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Abstract
Global protein expression profiling can potentially uncover perturbations associated with common
forms of heart disease. We have used shotgun tandem mass spectrometry to monitor the state of
biological systems in cardiac tissue correlating with disease onset, cardiac insufficiency and
progression to heart failure in a time-course mouse model of dilated cardiomyopathy (DCM).
However, interpreting the functional significance of the hundreds of differentially expressed proteins
has been challenging. Here, we utilize improved enrichment statistical methods and an extensive
collection of functionally related gene sets, gaining a more comprehensive understanding of the
progressive alterations associated with functional decline in DCM. We visualize the enrichment
results as an Enrichment Map, where significant gene sets are grouped based on annotation similarity.
This approach vastly simplifies the interpretation of the large number of enriched gene-sets found.
For pathways of specific interest, such as Apoptosis and the MAPK cascade, we performed a more
detailed analysis of the underlying signaling network, including experimental validation of
expression patterns.
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Introduction
Heart disease is a leading cause of death, accounting for >30% of all deaths in 2005 in the US
alone[1]. In particular, heart failure stemming from diverse etiologies including hypertension,
long-term consequences of myocardial infarction, viral infection and genetic disorders, is an
emerging epidemic[2]. Although treatable, heart failure is often referred to as a silent killer
since patients are diagnosed at an end-stage when it is too late to reverse the pathology. Finding
molecular signatures to detect heart failure at an early, treatable stage prior to clinical
presentation is vital to improving long-term survival outcomes. However, uncovering the
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causative mechanisms and predictive biomarkers remains a daunting task [3,4] due to the
complexity of disease development.

Tandem mass spectrometry (MS)-based proteomic profiling is a promising approach for
characterizing protein perturbations associated with cardiac disease [5,6]. In dilated
cardiomyopathy, the ventricle walls stretch and thin out causing the heart to enlarge and fail.
In a recent study of a mouse phospholamban transgenic mutant model (PLN-R9C) of dilated-
cardiomyopathy (DCM) [7], we used exhaustive shotgun sequencing to examine quantitative
changes in global protein expression patterns in cardiac ventricular tissue at distinct time-points
representing discernible clinical phenotypes (early-, mid- and end-stages) along the trajectory
to overt cardiac failure. A generalized linear model identified 593 proteins significantly
differentially up- or down-regulated across three time points in PLN-R9C mice relative to
normal control littermates. This list was reflective of a shift in energy metabolism, and
activation of specific cellular stress response cascades that lead to apoptotic signaling [8–10].
However, by focusing on the most differentially expressed proteins across all time points
simultaneously, only a partial list of the strongest biological signals was detected. New analysis
methods are required to study stage-specific differences in expression accompanying disease
progression and weaker, but still important, signals.

Transcriptomic datasets are traditionally analyzed by scoring gene expression differentiality
(e.g. between disease and healthy states) after normalization of the raw mRNA expression data
using statistical methods that consider technical noise and biological variability[11]. Candidate
genes are then defined by setting a threshold to some measure of differential expression [12].
Since biological responses tend to be functionally coherent, over-representation analysis
(ORA) can be used to detect statistically significant differential expression of functionally
related ‘gene sets’ [12]. A ‘gene set’ is a collection of genes defined a-priori that share some
attribute or feature such as annotation to a common pathway (e.g. cell cycle or insulin
signaling). The resulting list of affected gene sets is often biologically more intuitive than the
larger lists of differential genes. Numerous software tools are available to perform ORA[12],
including FunSpec[13], GoMiner[14], FatiGO[15], DAVID[16], BiNGO[17] and ErmineJ
[18]. Most ORA tools typically only use Gene Ontology (GO) annotation[19] as a convenient
source of gene sets, though some are being adapted to exploit more detailed network-level
information (i.e. gene-gene interactions) that is increasingly available [12,20].

