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Abstract
We investigated whether individual differences in neural specificity—the distinctiveness of
different neural representations—could explain individual differences in cognitive performance in
older adults. Neural specificity was estimated based on how accurately multivariate pattern
analysis identified neural activation patterns associated with specific experimental conditions.
Neural specificity calculated from a same-different task on two categories of visual stimuli (faces
and houses) significantly predicted performance on a range of fluid processing behavioral tasks
(dot-comparison, digit-symbol, Trails-A, Trails-B, verbal-fluency) in older adults, whereas it did
not correlate with a measure of crystallized knowledge (Shipley-vocabulary). In addition, the
neural specificity measure accounted for thirty percent of the variance in a composite measure of
fluid processing ability. These results are consistent with the hypothesis that loss of neural
specificity, or dedifferentiation, contributes to reduced fluid processing ability in old age.

INTRODUCTION
Measures of fluid processing abilities, such as speed of processing and executive function,
tend to decline with age in comparison to measures of crystallized knowledge (e.g.
vocabulary, world knowledge) (Salthouse, 1996; Park et al., 2002). Nevertheless, there is
substantial variability in the cognitive performance of healthy older adults on fluid
processing tasks. Some (even otherwise healthy) older adults exhibit significant declines in
cognitive function, while others show comparable performance to young adults (Christensen
et al., 1999; Hultsch et al., 2002). What distinguishes older adults who continue to perform
well from older adults who do not?

One possibility is neural specificity—the extent to which the neural representations for two
or more stimuli can be distinguished. Evidence suggests that neural representations that are
very distinct in young adults are less distinct (more dedifferentiated) in older adults (Grady
et al., 1994; Park et al., 2004). Converging evidence has found such age-related differences
in neural specificity across a variety of tasks including visual object processing (Goh et al.;
Chee et al., 2006), working memory for pictures (Payer et al., 2006), and working memory
for letters (Zarahn et al., 2007). Li et al. (2001) postulated that age-related decline in the
distinctiveness of neural representations mediated behavioral deficits in fluid intelligence.
Based on this framework, we hypothesized that individual differences in neural specificity in
older adults would predict performance on a range of cognitive tasks that measured fluid
processing ability.

Elderly participants first completed a battery of behavioral tasks designed to measure their
fluid processing and crystallized knowledge. They then performed a simple visual task while
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neural activity was estimated using functional magnetic resonance imaging (fMRI). Neural
specificity for each task was estimated based on how accurately a trained classifier could
predict the stimulus category from the multivariate patterns of neural activation (see Haynes
and Rees, 2006; Norman et al., 2006). The relationship between neural specificity and
various behavioral measures in older adults was examined using correlation and regression
analyses. Because our hypotheses were about the impact of age on both cognitive behavior
and neural specificity, we did not expect to see the same relationships in young adults, but
we also tested a group of young for comparison purposes.

MATERIALS AND METHODS
Subjects

24 healthy community-dwelling elderly from the Champaign-Urbana area participated in the
study. Data from five of these participants were discarded because of excess motion,
distortion due to improper head coil placement, vision problems, and/or failure to follow
instructions, and the remaining 19 older adults (ages 61–69; 10 female; 15.89 mean years of
education) were included in the analyses. Subjects had a minimum score of 26 on the Mini
Mental State Examination (Folstein et al., 1975). 23 younger adults were also recruited from
the University of Illinois, matched by gender and years of education. Four younger subjects
were discarded because of excessive motion during functional imaging, and data from the
remaining 19 younger (ages 19–30; 10 female; 15.05 mean years of education) were
included in the analyses. All participants were screened to ensure they were right-handed,
native English speakers, psychologically and physically healthy, not taking medications with
psychotropic or vascular effects, and free of any other MRI safety contraindications. All
study procedures were reviewed and approved by the University of Illinois Institutional
Review Board, and all participants provided detailed written consent prior to their
involvement in this study.

