, 2019; Marigold & Patla, 2007; Matthis & Fajen, 2014), and adjust the timing 

of fixations to match the difficulty of foot placement. When walking over flat terrain, 

adults can navigate obstacles without the need to fixate (Franchak & Adolph, 2010). When 

adults navigate crowds, participants avoid eye contact as instructed by orienting both their 

heads and eyes towards the floor (Hessels et al., 2022). Hence, the synergistic eye-body 

coordination is constantly adjusted in real time based on in-the-moment behavioral goals.
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MET recordings in infants reveal that the development of gross motor (e.g., posture) and 

fine motor (e.g., manual object manipulation) skills shape infant attentional behavior. For 

example, crawling infants (13-month-olds) look mostly at the floor, whereas age-matched 

infants who walk can see more distal objects and people (Kretch, Franchak, & Adolph, 

2014; Luo & Franchak, 2020). Moreover, infants (12-month-olds) look more at their 

caregivers’ faces when upright and sitting, compared to when in a prone position (Franchak, 

Kretch, & Adolph, 2018). As infants’ fine motor skills mature, manual object explorations 

generate more salient and variable object images in the visual field (15 to 25 months). Visual 

inputs in the real world are maintained in infants (12 to 24 months) by consistently aligning 

the head and eyes while looking at objects (Borjon et al., 2021). The visual inputs facilitate 

learning of word-object associations (Bambach et al., 2018; Slone, Smith, & Yu, 2019; Yu 

& Smith, 2012). These studies collectively underscore the importance of studying visual 

attention within the developing sensorimotor system.

2.2. MET as a tool to capture social attention embedded in naturalistic interactions

The “second-person” or “person-centered” perspective emphasizes that social attention 

needs to be examined in the context of the individuals’ interaction with social partners 

(Fu & Pérez-Edgar, 2019; Pérez-Edgar, MacNeill, & Fu, 2020; Redcay & Schilbach, 2019; 

Risko et al., 2012). In real-life social interactions, eye gaze serves the dual function of both 

collecting and communicating information (Gobel, Kim, & Richardson, 2015; Nasiopoulos, 

Risko, & Kingstone, 2015). By recording visual attention during real-time social behaviors, 

MET is a unique tool for understanding the dual function of eye gaze. For example, MET 

studies found that adults tend to avoid directly looking at strangers when engaging in 

first-person social interactions, compared to being passive observers (Foulsham, Walker, & 

Kingstone, 2011; Freeth, Foulsham, & Kingstone, 2013; Laidlaw et al., 2011). The behavior 

might be driven by the implicit understanding of social customs and the effect of gaze in 

delivering social information. However, there are cultural differences in social attention, 

such that East Asians engaged in more mutual gaze than Western Caucasians during face-

to-face conversations (Haensel, Smith, & Senju, 2022). Adults also utilize eye gaze as 

social communicative cues. For example, when verbal instructions for a task activity are 

ambiguous, participants are more likely to follow the gaze of their social partners compared 

to when given unambiguous verbal instructions (Macdonald & Tatler, 2013). Hence, social 

attention is context-driven and goal-directed.

MET is also an indispensable tool for understanding the coupling between attention and 

affective behavior. Vallorani et al. (2022) showed that among 5- to 7-year-olds, a child’s 

expression of positive affect predicts a greater likelihood of looking at peers during dyadic 

free play. Social attention, in turn, is linked to a greater likelihood of the child expressing 

positive affect when the peer is expressing neutral affect. Existing MET studies in adults and 

children underscore the importance of studying social attention nested in the individuals’ 

affect and social experiences (Fu & Pérez-Edgar, 2019; Pérez-Edgar, MacNeill, & Fu, 2020). 

One application of measuring social attention embedded in real-life interactions is to study 

threat-related attention bias linked to risk for internalizing symptoms (Fu & Pérez-Edgar, 

2019). Behavioral inhibition, a temperament profile characterized by heightened vigilance 

and reactivity to novelty in infancy and social reticence in childhood, is a robust risk factor 

Fu et al. Page 4

Behav Res Methods. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for anxiety disorders (Chronis-Tuscano et al., 2009; Clauss & Blackford, 2012). During a 

relatively benign social encounter, children (partially overlapping sample as Vallaroni et al., 

2022) with high behavioral inhibition show greater attention avoidance towards an adult 

stranger (Fu et al., 2019). Moreover, children with an attention profile characterized by 

avoidance to an adult stranger exhibit greater internalizing symptoms even when controlling 

for their behavioral inhibition level (Gunther et al., 2022). When encountering higher social 

threat (i.e., an adult wearing a “scary” mask), children with high behavioral inhibition 

showed more attention toward the stranger (Gunther et al., 2021). Together, these findings 

highlight the importance of studying threat-related attention in the context of naturalistic 

interactions, as the nature of threat context can influence attention patterns.

Moreover, developmental scientists have used MET to study how learning emerges from 

free-flowing interactions in infant-caregiver dyads. Joint attention (JA) is a key conduit for 

language learning. JA reflects children’s ability to coordinate attention with their social 

partners, creating a critical context for language acquisition (Suarez-Rivera et al., 2022; 

Tomasello & Farrar, 1986). Traditional laboratory tasks assess infants’ ability to achieve JA 

by focusing on visual attention patterns, encompassing face looking, gaze following, and 

object looking (Brooks & Meltzoff, 2005; Tomasello & Farrar, 1986). In contrast, through 

studying infant-parent free-flowing play behaviors, MET studies in infants and toddlers (9 

to 48 months) show that it is the hand-eye coordination between infants and caregivers, 

not infants’ visual attention alone, which contributes to the formation of JA (Abney et 

al., 2020; Yu & Smith, 2013, 2017a, 2017b; Yurkovic-Harding et al., 2022). Parents are 

more likely to name and touch the toy during bouts of JA, and the multimodal behavior 

increases infants’ sustained attention to the objects and facilitates real-time learning of the 

word-referent association (Chen, Houston, & Yu, 2021; Suarez-Rivera, Smith, & Yu, 2019; 

Yu & Smith, 2012). As infants actively interact with the environment through sensorimotor 

(e.g., hand-eye) coordination, they create idiosyncratic inputs for learning (Smith et al., 

2018). Hence, MET provides a tool for understanding the formation and characteristics of 

the environmental inputs from the first-person perspective, and the downstream impacts of 

these inputs on cognitive development (Yoshida & Burling, 2011).