While we used ORA previously to find alterations in stress responses and metabolism that may
underlie tissue remodeling and fibrosis in our DCM model, we only considered the most
differentially expressed gene products and hypothesize we have overlooked a wealth of
additional more subtle and stage-specific biologically interesting patterns. To address this, we
used the Gene Set Enrichment Analysis (GSEA) method [21] to perform ORA on all of the
available expression value changes. GSEA analyzes a ranking of gene products according to
a differentiality statistic (e.g. ratio of expression in disease versus control). Gene sets are then
tested to see if members lie more towards the top or bottom of the ranking than expected by
chance alone (i.e., majority of members of a gene set are coordinately up- or down-regulated).
Thus, we expect to uncover additional biological trends in our PLN-R9C data using this method
because it considers all genes, not just the top most differential, and can find significant and
coordinated expression patterns at the gene set level even if the expression of the genes within
the set is weak.

To aid in the interpretation of our GSEA analysis, we developed a method, Enrichment Map,
to intuitively visualize and compare the results across time points. In comparison with our
initial published study[7], adoption of a more powerful enrichment test together with a
simplified graphical organization of the results enabled the identification of additional
biologically relevant perturbations associated with DCM. For pathways of specific interest we
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performed a more detailed analysis, explicitly considering the underlying signaling network
and experimentally validating expression patterns.

Materials and Methods
Protein Samples and Quantification

We used proteomics data from our previously published PLN-R9C DCM study [7]. Briefly,
this data was collected from cardiac protein extracts collected from pooled ventricle tissue
obtained from two distinct strains of mice, one a transgenic model expressing a dominant
Arginine to Cysteine point mutation at position 9 in the phospholamban protein, which results
in the presentation of DCM phenotypically similar to the human condition[22], and the other
healthy littermates (strain FVB/N) as a control. Three time points were profiled, representing
early-stage (8W), mid-stage (16W), and end-stage (24W) disease [7]. 6190 high stringency
proteins were identified by nanoelectrospray liquid chromatography-tandem MS and
quantified by spectral counting [23]. The spectral count mapping to a particular protein was
summed to generate a total count per protein per sample. We supplemented our original data
with 1072 proteins that were detected by mass spectrometry but previously discarded because
they were detected with only a single unique high confidence peptide. This re-analysis was
motivated by the discovery that most of these represent small, but biologically important
proteins (e.g. brain natriuretic peptide, a 121 amino acid protein that is a validated biomarker
of heart failure[24]). This resulted in a list of 7262 proteins used for the current analysis. To
correct for length bias, i.e. larger proteins produce more peptides and so tend towards higher
counts, the counts were divided by the number of observed tryptic peptides in a similar fashion
as described by Lu et al [25]. Protein counts were further normalized across all experiments
using local polynomial regression fitting (Lowess) to adjust for residual differences [7]. As we
now account for protein length during normalization by dividing spectral counts by the
expected number of observable peptides for each individual protein, the weight of proteins
with a larger than expected number of observable peptides was reduced and those from smaller
proteins increased. This allowed us to apply more sensitive filters to low molecular weight
proteins that are nevertheless important in signal transduction and other pathways that may be
perturbed during the development of DCM.

GSEA Analysis
We used GSEA[21] to compute gene set enrichment after ranking proteins by differential
expression in disease versus control. Traditional transcriptomics analysis uses various
statistical tests to compare the two phenotypic classes including ‘signal-to-noise’, ‘t-test’ and
‘ratio of classes’, but these standard tests assume the data are normally distributed whereas our
R9C proteomics data is not, due to the under sampling nature of tandem MS spectral counting
[26]. We also wanted to use a statistic that indicates directionality i.e. whether the protein is
up- or down-regulated. Thus, we used the non-parametric KS test to rank the proteins because
it makes no assumptions as to the underlying data distribution and is signed. Using this statistic,
164 proteins were significantly (p-value < 0.05) differentially expressed at the early stage (8W),
of which 69 proteins were putatively up-regulated and 95 proteins were down-regulated, while
652 proteins were significantly affected at the mid-stage (16W), of which 495 proteins were
putatively up-regulated and 157 proteins were down-regulated. However, all proteins are
ranked an input into GSEA.

GSEA was run using gene sets from diverse public sources (described below). Small (<=15
genes) gene sets were removed because these are more likely to appear significant by chance
alone. Large (>500 genes) gene sets were removed because they are typically too general to
usefully interpret. Filtering has the added benefit of reducing the problem of false discovery
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by multiple testing. For each analysis, 1000 gene set permutations were used to compute a
False-Discovery Rate (FDR).

