
Protecting health care workers: a pandemic simulation based on
Allegheny County

Philip Cooleya, Bruce Y. Leeb, Shawn Brownc, James Cajkaa, Bernadette Chasteena,
Laxminarayana Ganapathia, James H. Starkb, William D. Wheatona, Diane K. Wagenera, and
Donald S. Burkeb
aRTI International, Research Triangle Park, NC, USA
bDivision of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
cPittsburgh Supercomputing Center, Pittsburgh, PA, USA

Abstract
Background and Objectives—The Advisory Committee on Immunization Practices has
identified health care workers (HCWs) as a priority group to receive influenza vaccine. Although
the importance of HCW to the health care system is well understood, the potential role of HCW in
transmission during an epidemic has not been clearly established.

Methods—Using a standard SIR (Susceptible–Infected–Recovered) framework similar to
previously developed pandemic models, we developed an agent-based model (ABM) of Allegheny
County, PA, that incorporates the key health care system features to simulate the spread of an
influenza epidemic and its effect on hospital-based HCWs.

Findings—Our simulation runs found the secondary attack rate among unprotected HCWs to be
approximately 60% higher (54·3%) as that of all adults (34·1%), which would result in substantial
absenteeism and additional risk to HCW families. Understanding how a pandemic may affect HCWs,
who must be available to treat infected patients as well as patients with other medical conditions, is
crucial to policy makers’ and hospital administrators’ preparedness planning.
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Our agent-based simulation model of Allegheny County, PA, finds that protecting hospital-
based health care workers (HCWs) before or early in a pandemic will reduce absenteeism and
have positive effects on the community as a whole.

Introduction
An important part of planning for an influenza pandemic is to understand how the pandemic
may affect health care workers (HCWs). Most preparedness plans are contingent upon keeping
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the health care workforce available to treat infected patients as well as those with other medical
conditions. However, as infected patients visit health care facilities (HCFs), they will interact
closely with HCWs, who in turn will interact with other uninfected patients, colleagues, and
their own family members. If infected, HCWs will not be able to perform their duties and could
infect others.

Therefore, policy makers, hospital administrators, and other decision makers may need to
forecast how many HCWs may become infected, how many HCWs will be available, how
many patients each HCW should see, how soon HCWs should be protected, and the potential
effects of varying HCW compliance with protective measures.

To help better understand the answers to these questions, we developed an agent-based
computer simulation model (ABM) of Allegheny County, PA, that incorporates its health care
system into a Susceptible–Infected–Recovered (SIR) disease model framework and simulates
the interaction of hospital-based HCWs within the health care system and with workplaces,
schools, households, and community activities. Using this model, we examined the potential
impact of a severe influenza epidemic on HCWs and the potential effects of different control
measures, including the positive effect of timely therapeutic protections combined with other
measures.

Materials and methods
Allegheny County study area

Allegheny County lends itself well to an epidemic simulation study. It contains a large
metropolitan area – Pittsburgh – with adjoining suburban and rural areas geographically well
circumscribed (limited daily influx and efflux) than other large metropolitan areas such as New
York City or Washington, DC (Figure 1). The county’s population is 97% urban,1 with
workplace density centers both in Pittsburgh and outside the city (Figures 2 and 3). The
county’s population is also the second oldest among US counties, with 17·8% of its inhabitants
65 years or older (April 2000 US Census), an age-group particularly susceptible to influenza
and its complications.2,3 The total house-hold population for Allegheny County in 2000 was
1 241 049.

The ArcGIS Business Analyst identified 48 595 businesses with total employment of 601
022.* We selected synthesized workplaces of similar size and location to the actual hospitals
and tagged them as hospitals, so the model could track HCWs through the simulations. Figure
4 locates the schools and hospitals.4

Synthetic census-based data
We developed a synthetic agent database to represent Allegheny County’s human population.
In an ABM, agents represent individual persons. Complex, large-scale social systems are
simulated by assigning behaviors and activities to agents within the population, then allowing
agents to interact with each other and the environment.

We adapted and extended a method originally developed by Beckman et al.5 that employs the
US Census Bureau’s Public Use Microdata files and Census aggregated data to generate
synthesized, geospatially explicit human agents who represent actual populations when
aggregated.6 Each agent is assigned to a household with other agents. After first generating a

*ArcGIS Business Analyst’ is a commercial geospatial data product containing the locations and sizes of over 14 000 000 businesses in
the USA.
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US population of 105 480 101 households containing 273 624 650 people (2000 Census), we
extracted the synthesized households and persons for Allegheny County.