3. MET Data Collection Considerations

Decisions on eye-tracker hardware and MET task procedures are driven by researchers’ 

requirements regarding 1) participant characteristics, including age, 2) freedom of 

movement, and 3) data collection environment, such as in controlled laboratory settings or 

less controlled indoor or outdoor environments (e.g., homes and streets). While the hardware 

choices and study procedures may vary, a common goal for eye-tracking research is to 

safeguard data quality, defined as the reliability, validity, and availability of usable data 

(Hessels & Hooge, 2019; Niehorster et al., 2018). Disruptions of pupil detection (due to 

factors such as ambient lighting, headset slippage, and eye makeup) and the alignment of the 

headset relative to the participant’s head (due to movement and slippage) negatively impact 

data quality (Hessels et al., 2022; Niehorster et al., 2020).

Calibration is a critical procedure for obtaining high data quality. The commonly used 

video-based pupil-corneal reflection (P-CR) eye tracker records the relative locations of the 
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pupil and corneal reflection. Calibration involves mapping the recorded pupil and corneal 

reflection locations when the gaze was directed to the calibration targets to the spatial 

locations of the calibration stimuli (Blignaut et al., 2014). Poor calibration reduces the 

validity of MET data. Furthermore, care needs to be taken to ensure that experimental 

manipulations do not create differential impacts on MET data quality between conditions 

(Hessels et al., 2022). While calibration-free MET devices are commercially available 

(e.g., Tonsen, Baumann, & Dierkes, 2020), we recommend researchers evaluate different 

calibration options based on participant age and experiment needs. We include information 

on calibration here, as gaze-estimation accuracy of the calibration-free MET device is yet to 

be published for children and infants. This section will discuss hardware setup, calibration, 

and study design issues in example research scenarios based on study considerations on 

1) participant characteristics, 2) freedom of movement, and 3) environment. Additional 

guidance on MET setups is provided in Valtakari et al. (2021) and Slone et al. (2018) for 

adult and child participants, respectively.

3.1. MET data collection with adults and older children in controlled laboratory 
environments

Collecting MET data in older participants in controlled environments allows for greater 

flexibility in hardware setups given the minimal customization required for “out-of-the-box” 

eye-trackers and participants’ better tolerance and abilities to cooperate (compared to infants 

and toddlers). One main consideration that determines MET setups is the participants’ 

freedom of movement. Published studies in participants above 5 years old commonly 

connect the headset directly to a computer device (e.g., laptop) for data recording and 

storage (e.g., 5 to 69 years old: Fu et al., 2019; Hessels et al., 2022; Matthis, Yates, & 

Hayhoe, 2018; Woody et al., 2019). This setup can be burdensome for the participants, 

and the restrained movement can affect eye-body coordination, a key construct of interest 

in many MET studies. Newer setups involve connecting the headset to a lightweight 

smartphone device, which functions as a recording and local storage device (Nasrabadi 

& Alonso, 2022; Tonsen, Baumann, & Dierkes, 2020).

MET research with adults and children who can be instructed to fixate calibration targets 

has greater flexibility in calibration methods. In a typical calibration session, participants 

are asked to look at calibration points displayed on a screen, comparable to screen-based 

eye tracking (SET) calibration (e.g., Fu et al., 2019; Kothari et al., 2020) or a calibration 

marker fixed on a naturalistic object (e.g., Niehorster et al., 2020; Woody et al., 2019). 

Studies in this age range may employ online calibration, where the mapping between 

pupil-corneal-reflection locations and the locations of the calibration points take effect 

immediately. Offline calibration performs the spatial mapping after data collection. Hence, 

the advantage of online calibration is allowing for real-time data monitoring and providing 

the opportunity for just-in-time recalibration.

We recommend a few best practices for performing both online and offline calibration 

accuracy:

1) Display calibration targets at a distance comparable to the distance between the 
participant and primary areas of interest (AOIs). AOIs refer to the targets of the 
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participants’ looks that will be annotated for data analysis (also see “5. Gaze Annotations”). 

Parallax error is a gaze estimation error introduced when the distance between the wearer 

and the AOI (i.e., the fixation plane) is different than the distance between the wearer 

and the calibration target (i.e., the calibration plane). This causes an offset between the 

true gaze location and the estimated gaze location on the fixation plane and the scene 

camera coordinate space, which bias the experimenter’s identification of actual gaze location 

(Mardanbegi & Hansen, 2012; Valtakari et al., 2021). Hence, it is recommended that the 

calibration targets be presented at the same approximate location of the AOIs. If participants 

will engage in various viewing distances during the experiment, it is best to perform multiple 

calibration sessions to accommodate the distance changes or employ a mid-range distance if 

there is a lack of experimental control on the distance change.

2) Present multiple calibration targets that cover the participant’s entire field of view 
(FOV). We use FOV here to refer to the view of the participants captured by the scene 

camara. The FOV tends to be smaller than the participant’s visual field, and it is not 

necessarily equivalent to the reported FOV specifications of a given MET model, depending 

on factors such as viewing distance, participant’s posture, and the camera angle. Five or 

more calibration targets can be presented across the participant’s FOV, comparable to SET. 

This step is to ensure that calibration accuracy is maintained from the center of the FOV to 

peripheral locations. The experiment should verify that participants do not turn their heads 

to orient toward peripheral targets, which will result in target clustering in the center of the 

FOV.

3) Perform a validation procedure (i.e., calibration check) at the beginning and end of 
the experiment session, and after any MET headset movement. A validation procedure 

is conducted by directing participants to look at specific target locations. Similarly, the 

targets should be presented in a location that is comparable to the location of the AOIs. 

Conducting multiple calibration checks during the experiment helps to ensure that the 

data quality is maintained throughout the experiment. The headset slippage issue can be 

effectively prevented through monitoring online calibration accuracy and recalibrating to 

correct accuracy drift (Niehorster et al., 2020). The validation procedure also provides 

additional calibration points for corrections in offline calibrations. For example, if the eye 

gaze capture is perturbed by headset movement, the experimenter needs to adjust the eye 

camera and perform calibration checks. The points of gaze obtained post-adjustment can be 

used to update the spatial mapping in offline calibration. Finally, performing per-participant 

validation checks allows reporting of the accuracy metric (see “4.1. Accuracy”), which can 

also be used as a control variable in analyses (Franchak & Yu, 2022).

3.2. MET data collection in infants and toddlers

Existing MET studies with infants and toddlers (4 to 26 months old) in laboratory- (e.g., 

Franchak et al., 2011; Schroer & Yu, 2022; Yu & Smith, 2012, 2017a) and home-settings 

(Bradshaw et al., 2023) have largely followed a common set of equipment setup and 

calibration procedures. The headset needs to be stably placed on the head to minimize 

the negative effect of slippage on data quality (Niehorster et al., 2020). Researchers may 

customize the “out-of-the-box” eye tracker by affixing it on a tailored headband, cap, or 
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beanie for secure placement. For young infants (< 8 months), we recommend utilizing a 

series of headsets that can accommodate different head sizes, head shapes, and hair textures. 

