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Abstract
NMDA receptors mediate excitatory postsynaptic potentials throughout the brain but, paradoxically,
NMDA receptor antagonists produce cortical excitation in humans and behaving rodents. To
elucidate a mechanism for these diverging effects, we examined the effect of use-dependent inhibition
of NMDA receptors on the spontaneous activity of putative GABA interneurons and pyramidal
neurons in the prefrontal cortex of awake rats. We find that inhibition of NMDA receptors
predominately decreases the activity of putative GABA interneurons but, at a delayed rate, increases
the firing rate of the majority of pyramidal neurons. Thus, NMDA receptors preferentially drive the
activity of cortical inhibitory interneurons suggesting that NMDA receptor inhibition causes cortical
excitation by disinhibition of pyramidal neurons. These findings support the hypothesis that NMDA
receptor hypofunction, which has been implicated in the pathophysiology of schizophrenia,
diminishes the inhibitory control of PFC output neurons. Reducing this effect may be critical for
treatment of schizophrenia.
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Introduction
Executive functions of the prefrontal cortex (PFC), including working memory and set-shifting,
are critically dependent on NMDA receptors (Krystal et al., 1994; Verma and Moghaddam,
1996; Lisman et al., 1998; Stefani and Moghaddam, 2005). Hypo-function of NMDA receptors
is implicated in the cognitive symptoms associated with many brain disorders, especially
schizophrenia (Javitt and Zukin, 1991; Olney and Farber, 1995; Coyle, 1996). Oral or
intravenous administration of NMDA receptor antagonists such as phencyclidine or ketamine
produces transient schizophrenia-like symptoms in healthy individuals (Krystal et al., 1994,
2003; Adler et al., 1999; Newcomer et al., 1999) and impairs PFC-dependent cognitive
functions in a manner that is indistinguishable from patients with schizophrenia (Adler et al.,
1999). These agents also reinstate the pre-existing symptoms in stabilized patients with
schizophrenia (Luby et al., 1959; Lahti et al., 1995b; Malhotra et al., 1997), suggesting that
they tap into the same mechanisms that are already compromised in this disorder. These
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findings have generated great interest in identifying mechanisms by which NMDA receptor
hypofunction influences the neuronal activity of the PFC. Animal and clinical work, however,
have produced paradoxical results in that, as expected, NMDA antagonists inhibit EPSPs in
PFC pyramidal neurons in slices, cultures, and anesthetized preparations (Hirsch and Crepel,
1991; Arvanov and Wang, 1997; Chen et al., 2003), but produce profound cortical activation
in functional imaging studies in human volunteers (Lahti et al., 1995a; Breier et al., 1997;
Vollenweider et al., 1997; Suzuki et al., 2002) or electrophysiological recording in behaving
rodents (Jackson et al., 2004). The latter findings imply that tonic activation of NMDA
receptors in an “awake” cortex has principally an inhibitory influence on pyramidal neurons,
inconsistent with the conventional view that NMDA-mediated EPSPs contribute to
spontaneous activity of these neurons.

In behaving animals, the activity of cortical pyramidal neurons is regulated by fast-spiking
(FS) GABA interneurons (Wilson et al., 1994; Markram et al., 2004). These interneurons have
faster EPSPs than pyramidal neurons and are more effectively recruited by excitatory inputs
(Kawaguchi, 2001; Povysheva et al., 2006), suggesting that NMDA receptors may play a
greater role in regulating the spontaneous firing of FS interneurons compared with pyramidal
neurons. Thus, a plausible mechanism that might account for NMDA receptor antagonist–
induced cortical excitation is that a reduction in NMDA receptor function preferentially reduces
the firing rate of FS interneurons, resulting in disinhibition of pyramidal neurons. This will
then lead to a net cortical excitation, which is typically observed after NMDA antagonist
treatment in human or behaving animal studies (Breier et al., 1997; Vollenweider et al.,
1997; Jackson et al., 2004). To test the validity of this mechanism, we compared the effect of
a use-dependent NMDA antagonist on the spontaneous firing of putative inhibitory
interneurons and pyramidal neurons in freely moving rats.