Gene Set Collection
GO annotation was collected from the August 2008 download of the org.Mm.edGO2ALLEGS
Bioconductor package. GO annotation was up-propagated so that all genes annotated to
children terms were also assigned to the parent terms and genes were mapped to Entrez Gene
identifiers. All available GO annotations were used to maximize gene coverage. To further
improve gene coverage, we also collected all available BioPAX formatted pathways from
Reactome[27], HumanCyc[28], National Cancer Institute(NCI) Pathway Interaction Database
[29], Integrating Network Objects with Hierarchies(INOH) Pathway Database
(www.inoh.org), Biocarta (www.biocarta.com), Cellmap (cancer.cellmap.org), and Netpath
(www.netpath.org). BioPAX is a standard data exchange format for pathway information
(www.biopax.org). Additional curated gene sets were collected from the Molecular Signatures
Database[21], the comprehensive Resource of Mammalian protein complexes[30], and Disease
Hub (http://zldev.ccbr.utoronto.ca/~ddong/diseaseHub/). Since the pathway resources, except
Reactome, provide human pathway information only, putative mouse homologs were cross-
mapped based on orthology
(ftp://ftp.informatics.jax.org/pub/reports/HMD_HGNC_Accession.rpt). Conversion tables for
RefSeq and Uniprot to human Entrez Gene were downloaded from Biomart[31].

Enrichment Map Analysis
To increase the power and coverage of our analysis, we collected gene sets from multiple
independent sources (see above). Unfortunately, this also increases the number of redundant
or similar gene sets, which complicates interpretation of results. To overcome this challenge,
we developed a novel visualization approach, Enrichment Map, which organizes gene sets in
a more intuitive way, and which is implemented as a plugin for the Cytoscape network analysis
environment [32]. Enrichment Map places similar gene sets near each other which results in a
more concise global view of enriched biological functions (many gene sets related to the same
function are grouped, which simplifies their display). This map is a network of gene sets in
which the nodes (circles) represent statistically significant terms and the links (edges) the
degree of gene set overlap (i.e. multiple gene sets containing the same genes). An automated
layout algorithm is used to place connected (i.e. similar) gene sets close together as clusters of
terms describing related pathways, cellular processes or functions. Gene sets are linked if their
overlap coefficient is > 0.5 (i.e. gene sets share 50% or more genes). Software to construct and
browse Enrichment Map is freely available
(http://www.baderlab.org/Software/EnrichmentMap)[33].

Results
Differentially Expressed Gene Sets in DCM Preceding Heart Failure

The PLN-R9C mutant heart has a calcium flux imbalance due to the mutant (R9C) form of
phospholamban which constitutively inhibits the SERCA ATPase responsible for calcium ion
transport from the cytosol into the sarcoplasmic reticulum in muscle [22], which eventually
leads to heart failure. In an effort to gain clinically useful insights into the causative basis of
heart failure from the diverse proteomics patterns generated as part of our ongoing DCM
profiling initiative[7,34–36], we developed a computational analysis workflow for interpreting
global protein abundance data that combines a statistically principled gene set based
enrichment analysis with an efficient graphical summary display for exploratory visualization
(Figure 1).
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To generate ranked lists of differentially expressed proteins between the disease (i.e. PLN-
R9C) and healthy (i.e. wild-type) hearts for analysis using our workflow, we normalized and
scored our previously published mouse heart tissue protein abundance profiles, measured as
spectral counts mapped with high confidence to cognate proteins by tandem MS (see Materials
and Methods). We then applied GSEA [21] to find gene sets that are enriched in differentially
expressed proteins (see Materials and Methods). To maximize protein coverage, we collected
curated gene sets from 11 public repositories containing gene function annotations, pathways,
protein complexes and disease signatures (Table 1). We focused our analysis on the patterns
of differential protein expression at the two earliest time points available (8 and 16 weeks) to
uncover early (i.e. pre-symptomatic) and mid-stage (i.e. clear evidence of cardiac functional
defects but minimal morbidity) effects. This is in contrast to our original linear model analysis
[7] which resulted a set of proteins differentially expressed across all three time points at once.
Our re-analysis resulted in a marked improvement in both the variety and amount of significant
gene sets that was returned compared to our original study [7]. We found 266 enriched gene
sets (p-value < 0.01, FDR < 0.1) for the early and mid-stages, compared to the 27 reported in
the original paper (p-value < 0.01) [7]. This 10-fold increase is presumably due to the increased
number of gene sets used, the analysis of each time point separately (different enriched gene
sets resulted at each time point) and the ability of GSEA to identify gene sets with weak, but
coordinated, expression patterns [21]. The original analysis identified an increase in
cytoskeleton processes, muscle development, ER stress, protein degradation, unfolded protein
response and apoptosis and a decrease in aerobic respiration and heart development, matching
the DCM phenotype [7]. Our analysis found all of these processes and many more, some of
which are differentially perturbed at only one time point, including cell growth, immunity,
translation, RNA processing, and more detailed views of metabolism and signaling.