Behavioral Measures
Prior to scanning, participants completed a cognitive battery consisting of the WAIS Digit
Symbol task (digit-symbol) (Wechsler, 1981), Dot Comparison task (dot-comparison)
(Salthouse and Babcock, 1991), Trail-making tasks A and B (Trails-A and Trails-B) (Reitan
and Wolfson, 1993), and the Controlled Oral Association Task (verbal-fluency) (Benton and
Hamsher, 1976). The dependent measures were the number of symbols correctly copied in
90 seconds for digit-symbol, number of correct same/different comparisons in 45 seconds
for three sections of dot-comparison, the time to complete the Trails for Trails-A (letters
only) and Trails-B (alternating letters and numbers), and the number of unique F, A, and S
words said in 60 seconds for each section of verbal-fluency. In addition, crystallized
knowledge was measured using the Shipley Institute of Daily Living Scale (Shipley-
vocabulary) (Zachary, 1986). The dependent measure was the number of correct word-
definition matches in a multiple choice test.

Experimental Design and Task
Each participant performed a simple visual task in the fMRI scanner. The visual task
consisted of two six-minute runs, each of which was organized into three 30 second “face”
blocks and three 30 second “house” blocks in alternating order interleaved by 30 second
“phase-scrambled” blocks. Each face block consisted of 15 trials in which participants
viewed two grayscale images of faces presented side-by-side and were asked to make a
same/different judgment. Likewise, each house block consisted of 15 trials in which
participants viewed two grayscale images of houses presented side-by-side and were asked
to make a same/different judgment. The task was the same in phase-scrambled blocks except
that phase-scrambled images (preserving luminance and spatial frequencies but rendering
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the images visually meaningless) were used instead of faces or houses. For each trial,
participants indicated “same” with their right index finger and “different” with their right
middle finger. In the instructions, no emphasis was placed on either the speed or the
accuracy of the judgment.

All visual stimuli were presented via E-prime (Psychology Software Tools, Pittsburgh, PA)
and displayed by a back-projection system. Responses were recorded using a Lumina
response pad (Cedrus, San Pedro, CA).

MRI Data Acquisition and Preprocessing
Brain images were acquired with a 3T Siemens Allegra head-only system (Siemens;
Erlanger, Germany). A conventional echo-planar MR sequence was used for functional runs,
with complete volumes acquired every 2s (TR=2000ms, TE=25ms, FA=80°, FOV=220mm).
Slices were 64×64 matrices acquired parallel to the AC-PC line. Each volume consisted of
36 slices spanning 158mm on the Z axis (encompassing all of the cerebrum and most of the
cerebellum for most participants). A high-resolution (1mm isotropic voxels) T1-weighted
MPRAGE was also acquired to facilitate warping individual volumes to atlas space.

Data were preprocessed using SPM5 (Wellcome Department of Cognitive Neurology,
London, UK, www.fil.ion.ucl.ac.uk). Functional images underwent slice-timing correction
and realignment to the mean volume. No normalization or spatial smoothing was applied.

We then estimated the neural response to each category relative to phase-scrambled control
images using the General Linear Model (GLM). The model included separate regressors for
each of the experimental blocks convolved with a canonical hemodynamic response
function, as well as six nuisance covariates modeling head translation and rotation. This
procedure yielded six estimates of face-evoked activation and six estimates of house-evoked
activation.

Multivariate Pattern Analysis Using Support Vector Machine
We applied multivariate voxel selection and pattern analysis in order to identify brain
regions that contribute to discriminating the experimental conditions in the whole brain and,
at the same time, to assess the distinctiveness of the neural patterns. Machine learning
algorithms, particularly linear-SVM (support vector machine), have been a popular tool in
decoding neural activity (Kamitani and Tong, 2005; Li et al., 2007; Eger et al., 2008). They
provide a measure of the distinctiveness of different patterns of neural activation, and they
are also capable of selecting voxels that contribute to distinguishing the patterns (De
Martino et al., 2008; Hanson and Halchenko, 2008). We used linear-SVM (using LIBSVM,
Chang and Lin, 2001) with recursive feature elimination (Guyon and Elisseeff, 2003; De
Martino et al., 2008) to assess neural specificity associated with the task. All procedures
were done on an individual subject basis.