Model description
Our SIR-based ABM model assumes that all people are initially in a susceptible disease state.
On contact with infectious people, susceptible people (S) may move into the infectious state
(I). After the infectious period, infectious people move to the recovered state (R), in which
they remain immune to subsequent infections for the rest of the simulation.

Our ABM also can track features similar to those defined by Ferguson et al.7 and Germann et
al.8 including age, sex, occupation, household location, household membership, school
assignment of students and teachers, work location assignment of employed adults, work status
as employed or unemployed, and disease status. Consistent with the results of the Models of
Infectious Disease Agent Study (MIDAS) combined model study, only two-thirds of infected
patients exhibit symptoms.9

Agents were assigned households using the US 2000 Census. Our model assigned 212 315
school-aged children to 484 school locations in a manner similar to Ferguson et al.7 Each of
Allegheny County’s 524 869 adults was assigned to one of its 35 317 workplaces by using the
Census 2000 Special Tabulation: Census Tract of Work by Census Tract of Residence (STP
64) database. Adults mix at each workplace.

A special segment of the 35 317 workplaces is the 35 HCFs imbedded in the ArcGIS Business
Analyst that employ an estimated 43 300 persons, of which 19 508 are HCWs who see patients
on a daily basis.10 The HCFs include outpatient clinics, emergency rooms, and inpatient
facilities. HCWs that are part of the synthetic population are assigned to work at one of the 35
HCFs.

Model parameters and social network structure
Our ABM transmission probabilities (Table 1) were obtained from a study by Longini et al.,
11 which is derived from data on the 1957–1958 Asian influenza pandemic. The contact
probabilities in Table 1 depend on the age of both the infectious and susceptible persons and
represent the likelihood of these two individuals having contact of sufficient duration and
closeness for possible influenza transmission. The 1 242 755 individuals (2000 Allegheny
County household population) are the model’s circulating agents. In communities, agents
interact with other agents in close proximity. An agent interacts daily with other family
members. Non-family members sharing a household interact with each other less than daily
but at least four times a week. In schools and workplaces, each student or worker contacts a
fixed mean number of persons per day.12 Each student or worker has a random probability of
interacting with people in other classrooms or offices at his/her school or workplace. Workers
in small firms (i.e. single offices) have repeated contacts with the same people daily. Finally,
all agents, including students, interact in the community every day including weekends.13 Each
HCF employee interacts daily and randomly with other HCF employees in the same clinic/
hospital. A subgroup of these employees (HCWs) also interacts with patients, some of whom
may have influenza.

Model calibration
Our model was calibrated using the Ferguson et al. approach from historical (1957–1958,
1968–1969) influenza pandemics. Our calibration targets followed the 30–70 rule developed
by Ferguson et al. that 70% of all transmission occurred outside the household (of which 33%
occurred in the general community and 37% in schools and workplaces) with transmission
rates in schools double that in workplaces, which we interpreted as 24·5% and 12·5%,

Cooley et al. Page 3

Influenza Other Respi Viruses. Author manuscript; available in PMC 2010 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



respectively.7 Calibration involved targeting an epidemic with a 34% attack rate (AR),
consistent with the 1957–1958 pandemic,11 and estimating daily contact rates by assumptions
(Table 2) to satisfy the 30–70 rule. These contact patterns reproduce an epidemic similar to the
1957–1958 epidemics with a basic reproductive rate (R0) of 1·4, where R0 is the expected
number of secondary cases that a typical infected individual will produce in the susceptible
population. Table 2 lists the estimated number of contacts per day per social network category.
We generated 100 calibrated epidemics using 100 distinct random number sequences, each
seeded with a single-infected adult. We also tested the sensitivity of this calibration scheme
against an alternative calibration method also described by Ferguson et al.7 We also
investigated an alternative calibration rule that assumed equal transmission rates in schools
and workplaces, which produced a flatter infection curve but left the principal study
conclusions unchanged.

We assume a proportion (50%) of sick students and workers stay at home and do not interact
with anyone outside of the household. Also, our workplace absentee rate is consistent with
other models. However, we use a school absentee rate that is generally lower than other models
(Ferguson et al. use a 90% absentee rate). Additionally, we made the following assumptions:
45% of the HCFs staff interact with patients; each HCW sees a daily mean of 30 patients; 40%
of patients with influenza symptoms visit a HCF;14-19 50% of sick students and workers stay
home with no community contacts unless they see a HCW; 20% of working adults work on
weekends; and student/community and adult/community contacts increase by 50% on
weekends.