Materials and Methods
Details of surgical implantation, recording techniques and single-unit isolation have been
described previously (Homayoun et al., 2004a; Homayoun and Moghaddam, 2006). Briefly,
extracellular single-unit activity was recorded from medial PFC [(anteroposterior, +2.4–3.6;
mediolateral, +0.5–0.8; dorsoventral, −3.5 mm, according to Paxinos and Watson (1998)] of
freely moving rats. Extracellular neuronal activity was recorded from chronically implanted
electrodes using Recorder software (Plexon, Dallas, TX). Spikes were sorted using Off-Line
Sorter (Plexon) and single units were isolated on the basis of discrete waveform clustering, a
minimum refractory period of 1.1 ms, stability of their waveform, interspike interval histogram,
and autocorrelogram over time (average 2.2 U per electrode). Based on previous work
(McCormick et al., 1985; Connors and Gutnick, 1990; Wilson et al., 1994; Tierney et al.,
2004), we used the criteria of baseline firing rate >10 Hz combined with narrow average spike
width to classify FS putative interneurons. FS units also were required to have a high-frequency
component in their autocorrelation histograms and interspike interval histograms. Although
this double criteria is strongly suggestive of interneurons and unlikely to present pyramidal
neurons [regular spiking (RS)], it is possible that a small minority of interneurons could be
misclassified as regular firing units. However, such potential misclassification of slow firing
interneurons would have minimal impact on the latter group, which is expected to mainly
contain the more easily detectable pyramidal neurons.

Data was pooled from 13 rats during 16 recording sessions, in which at least one putative
interneuron was recorded per session. (It should be emphasized that putative interneurons were
found in relatively few recording sessions and only in a subset of animals. For example, in the
same period of time that the present data were collected, no FS units were found in 43 recording
sessions.) Animals were injected with the use-dependent NMDA receptor antagonist
dizocilpine maleate (MK801). The dose of MK801 (0.1 mg/kg, i.p.) was an optimal dose for
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producing deficits in working memory and set-shifting (Homayoun et al., 2004b; Stefani and
Moghaddam, 2005) and increasing spontaneous activity of the majority of RS neurons in the
PFC (Jackson et al., 2004). Data were analyzed during a 1 h window that included a 10 min
baseline period and a 50 min postinjection period. A subset of rats (n =10; 149 RS and 18 FS
units) had received a vehicle (saline or distilled water) injection 20 min before MK801. Another
subset (n = 6; 80 RS and 14 FS units) had no pretreatment. The results obtained in the two
subsets were similar in terms of both frequency of responses and their temporal dynamics (p
> 0.05), and were thus pooled. A total of 6 U (2.2%) that did not meet one of the two criteria
were excluded. Firing-rate histograms with 1 min bins (smoothed with a Gaussian filter with
bin width of 3) were used to analyze the data. A significant response was defined as 10
consecutive bins crossing the 95% confidence intervals of the 10 min baseline, and responses
were classified as excitatory, inhibitory or no change. The proportion of response types between
groups was compared using χ2 test (p < 0.05). Population peridrug firing-rate time histograms
were compared across RS and FS groups using two-way ANOVA with time as a repeated
measure followed by Bonferroni post hoc test (p < 0.05). The onset of a significant response
was assessed based on the first 1 min bin of a 10-bin change compared with baseline. To ensure
that the effect of MK801 was not limited to a single dose, recordings were performed in a
subset of rats (n = 4) with a higher dose of MK801 (0.3 mg/kg) (for results, see supplemental
Fig. 1, available at www.jneurosci.org as supplemental material).

Results
Single units classified as FS neurons (n = 32 from 13 rats) had higher firing rates (Fig. 1A,
abscissa, 16.67 vs 3.84 Hz) and narrower spike waveforms (Fig. 1A, ordinate, peak to valley
width, 531.8 vs 272.6 μs) than RS neurons recorded from the same rats (n = 229). Examples
of average (Fig. 1B) and composite (Fig. 1C) waveforms of RS and FS units are depicted. Note
that spike waveforms remained stable after MK801 administration (Fig. 1D).

Representative examples of individual responses of FS and RS neurons (Fig. 2A,B) demonstrate
divergent responses to systemic administration of MK801. FS neurons primarily displayed an
inhibitory response whereas the majority of RS neurons had a profound excitatory response to
MK801. As shown in Figure 2C, ~69% of FS neurons decreased their firing rate whereas 86%
of RS, recorded during the same sessions, increased their firing rate after MK801. A χ2 test
indicated a significant difference in distribution of responses to MK801 between populations
of pyramidal neurons and interneurons (Fig. 2C) (χ2 = 100.42; p < 0.001). The population
activity in response to MK801 showed a sustained average inhibitory response by FS neurons
and excitatory response by RS neurons (Fig. 2D). Two-way ANOVA with time as repeated
measure revealed a significant difference between average firing rate time histograms of two
types of units (type, F(1,259) = 12.96, p <0.001; time, F(59,15281) = 2.71, p <0.001; type by time
interaction, F(59,15281) = 5.94, p < 0.001). Furthermore, the predominant inhibitory effect on
FS units was not an artifact of the dose of MK801 and was repeated using a higher dose of
MK801 (0.3 mg/kg) in a distinct set of animals (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material).