Enrichment Map Visualization of Global Perturbations
To define a more concise picture of the pathways that are induced during the disease course,
we visualized the early and mid stage results as an Enrichment Map (see Materials and
Methods). A single integrated Enrichment Map was used to display the enrichment analysis
results for both early- and mid-stage disease allowing direct comparison of the time points
(Figure 2). The node center (inner circle) color represents the enrichment obtained for the early
time point, while the node border (outer circle) color reports the results for the mid time point.
From this diagram, it was easy to identify both similarities in the two time points, such as the
uniform up-regulation of the actin remodeling machinery and protein translation (completely
red circles) together with uniform down-regulation of the citric acid cycle (completely blue
circles), and differences, such as the strong up-regulation of apoptosis, proteasome and RNA
processing/splicing apparatus at the mid-stage (circles where one part is white and the other is
colored). These differences likely represent a physiological response of the cardiomyocytes
during the disease progression. For instance, the changes in energy metabolism (glycolysis,
citric acid cycle and NADH dehydrogenase) shows evidence of a known shift in energy usage
from more efficient aerobic respiration at early stage to less efficient anaerobic respiration at
later stages, reminiscent of the Warburg effect seen in fast growing cancer cells[37]. This also
shows a limitation of our analysis, as energy metabolism is post-translationally regulated by
many factors, including intracellular calcium, which is increased in PLN-R9C. Some of the
changes (Citric Acid Cycle) are expected, whereas others require more follow-up (initial
glycolysis down-regulation, NADH and ATP synthase up-regulation). Up-regulation of many
processes, including protein translation and RNA processing/splicing, are consistent with
compensatory cardiomyocyte growth, associated to cardiac distension. By mid-stage, the
effects of these stress responses appear to become detrimental, with the PLN-R9C mouse
displaying extensive thinning of the ventricular wall, presumably due to an extensive loss of
cardiomyocytes [7].
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A novelty compared to our previous study is the difference in time-behavior of multiple
processes, such as cytoskeleton control pathways. Changes in the sarcomere structure, the main
contractile apparatus of the myocyte, are known to be preceded by actin remodeling [38]. Actin-
based cytoskeletal mobilization ultimately leads to cardiac remodeling [39], which is clinically
evident as an enlarged heart size with a distended shape and contractile dysfunction (reduced
fractional shortening and contraction force) [39]. From the Enrichment Map, we see a
consistent up-regulation of actin remodeling machinery at early- and mid-stage disease whereas
microtubule and sarcomeric up-regulation is only present at mid-stage disease. This highlights
a potential difference in timing or coordination of these remodeling processes. Thus, the
Enrichment Map significantly eases visual comparison of global trends in major cellular
systems as a function of disease progression.