Results
Table 3 summarizes the first 10 realizations (of 100) runs, each with an AR of 34%. We varied
the seeding assumption from 1 to 100 random seeds, introduced on day 0 of the epidemic. If
an epidemic was realized, the total AR was not sensitive to the seeding assumption that
generated it.

Figure 5 illustrates two epidemic curves: the first is an R0 =1·4 (AR = 34%) epidemic, and the
second has increased pathogen transmissibility with an R0 = 2·0 (AR = 44%), similar to the
pandemic of 1918.7,20 We focused on the R0 = 2·0 baseline epidemic, which is consistent with
those presented in Halloran et al.9 Both epidemics illustrated in Figure 5 use the contact
assumptions shown in Table 2. The continuous lines in Figure 5 represent trend lines based on
a 4-day moving average, which smoothes out irregular patterns produced by the weekend effect
(i.e. students and workers having different weekend contact patterns).

The model simulates the operations of the HCF outpatient clinics, emergency room, and
inpatient clinics of Allegheny County hospitals. Forty-five per cent of the employees of the 35
HCFs are HCWs who see patients on a daily basis.10 We were able to identify explicit HCF
locations and employee levels. Therefore, it was feasible to link our synthetic workplaces to
real HCFs and then assign doctors in the synthetic data to those facilities. The total number of
HCWs is 19 508 persons. For comparison purposes, we selected a sample of non HCW adults
and then ran the baseline (no intervention) R0 = 2·0 model and recorded the impact on various
sectors of the population, including HCWs and their families. Tables 4-6 summarize the results.
Table 4 and Figure 6 illustrate the main population categories tracked by our model including
students, adults, and the total population. The AR for all Allegheny residents is 43·4%, which
is consistent with the other MIDAS models for an R0 = 2·0 epidemic. Age-specific infection
rates varied from school-aged persons (76·1%), HCWs (54·3%) to non-HCW adults (34·1%).
A matched sample of adults to compare with HCWs recorded an AR of 32·8%. The high AR
for children is supported by a number of arguments, see for example,
http://www.fluwikie.com/pmwiki.php?n=Consequences.Schools.
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Figure 6 displays the infection curve for adults, students, and total populations and indicates
that the epidemic curve in school-aged children is larger than the adult epidemic for the first
40 days. We tracked the disease status of family members in HCW households. The HCW
population of 19 508 has an additional 36 938 persons that live in HCW-occupied households.
The HCW household member risk (57·8%) is slightly above HCW risk due to the higher AR
of children. We show these results in the third column (50 patients/day) of Table 5. The high
AR and the earlier wave of infections in children suggest that that they are a principal source
of influenza transmission to the HCW household members and we estimate that 73·5% of HCW
household members were infected by persons outside of the household and 7·1% were infected
by students. Thus, <20% of HCW family members were infected by the HCW or the spouse
of the HCW, which seems to confirm this conjecture.

Table 5 also presents a sensitivity analysis of the HCW contact rate. We varied the rate from
10 to 70 contacts per day. The response measures presented in Table 5 indicate that the AR of
the major subpopulation categories vary little in response to significant changes in the HCW
contact rate. A change of sevenfold in this rate (10-70) varies the baseline AR from 43·0% to
45·4% or about 5·3%.

Table 6 illustrates the epidemic’s effect on morbidity. A summary of the impacts indicates that
a peak infection period (with over 20 000 infections per day) persists for 11 days. Total
influenza-related absenteeism exceeded 174 000 persons and 1 million days were lost to clinical
illness. Finally, more than 13 000 patient visits to HCWs would not occur, requiring substitute
HCW personnel.

To compare non-HCW adults with HCWs, we randomly selected a sample of adults equal in
number and age to the HCW population and compared their infection curves (Figure 7). The
two curves show the infections per day for HCF-based HCWs and the same number of
randomly selected adults, respectively. The HCWs had a higher AR (55·2%) than the randomly
selected adult population (32·8%), which indicates that HCWs are at greater risk for illness
than the general adult population. In addition, Table 7 provides evidence of increased HCW
risk of infection versus the general adult population. The table compares the ARs of HCWs
versus non-HCW adults by age, and shows that HCWs have higher ARs than the adult
population across all adult age groups.