Visual comparison of individual neuronal responses (Fig. 3A,B) and the population histograms
(Fig. 2D) suggested that FS neurons started to inhibit their firing and reached their inhibitory
plateau in advance of the onset and plateau of the excitatory response of the simultaneously
recorded RS units. This observation was verified by plotting the delay to onset/plateau of the
inhibitory response of interneurons recorded within each session against the average excitatory
onset/plateau of concurrently recorded pyramidal cells (Fig. 3C, onset, linear regression
analysis, r2 = 0.95, p < 0.001, D, plateau, r2 = 0.94, p < 0.001, insets, interval between
corresponding inhibitory and excitatory onset and plateau).
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Discussion
These findings indicate that in an awake cortex, NMDA receptors preferentially regulate the
firing rate of cortical GABA interneurons. The impact of NMDA receptor inhibition on
pyramidal neuron activity was profoundly excitatory, suggesting that this effect is indirect and
caused by disinhibition of GABA neurons that control the firing of pyramidal neurons. This
conclusion is consistent with the observation that inhibition of putative interneurons by the
NMDA receptor antagonist started earlier and reached its plateau before the excitation of
pyramidal neurons. It should be emphasized, however, that the relatively long delay between
the start/plateau of inhibitions and excitations in our sampled neuronal population suggests
that blocking the NMDA receptors is influencing complex network dynamics that affect the
firing rate of FS and RS neurons for sustained periods of time. This is consistent with a role
for NMDA receptors in mediating excitatory reverberation and various network models that
incorporate NMDA receptors in maintaining integrator circuits or temporal accumulation of
spike activity that correlate with behavioral events (Koulakov et al., 2002; Wong and Wange,
2006).

Synaptic inhibition is necessary for spatial tuning of pyramidal neurons and synchronized firing
of cortical networks and, thus, is thought to play a critical role in the “executive” functions
associated with these regions (Goldman-Rakic, 1999; Kawaguchi, 2001; Markram et al.,
2004). For example, blocking GABA receptors in the PFC and the resulting disinhibition of
pyramidal neurons disrupts the tuning of these neurons during sensorimotor and mnemonic
phases of a working memory task (Rao et al., 2000; Constantinidis and Goldman-Rakic,
2002). The present findings suggest that the activity of cortical GABA interneurons is highly
sensitive to tonic regulation by NMDA receptors. The basal activity of pyramidal neurons, in
contrast, was not directly regulated by NMDA receptors, but was susceptible to disinhibition.
This concomitant interneuron inhibition–pyramidal disinhibition process supports the
hypothesis that reduced NMDA function produces cortical excitation and impair PFC-
dependent cognitive functions by disrupting inhibitory control of pyramidal neurons.

The PFC contains several different types of GABAergic interneurons, which are classified
based on morphology and expression of calcium-binding proteins (Markram et al., 2004).
Interneurons that express calbindin- or calretinin-binding proteins primarily target the distal
dendrites of pyramidal neurons whereas interneurons that express parvalbumin (PV) synapse
primarily on the axon initial segment and cell body proximal dendrites. The PV-containing
interneurons are, therefore, in a better position to regulate the firing rate of pyramidal neurons.
These neurons receive extensive excitatory input, which accounts for their high basal firing
rates, and are sensitive to neurotoxic effects of NMDA receptor antagonists during
development (Kawaguchi and Kubota, 1993; Jones and Buhl, 1999; Cochran et al., 2003;
Goldberg et al., 2003). They have wide-spread axonal arborization with a single cell estimated
to synapse onto >200 pyramidal neurons, thus inhibiting the firing rate of large groups of
cortical afferents (Cobb et al., 1995). Because of methodological limitations associated with
awake animal recording, we could not identify the class of FS neurons in our study; however,
based on the fast baseline firing rate of theses neurons (Kawaguchi and Kubota, 1993), it may
be hypothesized that the majority of them were PV-containing interneurons. This would
explain the profound influence that inhibition of putative FS neurons had on disinhibiting the
majority of pyramidal neurons recorded from the same electrode array.