Exploring the Apoptotic Network
The enrichment map clearly showed apoptosis as a key element in the transition from an early-
stage compensatory hypertrophy response (i.e. enhancing cardiac output) to mid-stage
dilatation, which precedes fibrosis and ultimately heart failure [8]. Since many of the enriched
gene sets originally came from pathway databases, which curate detailed protein interaction
relationships, we were able to create a network view of the enriched apoptosis gene set from
the Reactome pathway database, showing differential protein expression, using Cytoscape
[32](Figure 3). Given that the transgenic PLN-R9C model has disrupted calcium flux within
myocytes, an interesting active molecule in the pathway, gelsolin, stood out (Figure 3). Gelsolin
is a well-studied calcium regulated mediator of actin filament assembly and disassembly that
was previously identified as a target of caspase-3 mediated apoptosis[40] and has previously
been implicated in human DCM[41]. Given that loss of gelsolin in a knockout mouse line
[42] results in reduced apoptosis in response to myocardial infarction (artery ligation), which
normally induces severe hypertrophy and dilation, the up-regulation of gelsolin (and other
functionally related proteins) we detect suggests a causal connection to both the ventricular
remodeling that precedes dilatation (Figure 2) and the increased apoptosis observed during
disease progression[7]. Gelsolin is one of many factors downstream of caspase 3 that are
progressively up-regulated from early to mid-stage. Conversely, negative apoptosis related
signaling factors appeared to be down-regulated. Most notable is an initial up-regulation at
early stage, followed by down regulation at mid-stage, of the ubiquitin-protein ligase XIAP, a
well known inhibitor of apoptosis [43] (Figure 3). Again, this is consistent with the overall
gene set output showing progressive apoptosis during tissue remodeling and dilatation.

Linked to apoptosis in the Enrichment Map is another large cluster representing up-regulation
of the cell cycle at mid-stage disease. Although the gene set names are indicative of cell cycle
events (i.e. Reactome_APC/C-Mediated degradation of cell cycle proteins), examination of
the genes indicates this cluster is dominated by the proteasome complex, which is involved in
multiple processes (including apoptosis and cell cycle). The ubiquitin-proteasome machinery
is involved in the targeted cleavage and degradation of signaling proteins and has been linked
to apoptotic cell death and the unfolded protein response previously seen in R9C [44]. There
are, however, conflicting reports as to whether the proteasome is up- or down-regulated in
cardiac dysfunction [44]. From our current analysis, we see a clear up-regulation of proteasome
levels at mid-stage disease connecting to apoptosis in the Enrichment Map. The relationship
between these two processes can be better gleaned from a more detailed mechanistic
representation of the underlying gene sets.

Uncovering Novel Signaling Pathways
A more sparsely connected cluster of multiple regulatory processes was found to be up-
regulated to varying degrees at early- and/or mid-stage disease (Figure 4). This grouping
represents an assortment of interlinked pathways originating from different annotation
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databases. Integrin signaling is one of the more enriched pathways (highlighted in Figure 4),
with representations from three independent data sets linked via a focal adhesion term, which
is consistent with the role of integrins as cell-adhesion receptors[45]. Integrins also play a key
role in sensing and transmitting mechanical load in cardiomyoctyes[46], connecting the
extracellular matrix to intracellular signaling and the contractile apparatus (as can be seen by
the connections between integrin signaling and actin cytoskeleton regulation in the enrichment
map). In DCM, this process is involved in modifying the core contractile machinery to
compensate for impaired calcium handling [46].

The MAP kinase signaling cascade is also prominently up-regulated at mid-stage and
represented by multiple terms, including “Signaling to ERKS” (REACT_12058.1), “Prolonged
ERK activation events” (REACT_12005.1) and “MAPK signaling” (KEGG:HSA04010)
(Figure 4). The MAPK signaling pathway, and more specifically up-regulation of p38
(MAPK14) [47] in rat myocytes has been shown to induce heart dilation. Similarly, the down-
regulation of the p38[48] or JNK (MAPK8) [49] catalytic subunits in transgenic mouse models
followed by stress induced through aortic banding has been previously shown to induce cardiac
hypertrophy leading to heart failure. In depth analysis of the components in the MAPK
signaling gene set from KEGG revealed that a handful of significantly up-regulated proteins
and many additional weakly up-regulated factors were obtained by proteomic profiling. We
therefore decided to focus on this group for targeted follow-up experiments since members of
the pathway, such as p38 and JNK, have been previously linked to either hypertrophy or dilation
depending on the direction of their differential expression. We examined the activation levels
of the two key downstream effectors of the MAPK pathway, p38 and JNK, as indicators of
pathway activity. As predicted from the GSEA results, both p38 and JNK show elevated
activity in 16 week old PLN-R9C mutant mice as compared to wild-type controls (Figure 5A),
even though these proteins were not significantly up-regulated as measured by the KS statistic.