Finally, our HCW vaccine protection results are displayed in Tables 8 and 9. The model’s
protection mechanism is based on the product of coverage and efficacy. We also include a
delay mechanism such that when an AR threshold is realized, the baseline level of protection
advances to a higher level of protection fostered by, for example, epidemic awareness. Using
this framework, we can identify protection from a variety of devices including vaccines,
respirators, and face masks.

Table 8 presents the total AR with five different vaccination delay assumptions. A vaccine
efficacy assumption based on the Basta et al.’s study21 is fixed at 78% for each assumption
and the length of delay is triggered by an AR threshold. Each run assumes that the vaccine is
distributed to all HCWs according to an increasing AR threshold. The thresholds correspond
to delays of 50, 43, 37, 25, and 0 days after the start of the epidemic. The change in AR is small
but steady for each delay assumption.

Table 9 demonstrates the relationship between HCW vaccination coverage and AR. Five
different coverage assumptions are simulated. As in Table 8, the total AR runs were generated
based on a vaccine efficacy estimate of 78% from the Basta et al. study.21 The coverage
assumptions are 0%, 25%, 50%, 75%, and 100% coverage. We show in Table 9 the overall
AR realized under the efficacy–coverage assumption and the reduction in risk caused by this
level of risk versus no protection. In addition, we made runs that simulated the use of face
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masks by HCWs. We used an efficacy value of 30% and a coverage level of 50% derived from
the MacIntyre et al.’s study.22 We interpreted these values as an upper bound of protection and
the overall AR of 42·7% represents a comparable risk reduction estimate equal to vaccine
protection at the 25% coverage level (Table 9).

Discussion
Our study can help policy makers make key decisions by illustrating how vaccinating HCWs
in a timely fashion, by making vaccines available and persuading HCWs to comply, can reduce
HCW illness and positively affect both the health care system and the community. Maintaining
an adequate healthy HCW force is vital to any epidemic preparedness plan. When making such
plans, the key decision makers must understand how a severe epidemic may affect the available
health care workforce. Although decision makers undoubtedly realize that HCWs will be at
risk for infection, our study can help them forecast an epidemic’s effects on HCWs and
absenteeism by providing perspective, benchmarks, and starting points on which to base their
planning.

In addition, our results demonstrate that vaccinating HCWs in a timely fashion, which includes
making the vaccine available and getting HCWs to comply, can have a positive effect on HCWs
and, in turn, health care system operations and the community. Further, although the number
of patients a HCW contacts each day affects the overall AR among HCWs and affects their
availability to treat patients, in an epidemic, the increased patient volume from influenza cases,
disease exacerbations, and psychological stress (i.e. ‘worried well’) and the decreased
availability of HCWs may force each HCW to see more patients than usual. Decision makers
can use our information to consider how to manage the number of patients each HCW sees.

By incorporating additional elements and analyses of the health care system, our model extends
the MIDAS’ initiative work. Ferguson et al. developed large-scale mathematical models to
explore the complex landscape of intervention strategies using Southeast Asia (attempting to
contain the epidemic at its source),20 Great Britain, and the USA as examples.9 Longini et al.
11 also examined the possibility of containing a flu epidemic at its source in a rural region of
Thailand. Germann et al.8 used a stochastic simulation model to investigate the spread of a
pandemic influenza virus strain throughout the entire US population for an R0 of 1·6–2·4 and
the impact of different combinations of antiviral agents, vaccines, and social-distancing
measures on the pandemic’s timing and magnitude. Eubank et al.23 developed a discrete event
simulation approach to model influenza propagation through Chicago, IL, using random
sample individual-specific activity structures, which provided the time, locations, and types of
activities and derived contact patterns for all individuals in the city. This model assumed a
fixed probability of transmission across all social network classes, with transmission occurring
as a function of contact duration and proximity of contact. Six scenarios were simulated, each
with differing percentages of cases diagnosed/treated and compliance with social-distancing
directives.