Some headsets can be connected to a smartphone to increase children’s mobility (Schroer & 

Yu, 2022).

It is challenging to instruct infants and toddlers to follow calibration points. Hence, MET 

studies in this age group commonly implement offline calibration. The calibration procedure 

can be integrated into a child-experimenter play session during which the experimenter 

presents engaging calibration targets (e.g., toys and/or laser points) at various locations 

across the child’s FOV. The calibration target distance from the child and the child’s posture 

should match the specifications for the formal data collection. Researchers should closely 

monitor the eye image recording throughout data collection. Additional calibration(s) are 

required if the eye image capture is perturbed by headset movement. If the study involves 

interactions with an adult partner, such as a caregiver, the social partner can be trained 

in calibration target presentations to minimize disruptions during naturalistic interactions. 

After data collection, a trained researcher marks the calibration target locations on the scene 

camera recording where the child’s point of gaze is clearly identifiable and directed to the 

calibration target. An algorithm is then applied to map the pupil and corneal reflection 

locations with the specified calibration target locations (e.g., Hassoumi, Peysakhovich, 

& Hurter, 2019). The manual identification of points of gaze and automated mapping 

procedure are run iteratively to establish satisfactory calibration (Slone et al., 2018).

3.3. MET data collection outside controlled laboratory environments

MET studies have been conducted in naturalistic outdoor (adults: Foulsham, Walker, & 

Kingstone, 2011; Matthis, Yates, & Hayhoe, 2018) and indoor environments (infants at 

homes: Bradshaw et al., 2023; adults in an event hall: Hessels et al., 2022; a child in a 

museum: Jung, Zimmerman, & Pérez-Edgar, 2018; adults in a clinical setting: Wright et 

al., 2022). Factors that can then compromise MET data quality include a lack of control 

over ambient lighting, locations of the target objects (i.e., AOIs), and insufficient calibration 

procedures (Evans et al., 2012; Hessels et al., 2022). For example, infrared light from 

the sun when outdoors interferes with pupil and corneal reflection tracking. A remedy is 

to provide participants with an infrared-blocking visor (Matthis, Yates, & Hayhoe, 2018). 

The distance between the participant and different AOIs can greatly vary. This is both an 

advantage (greater visual selection) and a disadvantage (greater analytic complexity) of 

MET. In tasks where participants tilt their heads down, AOIs that are close to the participant 

and lower than eye level are captured in the lower part of the scene camera view, while 

farther objects are captured in the higher part of the scene camera view (Slone et al., 2018). 

Hence, appropriate scene camera positioning needs to be determined to ensure it can capture 

all AOIs in the study.

Offline calibration can be advantageous in less-controlled environments, given real-time data 

monitoring might not be possible. Offline calibration offers researchers the opportunity to 

update the spatial mapping between pupil and corneal reflection locations and the points 

of gaze directed to the calibration targets after pupil capture is altered by slippage, posture 
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changes, or lighting. The emerging calibration-free MET technology is also promising for 

maintaining acceptable accuracy in outdoor settings (Tonsen, Baumann, & Dierkes, 2020).

4. MET Data Quality Inspection

Eye-tracking data quality is quantified by accuracy, precision, and availability of usable data 

(or data loss) (Hessels & Hooge, 2019). Accuracy is operationalized as the distance (spatial 

offset) between the gaze location detected by the eye tracker and the actual gaze location 

measured in degree of visual angle. Precision indexes the level of noise in the eye-tracking 

data that produces spatial variability between gaze samples. Accuracy and precision provide 

an index of validity and reliability of the eye-tracking data (Hessels & Hooge, 2019). Data 

loss can be calculated using the number of valid gaze data points recorded and the expected 

number of samples based on the specified sampling frequency (Hessels & Hooge, 2019; 

Hooge et al., 2023; Niehorster et al., 2020).

As illustrated in Section Three, there are MET-specific data quality concerns relative to 

SET studies due to the less constrained nature of MET data collection. After the initial 

calibration, changes in illumination conditions, the distance between the participant and 

AOIs, and disruptions in the detection of pupil locations and corneal reflection can introduce 

errors (Franchak & Yu, 2022; Niehorster et al., 2020). Indeed, the accuracy and precision 

achieved from the initial calibration may not be maintained at the end of the experiment after 

unconstrained movement and headset slippage occurred (Niehorster et al., 2020; Santini 

et al., 2018). Compromised data quality could bias eye-tracking measurements and lead 

to false conclusions (Wass, Forssman, & Leppänen, 2014). Thus, it is critical to examine 

data quality before data analyses. This section will provide strategies for assessing MET 

data accuracy, precision, and data loss based on published definitions (Franchak & Yu, 

2022; Hessels & Hooge, 2019; Niehorster et al., 2020). We will also discuss strategies to 

make informed decisions on data analyses based on data quality assessments. An additional 

pipeline for computing these data quality indices is provided in (Hooge et al., 2023). The 

authors underscored the importance of inspecting synchronization between the eye and 

scene camera recordings before computing the data quality indices. While some MET 

systems provide a built-in function for synchronization, there could still be intermittent 

periods of asynchronization between the recordings of gaze and target location, which will 

bias the accuracy index (Hooge et al., 2023).

4.1. Accuracy

One off-the-shelf tool for calculating accuracy is GlassesValidator (Niehorster et al., 2023; 

Table 1). GlassesValidator is suited for data collection with adults and older children, as 

participants are required to look at fixation targets displayed on the poster that is included 

with the tool. The computation is automated and does not require manual annotations. 

Briefly, the poster contains arrays of ArUco markers (i.e., barcodes) that allow automated 

estimation of the participant’s viewing distance and gaze location. A fixation classifier 

is applied to determine the valid fixation (> 50ms duration) towards each fixation target. 

Accuracy is calculated as the deviation between the fixation target and the estimated gaze 
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location in degree of visual angle (i.e., the angle between the line from the eye to the fixation 

target and the line from the eye to the gaze location).

We provide an additional tool for calculating the spatial offset (in degree of visual angle) 

between the gaze location and the validation target that the participant is directed to look 

at. The tool can be applied to validation recordings obtained from adults or older children 

(Section 3.1) and calibrated recordings using offline calibration when online calibration 

is not possible (Sections 3.2 and 3.3). We provide both a MATLAB (https://github.com/

xiaoxuefu/MET_methods/tree/main/1.%20Accuracy) and an R shiny app version of the tool 

(https://john-franchak.shinyapps.io/Eye-Tracking-Accuracy-Calculator/). The spatial offset 

computation method is based on the definition described in Franchak and Yu (2022). Figure 

1 displays the MATLAB graphical user interface (GUI) and R shiny app for obtaining the 

spatial offset. The user can annotate target and gaze locations in the MATLAB GUI or the R 

shiny app. Both versions of the tool will compute the spatial offset for each frame based on 

user-specified target and gaze locations, the scene camera FOV and resolution specifications 

provided by the manufacturer. A lower spatial offset indicates better accuracy.