To further investigate the role of the MAPK pathway in mediating the progression to heart
failure, we administered the beta blocker propanolol to PLN-R9C mice, which is commonly
used clinically for treating heart failure[50] and can result in the reduction of MAPK-dependent
pathway activation[51]. Beta blockers function initially as negative ionotropic agents,
decreasing the strength of muscle contraction thereby reducing energy requirements and wall
stress[51]. As demonstrated in Figure 5B, both p38 and JNK returned to near wild-type levels
at 16 weeks after administration of propanolol starting at 8 weeks. Further, phenotypic
examinations (Figure 5C) and the mice survival curves (Figure 5D) also confirmed nearly
complete rescue of PLN-R9C defect upon treatment with propanolol. These results imply
causal participation of MAPK signaling, whose activation was missed in our initial proteomic
assessment based on simple ORA analysis [7].

Conclusion
Like other groups, we have been investigating the causal basis for progressive DCM using an
integrative profiling approach incorporating data from multiple relevant sources to generate a
thorough, yet concise picture of the underlying functional disturbances over time. By applying
GSEA to the early and mid time points of DCM progression using a large and diverse set of
pathways and functional annotations with an Enrichment Map display, we demonstrated how
proteins ranked by relative expression in cardiac tissue in our PLN-R9C mouse model can be
converted into a global view of processes changing over the course of heart disease progression,
starting from pre-symptomatic pathology to DCM. These additional analyses have revealed
novel functional connections, both between individual gene products and across biological
pathways and broader systems, that were missed previously using simple ORA analysis [7].
Our new method also more clearly shows processes affected in common, or uniquely, at the
early and mid disease stages. These ranged from widespread effects on central metabolism and
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cytoskeletal remodeling to more specific perturbations in apoptotic, integrin and MAPK
signaling.

While many of the gene sets, such as metabolism and actin remodeling, have been previously
recognized in heart disease studies, there are still unanswered questions as to their mechanistic
contributions to cardiac disease [52]. The biological significance of the metabolism shift is
suggested by recent publications indicating that it leads to a critical tipping point in the heart
where energy reserves are not sufficient to maintain function which ultimately leads to failure
[53]. Our re-analysis highlights an early increase in energy demands by the heart manifested
in the up-regulation of NADH Dehydrogenase and ATP synthase. This up-regulation is only
detectable at an early-stage when there is minimal phenotypic indication of any contraction
defect, but disappears at mid-stage disease once the heart has already begun to fail, adding
additional weight to the above tipping point interpretation.

The power of our method is that it can quickly identify general processes that are interesting
and then enables a more detailed study, as can be seen from our analysis of apoptosis and
MAPK signaling. This approach is flexible and can be applied to other datasets. As other high-
throughput studies of DCM are conducted and gene set curation efforts continue, a more
complete network will be generated, providing improved understanding of the underlying
molecular basis for progressive heart failure in human patient populations. On-going efforts
to improve the coverage of pathway data, encompassing transcriptional regulation by
microRNAs and transcription factors [54–56], will likely provide the basis for more robust and
informative computational analysis at the gene-set and gene-interaction level. Increased protein
coverage by mass spectrometry and more sensitive methods will further expand the number of
enriched gene sets, which may otherwise be missed due to too few differential proteins being
present. The framework proposed here constitutes an ideal staging ground for more advanced
computational tools supporting visualization, analysis and hypothesis generation for protein
expression data. Although challenging, using pathway analysis to decipher the mechanism of
a complex disease such as DCM facilitates the development of a more coherent molecular
understanding of DCM etiologies and potentially other cardiovascular diseases that lead to
heart failure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Enrichment analysis workflow
Outline of the processing of information from tandem MS data to Enrichment Map. First,
spectral counts measured for each identified protein at two time points (early and mid-stage)
in the PLN-R9C cardiovascular disease model and the healthy (wild-type) control[7], were
normalized and ranked by p-value. The ranked protein list was then examined for significant
over-representation of gene sets using the threshold-free technique of Gene Set Enrichment
Analysis (GSEA). Gene sets were collected from a diverse set of public databases. Finally, the
enrichment results were visualized to enable easy manual detection of global trends and
hypothesis generation. A node in the Enrichment Map represents a gene set. Node color
intensity represents the enrichment significance and the hue (blue/red) indicates whether a
particular gene set is up or down-regulated. Node size represents the gene set size and line
thickness shows the degree of overlap (shared genes) between the two gene sets it connects.
Two different enrichment experiments were simultaneously visualized to compare the
enrichment results of the early and mid disease stages by mapping early-stage results to the
node center (inner part) and mid-stage results to the node border (outer part).
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Figure 2. Processes perturbed in early-versus mid-stage DCM
Enrichment Map representation of the GSEA results obtained for the PLN-R9C transgenic
mouse model of DCM versus wild type littermate controls at an early stage (8W, pre-
symptomatic) and mid-stage (16W, reduced cardiac function but minimal morbidity) of heart
disease. The inner circle is colored according to early stage onset, and the outer circle according
to mid stage disease. Node color and shading intensity represents the statistical significance of
enrichment of a particular gene set.