There are also unique and important models outside of MIDAS. For example, a study by Glass
et al.24 addressed the role of social distancing on the spread on influenza in the USA and
highlighted the powerful influence of school-aged children, with school closure and keeping
teenagers at home reducing ARs by 90%. This model is agent-based, with many characteristics
similar to the MIDAS models (e.g. emphasizing social networks characteristics and their role
in disease spread). One important difference is that the Glass et al.’s model focused on a
synthetic community substantially smaller than those studied by the MIDAS models. However,
the results of this model and the MIDAS model are relatively consistent. Another example is
a stochastic simulation model by Habler et al.25 derived from a model described in Longini et
al.26 The simulated region is a small urban US community infected by a H2N2 virus with
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1957–1958 pandemic properties. A notable feature of this model is that the number and duration
of contacts is different on weekdays and weekend days. This is different than all of the other
models described earlier.

Gardam et al.27 explicitly represented the health care sector within the simulation framework.
However, their model has important differences from our Allegheny County model, Their
objective was to simulate the impact of protecting HCWs on the spread of the epidemic. Their
study region was the Province of Ontario in Canada (population >13 million). The model they
described is an equation-based model and the compartment representing subjects seeking
treatment from HCWs is the only source of infections for the HCW population. In contrast,
the HCWs in the Allegheny County model can be infected by their spouses, children,
coworkers, random community members they interact with, as well as patients seeking
treatment. The Gardam et al.’s study employs an epidemic with an estimated R0 between 1·25
and 1·41, which is comparable with the 1957–58 pandemic. Our Allegheny County model
results are based on an epidemic with an R0 equal to 2·0 and comparable with the 1918
pandemic.

Limitations
All computer models are simplifications of reality and provide decision makers with
information on possible scenarios and relationships, not policy decisions. Although our current
assumptions came from reference sources or previously published models, it is possible they
may not hold in the event of a severe influenza epidemic. Our model only included HCFs that
were identified in the ArcGIS Business Analyst database and therefore did not include every
outpatient clinics in the county.

In addition, our model did not factor in potential psychological effects on HCWs that may lead
to further voluntary absenteeism.

Conclusions
Our Allegheny County model portrayed an epidemic with a secondary AR that reproduced the
Spanish influenza epidemic of 1918,7 and showed that vaccinating HCWs in a timely manner,
which includes getting the vaccine to HCWs and having them comply with vaccination, can
modestly help reduce the overall AR. In a pandemic of this severity, the AR for HCWs was
nearly 60% higher (54·3%) than that of all adults (34·1%). This HCW AR leads to high work
absenteeism. Our model may help decision makers limit the number of patients each HCW
sees. Future studies will investigate additional ways to protect HCWs.

Acknowledgments
This study was supported by the following grants from the Models of Infectious Disease Agent Study (MIDAS): RTI–
U01-GM070698; and University of Pittsburgh – U01-GM070708. The authors thank Craig R. Hollingsworth for
technical writing and editing assistance.

Biographical sketch
Philip C. Cooley is an RTI Fellow in bioinformatics and high-performance computing and
principal scientist and Assistant Director of Bioinformatics. He has more than 40 years of
experience developing computer models to study environmental health and disease
transmission scenarios. He has been extensively involved in designing and implementing
influenza transmission models to study and manage pandemic flu, and is currently the Co-PI
of the MIDAS Informatics Group. His current research includes an assessment of statistical

Cooley et al. Page 7

Influenza Other Respi Viruses. Author manuscript; available in PMC 2010 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



methods for biomarker explorations as part of genome-wide analysis studies, and has
developed a database of loci with known genetic properties.

References
1. US Census Bureau. American fact finder. [Accessed 18 February 2009]. Available at

http://factfinder.census.gov/home/saff/main.html?_lang=en
2. Rotstein, G. Allegheny still second oldest big county in United States. [Accessed 24 May 2001].

Philadelphia Post-Gazette. Available at
http://www.post-gazette.com/headlines/20010524census4.asp

3. US Department of Health and Human Services. Pandemics and pandemic threats since 1900. [Accessed
16 February 2009]. Available at pandemicflu.gov/general/historicaloverview.html

4. Pennsylvania Department of Health. Directory of Pennsylvania Hospitals and Ambulatory Surgery
Centers: data from the Bureau of Health Statistics and Research’s Hospital Questionnaire and
Ambulatory Surgery Center Questionnaire for the July 1, 2006–June 30, 2007. [Accessed 14 February
2009]. Available at
http://www.dsf.health.state.pa.us/health/lib/health/facilities/directories/
20062007HOSPITALASCDIRECTORY.pdf

5. Beckman RJ, Baggerly K, McKay MD. Creating synthetic baseline populations. Transp Res A Policy
Prac 1996;30(6):415–429.