Linear SVM finds a hyperplane that maximally separates trained neural patterns (xi) into
two different labels (yi, either 1 or −1). Mathematically, this is equivalent to minimizing
(1/2) × wTw + C Σζi subject to yi(wxi+b) ≥ 1-ζi (i = 1, 2, …, N; ζ ≥ 0), where w is the weight
vector, b is a bias value, ζi is a slack variable representing degree of misclassification, and C
is a regularization parameter which was set to 1 for this analysis. Then, unknown neural
patterns are classified according to the sign of the decision function D(x) = wx+b, and the
classification accuracy is computed as a measure of neural specificity. The magnitude of the
weight wj is related to the change in the objective function when voxel j is removed, and it
effectively represents the contribution of voxel j to the classification performance (Guyon
and Elisseeff, 2003).
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Six whole-brain maps of face- and house-evoked activity were used in this classification
procedure. A leave-one-out cross-validation approach with recursive feature elimination was
employed in order to assess the distinctiveness between face and house representations. In
particular, one of the twelve patterns was left out while an SVM model was trained to fit the
remaining eleven patterns. Next, a classifier was fit recursively while dropping
uninformative voxels (i.e., voxels with weights (wj) close to zero) until the number of final
voxels reached 10%, 9.5%, 8% … 0.5% (decrementing by 0.5%) of the entire brain volume.
Then, the left-out pattern was tested using only the selected voxels. This procedure was done
iteratively with all twelve patterns. When the number of selected voxels was high (e.g. 10%;
including many voxels that may not contribute well to the classification), many subjects’
classification accuracies remained near chance level (0.5). When the number of selected
voxels was low (e.g. 0.5%; including only a few critical voxels), many subjects’
classification accuracies approached ceiling (1.0). We chose 6% of the entire brain volume
so that every subject showed classification accuracy greater than the chance while
preserving maximum variability across subjects.

We verified the validity of the procedure by examining the null distribution of the
classification accuracy for each subject. Specifically, we repeated the above procedure 200
times while permuting the category assignment for each pattern. There was no difference
between the age groups in the mean classification accuracy of this null distribution
(t(36)=1.081, p=0.144, two-tailed) (Fig S1).

Visualization of Category-Selective Regions
The SVM classification with recursive feature elimination was performed on all twelve
patterns without cross-validation in order to visually identify category-selective regions. A
binary category-selective ROI (i.e. 1 if category-selective and 0 otherwise) was created for
each individual in his or her native space based on the voxel selection criterion (6% of the
entire brain volume). Each participant’s binary map was then normalized using SPM5. Each
participant’s T1 anatomical image was coregistered with the functional images and then
segmented into gray matter, white matter, and cerebrospinal fluid. The gray matter was
normalized into the default gray matter probability template in standard MNI (Montreal
Neurological Institute) space, and the acquired normalization parameters were used to
normalize the category-selective ROI maps for each individual.

In order to assess the statistical significance of each voxel, the normalized binary category-
selective maps for each subject were spatially smoothed with a 2mm Gaussian filter, and
these maps were summed across all subjects. The probability distribution of the summed
map under the null hypothesis was estimated using a permutation test (category selective
voxels were redistributed in random locations in each participant 2,000 times). This
distribution was then used to calculate a z-statistic at each voxel, based on the observed
aggregated category-selective maps across all subjects (Figure 2).