Participant-specific accuracy values are recommended for use in scientific reports and 

making analytical decisions. Participant-specific accuracy is likely to be worse (i.e., larger 

spatial offset) than manufacturer-reported values (Franchak & Yu, 2022; Niehorster et al., 

2020; Santini et al., 2018). Participant-specific accuracy is used to evaluate whether it is 

valid to determine looking towards AOIs specified for the study. The experimenter should 

determine the accuracy required to distinguish looking between AOIs. When viewing AOIs 

at a comparable distance as the validation target, the radius of the AOI, or the distance 

between two AOIs, should not be smaller than the distance between the target location 

and the actual point of gaze measured during validation. If the participant-specific accuracy 

is lower than required, data from the participant may be excluded or the AOI(s) may be 

adjusted for the participant. For example, the experimenter will determine looking to the 

person rather than the person’s face for participants with lower accuracy.

4.2. Precision

Precision can also be operationalized as the root mean squared error (RMSE) of sample-to-

sample deviation when a participant is assumed to fixate at the same location (Hessels 

& Hooge, 2019; Niehorster et al., 2020). A larger RMSE value indicates higher sample-to-

sample deviation, thus lower precision (Hessels & Hooge, 2019; Niehorster et al., 2020). 

GlassesValidator (Niehorster et al., 2023) provides precision indices using gaze points that 

are directed at the fixation targets on the poster provided with the tool. We provide a 

MATLAB program (https://github.com/xiaoxuefu/MET_methods/tree/main/2.%20Precision) 

for calculating sample-to-sample RMSE based on the published definition (Hessels & 

Hooge, 2019; Niehorster et al., 2020). The expected input data are x- and y-coordinates 

of gaze points when the participants were instructed to look at the same location (i.e., a 

target object), such as during a calibration procedure. User-input parameters are the scene 

camera specifications, the size of the target object, and the distance between the participant 

and the targe object.
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Less precise gaze data bias the parcellation of fixations and saccades, as they may 

erroneously suggest shifts in gaze locations when in fact the gaze remains stable (Wass, 

Forssman, & Leppänen, 2014; Wass, Smith, & Johnson, 2013). To minimize the impact 

of low precision, larger AOIs can be defined to allow for more error margins. In addition, 

data analysis can be less dependent on fixation or saccade categorization by computing the 

duration of continuous looking toward an AOI (further discussed in Section 5).

4.3. Data Loss

Data loss can be computed the proportion of data loss (the total amount of valid data 

points expected to be sampled based on the sampling frequency of the MET device minus 

the number of valid data points collected) over the total amount of expected data points 

(Niehorster et al., 2020). Data loss can occur when the eye tracker fails to detect the 

corneal reflection or pupil (Wass, Forssman, & Leppänen, 2014). This can be caused by 

blinking, lighting, eye camera being moved out of alignment, or other eye tracker technical 

errors. Hence, with more data loss, shorter durations of AOI looking could be caused by 

MET failing to detect eye gazes, rather than the participant not looking at the AOI (Wass, 

Forssman, & Leppänen, 2014). Hence, to accurately quantify AOI looking, it is important to 

measure the amount of both valid and invalid MET data. The amount of AOI looking can 

then be indexed as the proportion of time looking at the AOI over the total amount of valid 

MET data recorded (rather than the total recording duration).

5. Gaze Annotations

5.1. Automated Annotations

One challenge in processing MET data is fixation classification. During MET data 

collection, the participant moves, the AOI moves, or both move in a three-dimensional 

space. Hence, it is challenging to classify different types of gaze events, including fixations, 

saccade, and gaze pursuit. For example, during a bout of fixation, the AOI being foveated 

moves when the participant’s head moves. Classifier algorithms are available for automatic 

fixation detection (GazeCode: Benjamins, Hessels, & Hooge, 2018; Kothari et al., 2020; 

Table 1). While the classifiers yielded substantial agreement with human coders, it remains 

challenging to accurately classify gaze pursuit, defined as the tracking of an AOI moving 

across the scene camera view (Kothari et al., 2020). However, differentiating fixations from 

other gaze events or counting the number of fixations might not be the key aims of most 

MET studies. Depending on the research questions, it might be sufficient to measure the 

proportion of time, or frames during which, the gaze was directed to an AOI (Franchak & 

Yu, 2022). This dependent variable can be computed using either manual annotations by 

human coders or automated classifiers.

Another challenge in MET gaze annotation is identifying the AOI being foveated (Brône, 

Oben, & Goedemé, 2011). The AOI coordinates need to be defined in the participant-

specific egocentric space. They also need to be defined frame-by-frame as the AOI’s 

appearance can change due to motion, viewing perspectives, and occlusion. Researchers 

have traditionally conducted manual AOI annotations (e.g., Franchak & Adolph, 2010; 

Franchak et al., 2011). The development of open-source deep learning algorithms has made 
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it possible to automate AOI identification. Off-the-shelf computer vision algorithms enable 

automated detection of human faces and bodies in the scene camera view. Once the AOIs 

(e.g., bounding boxes for faces) are specified, an additional procedure is applied to map the 

gaze locations (synchronized with the scene camera recordings) to the AOIs (Duchowski et 

al., 2019; Gehrer et al., 2020; Haensel, Smith, & Senju, 2022; Hessels, Benjamins, et al., 

2020; Jongerius et al., 2021). Jongerius et al. (2021) found high agreement (Cohen’s kappa 

≥ .89) between automated annotation of face looking using OpenPose (Cao et al., 2017) and 

manual annotations by trained coders.

However, computer vision AOI detection can be more challenging for addressing certain 

research goals than others. A common application has been detecting faces in MET 

recordings collected during laboratory-controlled face-to-face interactions (Duchowski et al., 

2019; Gehrer et al., 2020; Haensel, Smith, & Senju, 2022; Hessels, Benjamins, et al., 2020; 

Jongerius et al., 2021). In contrast, Long et al. (2022) applied OpenPose to head-mounted 

camera recordings obtained from infants during parent-infant free play of toys to detect 

parents’ wrists as an index of hand presence, as hands are often occluded by the toys. 

They found more misses in detecting the presence of hands than faces. OpenPose detection 

of human figures is more challenging during unrestrained locomotion when the distance 

between the wearer and the AOIs varies moment-to-moment (Hessels, Benjamins, et al., 

2020). Furthermore, additional training on deep learning models using manually annotated 

data is required when the AOIs are novel and/or complex objects (e.g., toys; Bambach et 

al., 2016). Together, automated AOI annotations are faster and can be more objective than 

manual annotations (Jongerius et al., 2021). The increased data processing compacity can 

advance our knowledge about the characteristics of visual inputs in the natural environment 

(Smith & Slone, 2017). However, off-the-shelf computer vision algorithms might not be 

applicable to all detection tasks. They are also not error-free. Depending on the task 

requirement and error tolerance, manual annotations might still be necessary for providing 

training datasets (Bambach et al., 2018) or to complement the automated detection (Haensel, 

Smith, & Senju, 2022).