6. Wheaton, WD.; Cajka, JC.; Chasteen, BM., et al. Synthesized population databases: a US geospatial
database for agent-based models. [Accessed 29 December 2009]. Research Triangle Park, NC.
Available at http://dx.doi.org/10.3768/rtipress.2009.mr.0010.0905. doi: 10.3768/rtipress.2009.mr.
0010.0905

7. Ferguson N, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an
influenza pandemic. Nature 2006;442:448–452. [PubMed: 16642006]

8. Germann TC, Kadau K, Longini IM Jr, Macken CA. Mitigation strategies for pandemic influenza in
the United States Apr 11;2006 103(15):5935–40. Epub 2006 Apr 3.

9. Halloran EM, Ferguson NM, Eubank S, et al. Modeling targeted layered containment of an influenza
pandemic in the United States. Proc Natl Acad Sci U S A 2008;105(12):4639–4644. [PubMed:
18332436]

10. About.com Health Service; Ucompare Hospitals. Hospital Quick Check Report for Allegheny County;
Facility Information – Staff. [Accessed 3 February 2009]. About.comAbout.comAvailable at
http://www.ucomparehealthcare.com/hospital/report2.html?
L=962207715494939153911&R=xlkHEHbkaJ3CDBg40zJ9W3yqe&I=9622077&page=2&sub=3

11. Longini I Jr, Nizam A, Xu S, et al. Containing pandemic influenza at the source. Science
2005;309:1083–1087. [PubMed: 16079251]

12. Kashti, O. Gov’t approves plan to reduce number of students per classroom. [Accessed 3 February
2009]. Haaretz.com Sun., 27 January 2008 Shvat 20, 5768. Available at
http://www.haaretz.com/hasen/spages/948522.html

13. Cauchemez S, Valleron AJ, Boëlle PY, Antoine Flahault A, Ferguson NM. Estimating the impact of
school closure on influenza transmission from Sentinel data. Nature 2008;452:750–754. [PubMed:
18401408]

14. Rothberg MB, Rose DN. Vaccination versus treatment of influenza in working adults: a cost-
effectiveness analysis. Am J Med 2005;118(1):68–77. [PubMed: 15639212]

15. Weeks WB, Wallace AE. Time and money: a retrospective evaluation of the inputs, outputs,
efficiency, and incomes of physicians. Arch Intern Med 2003;163:944–948. [PubMed: 12719204]

16. Nichol KL, Hauge M. Influenza vaccination of health care workers. Infect Control Hosp Epidemiol
1997;18:189–194. [PubMed: 9090547]

17. Nichol KL, Lind A, Margolis KL, et al. The effectiveness of vaccination against influenza in healthy,
working adults. N Engl J Med 1995;333:889–893. [PubMed: 7666874]

18. Nichol KL, Lind A, Margolis KL, et al. The effectiveness of vaccination against influenza in healthy,
working adults. JAMA. 2000 284(13):1655–1663. doi: 101001/jama284131655. Available at http://
jama.ama-assn.org/cgi/content/full/284/13/1655. [PubMed: 11015795]

Cooley et al. Page 8

Influenza Other Respi Viruses. Author manuscript; available in PMC 2010 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://factfinder.census.gov/home/saff/main.html?_lang=en
http://www.post-gazette.com/headlines/20010524census4.asp
http://pandemicflu.gov/general/historicaloverview.html
http://www.dsf.health.state.pa.us/health/lib/health/facilities/directories/20062007HOSPITALASCDIRECTORY.pdf
http://www.dsf.health.state.pa.us/health/lib/health/facilities/directories/20062007HOSPITALASCDIRECTORY.pdf
http://dx.doi.org/10.3768/rtipress.2009.mr.0010.0905
http://About.com
http://About.com
http://www.ucomparehealthcare.com/hospital/report2.html?L=962207715494939153911&R=xlkHEHbkaJ3CDBg40zJ9W3yqe&I=9622077&page=2&sub=3
http://www.ucomparehealthcare.com/hospital/report2.html?L=962207715494939153911&R=xlkHEHbkaJ3CDBg40zJ9W3yqe&I=9622077&page=2&sub=3
http://Haaretz.com
http://www.haaretz.com/hasen/spages/948522.html
http://jama.ama-assn.org/cgi/content/full/284/13/1655
http://jama.ama-assn.org/cgi/content/full/284/13/1655