Multivariate Pattern Analysis Using Correlation Analysis
The SVM classification analysis is relatively coarse, with only 12 activation patterns to be
predicted. This results in a total of only thirteen possible values for the dependent measure
(0/12, 1/12, 2/12… 12/12), and only five unique accuracy values were observed in our data
with older adults (see Figure 1), providing a coarse index of neural specificity. In order to
compute a more fine-grained dependent measure as well as to evaluate the replicability of
the findings, we obtained an additional measure of neural specificity using correlation
analysis. This measure was first used by Haxby et al. (2001) and was recently used by Carp
et al. (under review) to measure age differences in neural specificity. First, we used
coefficient estimates of the GLM from two blocks for each category (second block of the
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first run and the second block of the second run for each category) and found regions in the
whole brain that were significantly activated either by face compared to house or house
compared to face (p<0.001, uncorrected). These regions then served as a mask for each
participant. We then extracted the patterns for faces in run1 and run2 and for houses in run1
and run2 (excluding the blocks that were used to create the mask) within this mask. Neural
specificity was then defined as the difference between the Pearson correlation within-
categories (i.e. the average of the correlation of face patterns between run1 and run2 and the
correlation of house patterns between run1 and from run2) and between-categories (i.e. the
average of the correlation between the face pattern from run1 and the house pattern from
run2 and the correlation between the face pattern from run2 and the house pattern from
run1).

RESULTS
Cognitive Performance Measures

Replicating previous work (Park et al., 2002), older adults’ performance on all the fluid
processing tasks was worse than that of younger adults (digit-symbol, t(36)=6.97, p<0.001;
dot-comparison, t(36)=5.52, p<0.001; verbal-fluency, t(36)=1.95, p<0.029; Trails-A, t(36)=
−0.584, p=0.281; Trails-B, t(36)= −1.78, p=0.042; but no age differences were observed on
the crystallized knowledge test (Shipley-vocabulary, t(36)= −0.716, p=0.761) (Table 1).

Neural Specificity Measures
Neural specificity was defined as the accuracy of the trained classifier in predicting the
category of the visual stimulus (face or house) based on the pattern of neural activation in
the selected ROI.

Older adults showed decreased neural specificity (t(36)=3.268, p=0.001) compared to the
younger adults (Figure 1). These results replicate previous studies of ventral visual
dedifferentiation (Park et al., 2004;Payer et al., 2006) but extend them to measures of whole-
brain function. The neural specificity measure was then used in subsequent regression
analyses in order to examine the relationship between neural specificity and behavioral
performance measures in the older adults.

Voxel Selection and Category-Selective ROIs
Before examining the relationship between neural specificity and behavior, we visually
inspected the anatomical locations of each subject’s category-selective ROI determined by
the multivariate voxel selection procedure. Category-selective ROIs were visualized by
aggregating individual participants’ ROIs in normalized space separately for each age group
(see Materials and Methods). Figures 2 illustrates category-selective regions in the visual
task of viewing faces and houses (p<10−6, uncorrected). In both age groups, areas
traditionally known as face-selective and house-selective such as the mid-fusiform and the
parahippocampal gyri, as well as some extrastriate areas, were identified as category-
selective regions.

Neural Specificity and its Behavioral Correlates
Next, we tested our primary hypothesis that neural specificity predicts fluid processing in
the older adults. Using correlation and regression analyses, we first examined the
relationship between neural specificity and each of the individual behavioral measures.
Controlling for age, neural specificity of visual activity significantly predicted performance
on dot-comparison (β=36.803, t(16)=1.987, p=0.032), digit-symbol (β=53.296, t(16)=2.930,
p=0.005), and verbal-fluency (β=28.926, t(16)=2.533, p=0.011), while Trails-A (β=−59.184,
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t(16)= −1.712, p=0.053) and Trails-B (β=−104.073, t(16)= −1.144, p=0.135) missed the
0.05 cutoff (Figure 3A, one-tailed for all directional analyses unless otherwise noted).

With only 12 activation patterns the granularity of this measure of classification accuracy
was low, and only five unique accuracy values were observed in our data with older adults
(see Figure 1). In order to compute a more fine-grained dependent measure as well as to
evaluate the replicability of the findings, we ran a second analysis using Pearson correlation
measures (see Methods and Materials). We computed the Pearson correlation between two
activation patterns elicited by the same category (within-category correlation) and between
two activation patterns elicited by different categories (between-category correlation) across
the two runs. We used the difference between the within-category correlation and the
between-category correlation as another measure of neural specificity.