Functional deficits in GABA interneurons have been reported in schizophrenia (Akbarian et
al., 1995; Lewis et al., 2005), suggesting that NMDA receptor antagonists mimic the symptoms
of schizophrenia by producing transient functional deficits in GABA interneurons. The NMDA
hypofunction paradigm for modeling schizophrenia possesses both face validity, as it closely
replicates a wide spectrum of schizophrenia-like symptoms (Krystal et al., 1994; Adler et al.,
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1999), and predictive validity, as it distinguishes between atypical and typical antipsychotics
based on their ability to suppress abnormal PFC activity (Homayoun and Moghaddam,
2007), and has been the basis for discovery of a novel antipsychotic drug (Moghaddam and
Adams, 1998; Patil et al., 2007). The construct validity of this model, however, has been limited
to a wide variety of schizophrenia susceptibility genes encoding for proteins that could regulate
the function of NMDA receptors (Moghaddam, 2003; Harrison and Weinberger, 2005). The
present observation adds an important aspect to the construct validity of this paradigm by
demonstrating that it is associated with reduced activity of putative GABA interneurons in the
PFC. Thus, the hypothesized NMDA receptor hypofunction results in functional deficits of
cortical GABA interneurons, which is a consistent pathological finding in schizophrenia
(Coyle, 2004; Lewis et al., 2005). More importantly, our findings provide a clinically relevant
mechanism where the resulting hyperactivity of pyramidal neurons (Jackson et al., 2004) and
excessive glutamate spillover (Moghaddam et al., 1997) can be the basis for discovery of novel
antipsychotic drugs (Moghaddam and Adams, 1998; Patil et al., 2007).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Distinction between putative interneurons (FS units) and pyramidal neurons (RS units). A, The
population of putative interneurons had a higher firing rate (abscissa) and narrower spikeform
(ordinate, average ± SEM of peak to valley spike width). B, Average waveforms of
representative RS and FS units. C, Superimposed composite of all the waveforms for the same
units. D, Superimposed average waveforms during two 10 min windows, pre- and post-MK801
administration. The waveforms remained stable after MK801 treatment compared with the
predrug period.
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Figure 2.
Inhibitory effects of MK801 on putative interneurons. A, B, Examples of inhibitory and
excitatory effects of MK801 on an individual interneuron (A) and a pyramidal neuron (B).
Each panel depicts the firing rate histogram (bin, 1 min; smoothed with a Gaussian filter with
bin width of 3) of a single unit. Arrow indicates the time of MK801 injection. C, Distribution
of firing rate responses (increase, decrease, or no change) to MK801 was significantly different
among populations of RS and FS units (*p < 0.001). D, Comparison of average population
response of RS and FS units to MK801. Two-way ANOVA with time as the repeated measure
revealed a significant effect for neuron type (F(1,259) = 12.96; p <0.001), time (F(59,15281) =
2.71; p <0.001), and type by time interaction (F(59,15281) = 5.94; p < 0.001). The averages for

Homayoun and Moghaddam Page 9

J Neurosci. Author manuscript; available in PMC 2010 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



all FS units and those with a decreased response type have been depicted as dashed and solid
gray lines, respectively.
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Figure 3.
MK801 inhibition of interneurons precedes its excitation of pyramidal cells. A, Superimposed
firing-rate histogram of simultaneously recorded pairs of interneurons (bar graph) and
pyramidal neurons (solid line). Arrow indicates the time of MK801 injection. Bin size, 1 min.
B, Normalized firing rate histogram of another pair of simultaneously recorded interneuron
(bar graph; baseline firing rate, 17.26 Hz) and pyramidal neuron (solid line; baseline, 2.86 Hz).
Inset, Finer timescale with 20 s bins. C, D, Putative interneurons preceded their concurrently
recorded pyramidal neurons both in the onset of their inhibition (C) and in reaching the
inhibitory plateau (D). Each dot in the scatter plots depicts the post-MK801 delay to onset
(C) or plateau (D) of inhibitory response for interneuron/s recorded during a single session
versus the delay to onset (C) or plateau (D) of excitatory response for the average pyramidal
neurons in the same session. A dashed line indicates no change from baseline and a solid line
depicts the linear regression. Inset, Median and 95% confidence intervals of the difference in
the delay between inhibitory versus excitatory response onset (C) or plateau (D), with a positive
value indicating inhibition preceding the excitation (y-axis range, 0 –1500 s).
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