5.2. Manual Annotations

Manual annotations of AOI looking remains the most accessible and robust method for 

data generation especially for developmental MET applications (Franchak & Yu, 2022). 

Manual AOI annotations are flexible. As discussed above, it might be a necessary procedure 

for annotating complex and irregular AOIs. Manual annotations can also be applied to 

additional events and behaviors that take place simultaneously. Manual annotations are 

accessible, as it can be carried out in any open-source annotation software, including 

Datavyu (Datavyu Team, 2014), ELAN (ELAN, 2018), and BORIS (Friard & Gamba, 

2016). Indeed, manual annotations have been widely implemented in studies using a variety 

of MET systems with both adult (e.g., Laidlaw et al., 2011; Rogers et al., 2018) and child 

samples (e.g., Franchak et al., 2011; Fu et al., 2019; Woody et al., 2019).

There are two approaches to manual annotations of AOI looking events. One method is 

manually annotating AOI looking events based on the gaze overlay video entered into 

annotation software. Researchers may implement a cut-off duration to exclude short looks. 
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For example, an event of continuous looking is conventionally defined as looking at the AOI 

for two or three successive video frames at 30 Hz, a duration of 66.7 to 99.9 milliseconds 

(e.g., Franchak & Adolph, 2010; Franchak et al., 2011). The second approach is to apply 

fixation classifier algorithms to segment the gaze overlay videos into frames based on the 

detection of stable gazes. Then trained human coders annotate the AOI(s) being looked at in 

the video segments (e.g., Yurkovic-Harding et al., 2022; Yurkovic et al., 2021). We provide a 

MATLAB-based ROI coder program (https://github.com/JohnFranchak/roi_coder) that aids 

manual AOI annotations. The computer-program-guided approach can help reduce coders’ 

cognitive effort and thus reduce human error.

A well-designed gaze annotation manual helps to ease the burden of manual annotations, 

reduce human errors and biases, and enhance inter-coder reliability. The manual contains 

descriptions of each code and instructions for the coders on how to score the looking 

behavior and any additional event of interest. For the looking behavior code, the manual 

defines the AOI codes (e.g., “b” = body looking) and provides instructions for annotating the 

onset and offset time of a bout of continuous look to the AOI. Adding to existing guidance 

(Franchak & Yu, 2022; Slone et al., 2018), we provide best practices for manual annotation 

of AOI looking events. Best practices for annotating general behavioral data can be accessed 

at https://datavyu.org/user-guide/best-practices.html.

Create visual aids for manual annotations.—Researchers can superimpose a bullseye 

on the gaze overlay video to indicate gaze location in addition to the crosshair that presents 

the point of gaze. The size of the circle can be set based on the tolerance of accuracy 

for manual annotations. We provide a MATLAB program (https://github.com/xiaoxuefu/

MET_methods/tree/main/3.%20Gaze%20Coding%20Error%20Tolerance) for estimating the 

visual angle of circles in the bullseye (i.e., error tolerance). An example of error margin 

setting is provided in Figure 2 (also see Franchak & Yu, 2022 Figure 4B). Additionally, the 

gaze overlay video must be synchronized with additional sources of video recordings, such 

as room cameras. The composite video displays the participant’s behavior from multiple 

angles and perspectives, thus allowing coders to use contextual information to determine 

gaze shifts and locations (Slone et al., 2018).

Downsize data to code based on research questions.—Manual annotations can be 

selective, given the large volume of MET data collected and the time-intensive processing of 

manual annotations. AOI looking events can be coded only during events of interest, instead 

of the entire recording (e.g., Franchak & Adolph, 2010). Another data-reduction method is 

to down-sample video frames. The typical sampling frequency of the scene camera is from 

30Hz to 120Hz. For example, a 5-minute recording could provide a range of 9,000 to 36,000 

frames to code. Based on initial inspections of the data, researchers can choose to resample 

the recordings to a lower frequency if AOIs are relatively big and sparse and gaze shifts 

within AOIs are not a primary interest of annotations. Researchers can code short segments 

from several participants at both resampled and the original frequency to make sure that the 

reduced frame rate does not bias the percentage scores of looking durations.

Annotate valid and invalid AOI looking events and data.—Researchers should 

compute proportion scores of accumulated AOI looking durations, with the total valid AOI 
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looking duration as the denominator. This strategy is to reduce biases produced by data 

loss (discussed in Section 4.3) and allow for comparisons of accumulated looking durations 

across AOIs. Thus, in addition to annotating valid AOI looking events (i.e., continuous 

looking exceeding a threshold duration), coders should annotate frames with invalid AOI 

looking (e.g., looking duration below the threshold) and data loss (i.e., no visible point of 

gaze).

Code-Check-Revise-Check.—Manual annotations are an iterative process. After a 

preliminary annotation plan is conceived, researchers should conduct test annotations of 

representative recording segments from different participants. This is to make sure that the 

data generated can address research questions and that satisfactory inter-rater reliability can 

be easily achieved. Researchers can then go back to revise the annotation methods before 

annotating the entire recordings. After formal annotation protocol is launched, researchers 

should periodically check reliability to detect and resolve significant discrepancies between 

coders. Percentages of inter-coder agreement and kappa values need to be calculated for 

reliability assessment and scientific reports.

6. Data Visualization

The gaze annotation step produces a long-format dataset that contains time series of 

annotated looking events. For example, each row may contain information, such as onset 

time, offset time, and the AOI. In addition to AOI looking events, Researchers may have 

coded other events, such as motor activities recorded from the room camera. The multiple 

types of events, which may be generated from the same individual but different modalities 

(e.g., looking events and motor behavior), and/or from the same modality but different 

individuals (e.g., looking events from two individuals during a dyadic interaction). Data 

visualization is a critical step for exploring the temporal characteristics of AOI looking 

events from an individual and/or the temporal relations between two or more data streams 

(e.g., time series of AOI looking and motor behavior). This section will demonstrate the 

methods and utility of data visualization. The example data and the programs for producing 

the visualization are shared with the paper.