19. Bridges CB, William W, Thompson WW, et al. Effectiveness and cost-benefit of influenza
vaccination of healthy working adults: a randomized controlled trial. JAMA. 2000 284(13):1655–
1663. doi: 101001/jama284131655. Available at http://jama.ama-assn.org/cgi/content/full/
284/13/1655. [PubMed: 11015795]

20. Ferguson N, Cummings DAT, Cauchemez S, et al. Strategies for containing an emerging influenza
pandemic in Southeast Asia. Nature 2005;437:209–214. [PubMed: 16079797]

21. Basta NE, Halloran ME, Matrajt L, Longini IM Jr. Estimating influenza vaccine efficacy from
challenge and community-based study data. Am J Epidemiol 2008;168(12):1343–1352. [PubMed:
18974084]

22. MacIntyre CR, Cauchemez S, Dwyer DE, et al. Face mask use and control of respiratory virus
transmission in households. Emerg Infect Dis 2009;15(2):233–241. [PubMed: 19193267]

23. Eubank S, Guclu H, Anil Kumar VS, et al. Modelling disease out-breaks in realistic urban social
networks. Nature 2004;429:180–184. [PubMed: 15141212]

24. Glass RJ, Glass LM, Beyeler WE, Min HJ. Targeted social distancing design for pandemic influenza.
Emerg Infect Dis 2006;12(11):1671–1681. [PubMed: 17283616]

25. Habler MJ, Shay DK, Davis XM, et al. Effectiveness of interventions to reduce contact rates during
a simulated infectious pandemic. Emerg Infect Dis 2007;13(4):581–589. [PubMed: 17553273]

26. Longini IM, Halloran ME, Nizam A, Yang Y. Containing pandemic influenza with antiviral agents.
Am J Epidemiol 2004;159:623–633. [PubMed: 15033640]

27. Gardam M, Liang D, Moghadas SM, Wu J, Zeng Q, Zhu H. The impact of prophylaxis of healthcare
workers on influenza pandemic burden. J R Soc Interface 2007;4:727–734. [PubMed: 17360253]

Cooley et al. Page 9

Influenza Other Respi Viruses. Author manuscript; available in PMC 2010 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://jama.ama-assn.org/cgi/content/full/284/13/1655
http://jama.ama-assn.org/cgi/content/full/284/13/1655


Figure 1.
Allegheny County’s location in Pennsylvania.
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Figure 2.
Pittsburgh in Allegheny County.
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Figure 3.
Allegheny County population density.
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Figure 4.
Allegheny County schools and hospitals.
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Figure 5.
Infection curves comparing baseline R0 = 1·4 and R0 = 2·0 epidemics.
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Figure 6.
Infection curves for students, adults, and total Allegheny residents.
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Figure 7.
Infection curves for health care workers and a matched sample of adults.
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Table 4

Population comparisons

Measure Adults Health care
workers Students Total

Population 927 765 19 508 230 440 1 242 755

Number infected
 throughout
 epidemic

316 203 10 592 175 424 539 834

Overall serologic
 attack rate 34·1 54·3 76·1 43·4
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Table 6

Baseline epidemic morbidity effects

Measure Effects

Total morbidity 362 564

Peak infection period Day 38–48, 1 days >20 000
 infections per day

Peak infection day 27 061 infections per day

School/work absenteeism 174 680 persons

School/work absenteeism 1 048 080 days

Unable to see patient 21 106

Caveats: 50% of symptomatic persons stay home (adults and children) and then only infect others within the home. The asymptomatic rate for adults
and children is assumed to be 33%. HCWs see on average 30 patients per day, and the average length of stay at home is 6 days.
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Table 8

The sensitivity of attack rate (AR) in response to increasing delays in the distribution of vaccine to health care
workers

Delay in vaccination
from the start
of epidemic (days)

End of delay
trigger threshold
serologic AR (%)

Total population
serologic AR (%)

0 0·0 40·4

25 1·0 40·7

37 10·0 41·0

43 20·0 41·9

>50 >50·0 43·7
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Table 9

Total attack rate for five vaccine coverage assumptions

Vaccine coverage
among health
care workers (%)

Total population
attack rate (%)

Main calibration rule

Risk
reduction

(%)

0 43·6 0·0

25 42·8 1·8

50 42·1 3·4

75 41·0 6·0

100 40·4 7·4
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