Isserlin et al. Page 12

Proteomics. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Activation of apoptotic signaling via caspase 3 and gelsolin
Consecutive zoom-ins of the Enrichment Map gene set cluster representing terms related to
cellular apoptosis. Individual protein nodes represented in the pathway network are shown for
the caspase neighborhood. Proteins are colored according to the expression ratio of condition
versus control at the early (inner circle) and mid (outer circle) stages of disease.
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Figure 4. Signaling cluster and Integrin signaling
Zoom-in of the Enrichment Map gene set cluster representing signaling pathways enriched at
the early and mid-stages of heart failure. A summary description of the cluster was visualized
as a ‘term cloud’ using Wordle (http://www.wordle.net/) derived from the text descriptions of
all gene sets. Term size indicates its frequency, thus large terms best summarize the cluster
(i.e. signaling pathways). The integrin pathway is highlighted as specific terms within this
cluster and in the network.

Isserlin et al. Page 14

Proteomics. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.wordle.net/


Figure 5. Reduced mortality and decreased MAPK activation with propanolol
(A) Cardiac cellular lysates from 16 week old mice were collected and analyzed for MAPK
pathway activity (indicated by JNK expression and phosphorylation of p38 Map kinase), and
versus a control (GAPDH). MAPK pathway is overactive in PLN-R9C mice. (B) Treating mice
with propanolol reduces activity of MAPK pathway at 16 weeks in PLN-R9C mice compared
to wild type. (C) 16 week old mice were subjected to M-mode echocardiography and left
ventricular end diastolic dimension (LVEDD), left ventricular end systolic dimension
(LVESD), and fractional shortening (FS) were assessed. Propanolol treatment reduces
LVEDD, LVESD and fractional shortening to wild type levels. (D) WT and PLN-R9C mice
were treated with/without propanolol (0.5g/L in drinking water) starting at 8 wks of age.
Mortality was monitored in all groups at 16 weeks. Cardiac lysates and tissues were obtained
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and analyzed as previously described[7]. Antibodies used: phospho-p38 - BD #612281 from
BD bioscience and SAPK/JNK - mAb #9258 from Cell Signaling.
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Table 1

Publicly accessible curated gene set sources used in this study

Source URL Version

Reactome http://www.reactome.org Version 27 (December
2008)

Cancer Cell Map http://cancer.cellmap.org/cellmap May 22, 2006

Net Path http://www.netpath.org April 29, 2008

Integrating Network Objects
with Hierarchies (INOH)

http://www.inoh.org November 28,2007

BioCyc http://biocyc.org March 9, 2009

NCI Pathway Interaction
Database

http://pid.nci.nih.gov/PID/index.shtml October 20, 2009

NCI Biocarta http://pid.nci.nih.gov/PID/index.shtml June 1, 2004

Molecular Signal Database
(MSigDB) - c2 (pathways)

http://www.broad.mit.edu/gsea/msigdb Version 2.5 (April 7
2008)

Gene Ontology (GO) http://www.bioconductor.org/packages/2.5/data/annotation/html/org.Mm.eg.db.html August 2008

Disease Phenotypes http://www.utoronto.ca/zhanglab/index.html

Corum Mips Complexes http://mips.gsf.de/genre/proj/corum February 13, 2008
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