6.1. Example 1 (iTRAC): Visualize individuals’ looking behavior nested in dyadic 
interactions

Visualizations inform the temporal dynamics of a child’s looking behavior nested 

in dyadic interactions. Figure 3 (https://github.com/xiaoxuefu/MET_methods/tree/main/

4.%20Visualization/Figure3) presents data collected from a parent-child dyad as they 

completed a series of challenging tangram puzzles (MacNeill et al., 2022). The visualization 

explores the child’s gaze patterns as the parent displays various types of parenting behavior 

(characterized as positive reinforcement, teaching, directives, and intrusion). Figure 3A 

is plotted using the MATLAB toolbox timevp (https://github.com/xiaoxuefu/timevp; Yu, 

Yurovsky, & Xu, 2012) to show how an individual child’s AOI looking events and parenting 

behavior co-evolve during the task. It shows that there are more teaching behaviors at the 

beginning of the puzzle task for the dyad. As the time pressure increased as part of the task 
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design, there are more directives and positive reinforcement towards the end of the task. 

Bouts of looking to the parent become shorter in the second half of the task.

State space grids (SSGs) provide a tool to display how dyadic behaviors vary over time 

by plotting how members of the dyad move within a figurative space (Hollenstein, 2013; 

Lewis, Lamey, & Douglas, 1999). Tutorials for using GridWare (https://www.queensu.ca/

psychology/adolescent-dynamics-lab/state-space-grids; Lamey et al., 2004) are provided in 

Hollenstein (2013). Figure 3B demonstrates the utility of SSGs for depicting the temporal 

dynamics between child looking behavior and parenting behavior. The AOI categories of the 

child looking events and the types of parenting behaviors form a 5×4 grid (i.e., 20 possible 

dyadic states). We examined the dyad attractor patterns, or states that pull the dyadic system 

from other states under particular conditions (Thelen & Smith, 1998). GridWare can be 

used to identify attractors by calculating the average mean duration for a predefined grid 

sequence, or the average of individual cell means of interest. We characterized attractor 

strength in parent-focused/controlling parenting states (i.e., the child is looking at the parent 

while the parent is engaging in directive and intrusive behaviors). In the example, the 

dyad spent 26.6% of the time, for a total of 37.49 seconds, in the parent-focused/controlling-

parenting states (highlighted in yellow). The average mean duration in these states is 0.85 

seconds. Additionally, SSGs help visualize and quantify the patterns of temporal sequence 

and transition across states (Hollenstein et al., 2004). The level of transition across states, or 

dyadic flexibility in this example, is indexed by the number of cells visited, the number of 

transitions, dispersion (0 to 1), and transitional entropy (Lewis, Lamey, & Douglas, 1999), 

with higher values indicating higher flexibility. The example dyad visited 9 cells, made 186 

transitions across cells, had a dispersion of 0.83, and an entropy value of 42.22 from looking 

at the puzzle as the parent engaged in teaching to looking to the parent’s reference as the 

parent engaged in directive and intrusive behaviors.

6.2. Example 2 (ACTION): Visualize the coordination of multimodal behaviors in triadic 
parent-infant-object interactions

Visualization helps generate higher-order constructs that are defined based on the temporal 

relations of two or more event types. An example of such construct is joint attention (JA), 

the ability to coordinate attention with a social partner to an object or event of interest 

(Tomasello & Farrar, 1986). JA can be measured as the temporal alignment when two 

individuals are looking at the same object during triadic interactions (i.e., child-parent 

toy play). Visualizing moment-to-moment temporal relations between looking and bodily 

behaviors in the dyads over the course of interaction helps 1) identify the occurrence of 

JA and 2) inform the emergence and impact of JA in real time as the interaction unfolds 

(Yu & Smith, 2013; Yu & Smith, 2016; Yu & Smith, 2017a, 2017b; Yu, Suanda, & Smith, 

2019). Figure 4 (https://github.com/xiaoxuefu/MET_methods/tree/main/4.%20Visualization/

Figure4) displays a representative segment of the MET data stream from an 8-month-old. 

The timevp toolbox is used to plot events of interest. The top two rows display raw gaze 

annotation data of AOI looking events from the infant and his mother. Consistent with 

existing findings, the infant rarely looked at the social partner (and did not look at the face) 

during toy play compared to the parent (e.g., Abney et al., 2020; Yu & Smith, 2017a). The 

third row presents bouts of JA of the toys. For data exploration, we include shorter bouts 
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of JA (between 0.3 to 0.5 seconds) than Yu and Smith (2017a) considering that the dyad is 

given a larger variety of toys to play with than the more controlled laboratory setting. The 

last four rows represent the four combinations of with- and across-individual attention-motor 

coordination. The three vertical boxes highlight example CVA bouts that emerged when 

either the partner was holding the toy or both. Consistent with published MET findings (Yu 

& Smith, 2013, 2017a, 2017b), the figure shows that JA bouts emerge in the context of 

infant-parent attention-motor coordination.

7. Data Analysis

7.1. Statistical analysis with aggregated scores

Informed by data visualization, looking event data can be aggregated by AOI and task 

condition for each participant for subsequent data analysis. Examples of these aggregated, 

high-order measures include those computed based on the individual’s AOI looking events, 

such as the number of AOI looks (e.g., Fu et al., 2019; Woody et al., 2019), the temporal 

characteristics of an individual’s AOI looking events, such as sustained attention, defined 

as AOI looks that are longer than 3 s (e.g., Yu, Suanda, & Smith, 2019), and the temporal 

relations of two individuals’ AOI looking events, such as JA (e.g., Yu, Suanda, & Smith, 

2019). Statistical analysis methods, such as Pearson correlation, linear regression, analysis 

of variance (ANOVA), and linear mixed effects modeling, can be applied to the aggregated 

measures. The distribution of the looking behavior measure needs to be carefully inspected 

so that appropriate data transformation and statistical modeling methods can be selected for 

non-normally distributed outcome variables.

Several published studies have used analytical strategies using aggregated measures 

computed based on data visualization (e.g., Abney et al., 2020; Fu et al., 2019; MacNeill et 

al., 2022; Suarez-Rivera, Smith, & Yu, 2019; Woody et al., 2019; Yu & Smith, 2016). For 

example, using SSGs, MacNeill et al. (2022) examined dyadic states based on co-occurrence 

of child looking at specific AOIs and designated parenting behavior types (e.g., Figure 

4). Dyadic states were combined to generate two types of attractors: task-focused/positive 

parenting states and parent-focused/controlling parenting states. Attractor strength, the 

average mean duration that the child-parent dyad visited each of the two states, is computed. 

To account for the positive skewness of the attractor strength measures, a generalized linear 

model with gamma distribution and a log link (Breen, 1996) is fitted to test whether child 

age, behavioral inhibition, and parent anxiety symptoms predicted the attractor strengths. 

The results reveal that child age and parent anxiety levels jointly predicted parent-focused/

controlling parenting attractor strength.

In another example, Suarez-Rivera, Smith and Yu (2019) examined the impacts of parent 

speech and parent manual object manipulation during bouts of JA on infant sustained 

attention towards the objects during toy play. For each infant, mean proportion scores 

are computed on infant looking events that feel into five categories defined based on the 

temporal alignment of multimodal measures: infant looking to the toy without JA, JA with 

no additional parent behaviors, JA with parent touch of the toy, JA with parent speech, and 

JA with both parent touch and talk. The resulting mean proportion scores of infant looks are 

log-transformed to account for the positive skewness. A linear mixed effect model is fitted 
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with the transformed scores as the outcome, event categories as the fixed effect, and random 

intercepts specified to account for individual differences in the durations of the looking 

events. The results indicate that infants’ looking to the objects is longest (i.e., greater 

sustained attention) during bouts of JA that include both parent touch and speech. The 

aggregated summary scores effectively characterize important behaviors in individuals or 

dyads. However, analyses with aggregated measures may obscure within-subjects temporal 

effects that describe how looking behavior changes over time.

7.2. Statistical analysis to model the temporal dynamics of looking events

MET produces a high-density repeated sampling of gaze locations over a prolonged period 

of data collection, providing a unique opportunity for examining the temporal dynamics of 

looking behavior. The location and duration of looking behavior change over time within an 

individual in response to internal and/or external influences. The intensive longitudinal data 

analysis (Bolger & Laurenceau, 2013) and dynamic systems modeling (Ram & Gerstorf, 

2009) approaches provide statistical tools for understanding the patterns and dynamics of 

intraindividual changes in micro- (e.g., in seconds) and macro-timescales (e.g., in years), 

investigating factors that modulate the temporal dynamics, and characterize groups of 

individuals based on the trajectories of changes. The modeling methods have been widely 

implemented using behavioral observation and self-report data (e.g., Benson et al., 2019; 

Cole et al., 2020; Morales et al., 2018; Shewark, Brick, & Buss, 2020), whereas applications 

to MET data are limited. However, there is increasing emphasis on a spline-based approach 

(e.g., Li et al., 2015) to model moment-to-moment nonlinear time-varying effects on AOI 

looking events (Yamashiro, Shrout, & Vouloumanos, 2019).

Emerging MET studies have modeled interindividual differences in within-subjects temporal 

trajectories of AOI looking behavior. For example, Gunther et al. (2021) modeled 

second-by-second changes in looking behavior towards a stranger wearing a gorilla 

mask in 5- to 7-year-olds. Figure 5 (https://github.com/xiaoxuefu/MET_methods/tree/main/

5.%20Data%20Analysis%20-%20Growth%20Model) shows that the looking behavior is 

characterized by a quadratic trajectory (i.e., inverted U-shape) over the period of exposure. 

Moreover, Gunther et al. (2021) found a main effect of child behavioral inhibition. As time 

elapsed while the stranger had the mask on, higher levels of behavioral inhibition were 

related to a greater proportion of looking toward the stranger. Hence, individual differences 

in the temperament type shape how looking behavior unfolds over time. Furthermore, in an 

overlapping sample, Gunther et al. (2022) characterize latent profiles of children based on 

time-varying trajectories of looking behavior towards a stranger. The stranger pretended to 

do paperwork without initiating interaction with the child, while also holding the marbles 

that the child needed to play a game. Similarly, children’s looking behavior exhibits 

quadratic trajectories over time. Group-based trajectory models (GBTM, Nagin & Odgers, 

2010) are fitted to identify latent profiles underlying individual quadratic trajectories. The 

results indicate that 30.2% of children belong to the “orienting” group, characterized by high 

initial orienting to the stranger and gradual decay. The rest of the sample is categorized as 

the “avoidant” group who displays low initial orienting to the stranger and continued low 

attention. Importantly, individuals’ probability of being characterized with the “avoidant” 

trajectory predicts variance of internalizing symptoms over and above the aggregated 
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measure of looking towards the stranger. Together, modeling temporal dynamics of looking 

events may reveal important insights about underlying mechanisms (Cole et al., 2020) and 

enables better characterization of individual differences (Gunther et al., 2022; Shewark, 

Brick, & Buss, 2020).

8. Future Directions

We expect to see continuous development in MET hardware that enables MET applications 

to more diverse samples and data collection environments. Next-generation eye trackers 

(e.g., Tonsen, Baumann, & Dierkes, 2020) are being designed to be calibration-free and 

more robust to factors that reduce data quality (Niehorster et al., 2020; Valtakari et al., 

2021), including participant movement, headset slippage, and changes in ambient lighting. 

This hardware improvement enables data collection outside the laboratory with participants 

who have difficulties with online calibration and lower tolerance for the headset. For 

example, published work has successfully collected MET data for over an hour per session 

(equivalent to the battery life of the smartphone used for data recording) in toddlers (27- 

to 31-month-old) as they go about their daily lives at home (Schroer et al., 2022). Future 

hardware development would benefit from data quality evaluations (e.g., Niehorster et al., 

2020) in wider age ranges, clinical populations, and both indoor and outdoor environments.

The increased ease of MET data collection facilitates multimodal research that examines 

physiological and neural activities concurrently as participants actively attend to external 

stimuli (Valtakari et al., 2021). An example is to combine MET with functional near-infrared 

spectroscopy (fNIRS) recording (von Lühmann et al., 2020). fNIRS is a noninvasive 

neuroimaging tool that measures event-evoked changes in cerebral blood oxygenation. As 

with electroencephalogram (EEG), fNIRS is well-suited for applications in a wide age range 

(Vanderwert & Nelson, 2014). A key advantage of fNIRS is that robust signals can be 

obtained even in free-moving participants (e.g., Burgess et al., 2022; Herold et al., 2017). 

Recent advances in wearable and portable fNIRS devices provide the opportunity to record 

neural activities in a variety of indoor and outdoor environments as participants actively 

interact with the environment (Pinti et al., 2020). However, one barrier for the multi-modal 

data acquisition is signal interference of fNIRS recording, as the eye tracker may emit 

near-infrared light at a wavelength that can be detected by fNIRS sensors. A specially 

designed cover for the fNIRS headset is needed to prevent interference (Katus et al., 2019).

MET facilitates research progress in understanding the moment-to-moment unfolding of 

behavioral and cognitive processes and how those micro-level processes dynamically 

interact with environmental factors at the macro-level over time. Individuals’ multisensory 

development, including attention and motor abilities, reciprocally influence the individuals’ 

social and physical environment throughout the course of human development (Smith 

et al., 2018). Perturbations in moment-to-moment looking behavior and attention-motor 

coordination can cast downstream impacts over time and across multiple levels of 

functioning. MET data collections have been largely implemented in cross-sectional studies, 

while we know that there are considerable changes in attention and motor functions in the 

lifespan (e.g., Mason, Goldstein, & Schwade, 2019; Reider et al., 2022; Vallesi et al., 2021). 

Incorporating MET measurements in participants’ naturalistic environment in longitudinal 
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designs can deepen our understanding of how psychological functions that operate in micro-

timescales develop with age and give rise to long-term impacts.

9. Conclusions

MET allows researchers to sample first-person gaze behavior in the context of ongoing 

external events, the individual’s behavior, and psychological processes (Hayhoe & 

Rothkopf, 2011). Commercially available MET hardware allows users to collect good 

quality data from participants with a wider age range, in various environments, and for 

longer periods (Franchak & Yu, 2022; Pérez-Edgar, MacNeill, & Fu, 2020). However, 

challenges in maintaining data quality during acquisition and the lack of standardized 

protocols for data processing create barriers to applying the technology (Hessels, Niehorster, 

et al., 2020). This paper provides a practical guide and open-source tools aimed at 

addressing methodological issues and challenges. This includes maximizing mobility, 

ensuring MET data quality, good practices in manual gaze annotations, the utility of 

data visualization, and possible data analytical methods. A number of tools for MET 

data quality assessment are readily available. This facilitates data quality reporting and 

data processing. There is increased implementation of automated AOI annotations with 

the rapid development of computer vision algorithms. However, manual inspections and 

annotations are indispensable for validating automated AOI annotations and ensure AOI 

annotation accuracy. Finally, we encourage researchers to utilize the micro-longitudinal 

structure of MET data to model the temporal dynamics of AOI looking events, in addition 

to the use of between-subjects aggregated indices (Ram & Gerstorf, 2009). We hope the 

practical guide can increase the accessibility of MET technology and help to enhance the 

reliability, standardization, and reproducibility of MET research. In particular, we believe 

that these methodological advances will propel our conceptual and theoretical understanding 

of mechanisms that shape behavior, affect, and cognition in-the-moment and cumulatively 

lay the foundation for long-term or larger scale patterns of functioning.
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Fig 1. 
Screenshots of the graphical user interfaces (GUIs) for accuracy calculation. Both the 

MATLAB tool (A) and R shiny app (B) enable users to annotate the point of gaze (i.e., 

crosshair) and the target location (i.e., where the experimenter is pointing). The data are 

then used to compute the spatial offset (in degree of visual angle) between the gaze location 

and the target location. A. The MATLAB tool takes video inputs. In this example, 25 

frames from the validation session were used for the calculation of accuracy. Based on the 

specifications of Pupil Core eye tracker: fov_x (horizontal field of view in degrees) = 82.1, 

fov_y (vertical field of view in degrees) = 52.2, fov_res_x (horizontal resolution in pixels) = 
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1280, fov_res_y (vertical resolution in pixels) = 720. The average spatial offset across these 

frames is 0.766°. B. The R shiny app uses frames extracted from the video recordings. The 

blue box (edited) represents the region between the gaze and the target location. Detailed 

instructions are provided on https://github.com/JohnFranchak/et_accuracy
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Fig 2. 
Video frames taken from the validation (left) and task (right) procedures. Calibration 

accuracy needs to be estimated before gaze annotations. Gaze annotations that are based 

on the red circle allows reliable determination of the area of interest (AOI) for error within 

2.6°. For example, looking to the researcher would be identified for 2A but not 2B. The 

yellow circle allows for an error tolerance of 6.6°. In such case, looking to the researcher 

would be annotated for 2B.
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Fig 3. 
Child-mother dyadic looking behavior nested in parenting behavior. Data are collected 

from a mother-child dyad as they completed a challenging puzzle task. A. A screenshot 

of the composite video used for gaze annotation is displayed in the top panel. The child’s 

area of interest (AOI) looking events and parent behavior are plotted using the timevp 
MATLAB toolbox. White gaps in behavior represent missing child looking behavior (e.g., 

indeterminate looking or data loss) or parenting behavior (e.g., comforting) that occurred but 

are not of interest. B. State space grids (SSGs) depicting the child’s AOI looking event and 

parent behavior. Each node represents the event when both AOI looking and target parent 
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behavior are co-occurring. The size of the nodes represents the length of time spent in each 

state. Lines between nodes denote changes from one dyadic state to the next. Dotted lines 

connect event nodes prior to missing events to nodes that follow the missing events. The 

yellow box labels the parent-focused/controlling-parenting state.
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Fig 4. 
Coordination of looking behavior and manual manipulation of toys between an infant-

mother dyad during a segment of free-flowing toy play session. A screenshot of the 

composite video frame used for gaze annotation is displayed in the top panel. Data were 

plotted using the timevp MATLAB toolbox. The areas of interest (AOIs) for looking 

behavior are body, face, infant, and mother self-looking and four toy objects. The AOIs for 

manual manipulation are the toys. White spaces denote events that do not involve the AOIs. 

The first two rows depict raw data from gaze annotation of AOI looking events in the infant 

and his mother. The third row displays bouts of joint attention (JA), defined as a period (>0.3 

seconds) when the dyad is looking at the same toy. When the individual is looking at the 

same toy as the social partner, gaps that last fewer than 0.3 seconds in consecutive looks of 

the same AOI are disregarded (e.g., the first bout of toy looking displayed in teal). The last 

four rows show the four types of attention-manual coordination within each individual and 

across the dyad.
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Fig. 5. 
Visualization of the growth curve modeling examining attention to a stranger during the 

period when the stranger was wearing a scary mask (left panel) and when the stranger 

took off the mask. The visualizations are presented in Figure 2 and Figure 4 of Gunther 

et al. (2021). The quadratic trajectory yielded a better fit than a linear trajectory (BIC for 

a linear fit was 1395.65; BIC for a quadratic fit was 1324.34). The black lines show the 

model-estimated quadratic trajectory for individual participants. The red line displays the 

average quadratic trajectory.
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Table 1:

Open-Access Data and Tools Cited

Name Authors URL

Mobile Eye Tracking Data

Franchak, Kretch and Adolph (2018) https://nyu.databrary.org/volume/135

Gaze-in-Wild Kothari et al. (2020) https://www.cis.rit.edu/~rsk3900/gaze-in-wild/

Matthis, Yates and Hayhoe (2018) https://doi.org/10.6084/m9.figshare.6130850.

Glasses Test Niehorster et al. (2020) https://github.com/dcnieho/GlassesTestCodeData

Data Quality Assessment

GlassesValidator Niehorster et al. (2023) https://github.com/dcnieho/glassesValidator

Gaze Annotations

GazeCode Benjamins, Hessels and Hooge (2018) https://github.com/jsbenjamins/gazecode

ROI Coder Franchak (unpublished) https://github.com/JohnFranchak/roi_coder

Eye Tracker Analysis Jongerius et al. (2021) https://osf.io/4uy35/?view_only=785a011774cf4c4f8c5e4608b34a2a38
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