This analysis revealed a trend toward greater specificity in younger adults compared to older
adults, although this effect did not reach statistical significance (t(36)=1.474, p=0.075)
(Figure S2). Nevertheless, the relationship between neural specificity measured using this
correlation analysis and each of the individual behavioral measures (Figure 4A) showed
striking similarity to the analysis that was based on the SVM. Controlling for age, neural
specificity measured using this correlation analysis predicted performance on digit-symbol
(β=21.449, t(16)=2.624, p=0.009), verbal-fluency (β=9.971, t(16)=1.880, p=0.039), Trails-A
(β=−26.748, t(16)= −1.799, p=0.045) and Trails-B (β=−68.484, t(16)= −1.836, p=0.043),
while the relationship with dot-comparison did not reach significance at the 0.05 level
(β=11.020, t(16)=1.292, p=0.108) (Figure 4A).

The five fluid processing measures (i.e. all the behavioral tasks except Shipley-vocabulary)
were highly correlated with each other (Table 2), suggesting they depend on a shared
construct. We used principal component analysis to reduce the dimension of these
behavioral measures, and it yielded a single principal component. We termed this composite
score fluid processing ability, and we assessed the relationship between neural specificity
and this composite behavioral measure.

Figure 3B illustrates the relationship between this composite measure of fluid processing
ability and the neural specificity measure in the older adults. Neural specificity significantly
predicted fluid processing ability while controlling for age (β=10.806, t(16)=2.667,
p=0.008). We obtained the same result when the neural specificity measure from the
correlation-based analysis was used to predict the behavioral measure as shown in Figure 4B
(β=4.368, t(16)=2.417, p=0.014). (See Figures S3 and S4 in the supplemental material for
the results of the younger adults).

Because the BOLD signal is an indirect measure of neural activity, it is possible that our
measure of neural specificity may be influenced by individual differences in vascular noise
(see D'Esposito et al., 2003). We therefore tested whether neural specificity could predict
fluid processing after controlling for a measure of BOLD variability. We extracted the
estimate of the error variance of the GLM model (residual mean squared from the SPM5
results) within the posterior cingulate cortex (a region we assumed was not strongly
involved in distinguishing the face and place conditions) for each subject (A mask of the
posterior cingulate cortex was created in standard MNI space using the PickAtlas toolbox
(http://www.fmri.wfubmc.edu/cms/software), and this mask was inverse transformed to each
participant’s native space). Neural specificity still significantly predicted fluid processing
ability when the median of the estimate of the error variance was included as a covariate in
the model (β=11.233, t(15)=2.695, p=0.008, neural specificity measured from SVM
approach; β=4.414, t(15)=2.374, p=0.016, neural specificity measured from correlation
approach). These results suggest that the association between neural specificity and behavior
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is not attributable to individual differences in BOLD variability unrelated to task, which may
be associated with vascular noise.

In contrast to the fluid measures, neural specificity showed no relationship with Shipley
vocabulary score (β=1.1945, t(16)=0.110, p=0.457, neural specificity measured using SVM,
Figure 3C; β=1.240, t(15)=0.264, p=0.398, neural specificity measured using correlation
analysis, Figure 4C), our measure of crystallized knowledge. In addition, using hierarchical
linear regression, we found that the crystallized knowledge measure did not explain
additional variance in neural specificity, above the variance explained by fluid processing
ability in older adults (R2 increment=0.042, F(1,16)=1.269, p=0.278, neural specificity
measured from the SVM approach; R2 increment=0.026, F(1,16)=0.633, p=0.439, neural
specificity measured from the correlation approach).

Finally, we addressed the total variance explained in the two abilities by age alone and then
added neural specificity in a hierarchical regression in older adults (Table 3). Age alone
explained less than 1% of the variance in fluid processing ability and about 2% of the
variance in crystallized knowledge when entered in the first step. This is not surprising
because the older subjects had a tight age range between 61 and 69. Importantly, in a second
step after age, neural specificity from the SVM approach explained an additional 30.8% of
the variance in fluid processing ability (F(1,17)=7.114, p=0.017), but only produced a non-
significant increment of less than 1% in the crystallized knowledge measure.

DISCUSSION
In this study, we investigated whether individual differences in neural specificity could
explain individual differences in cognitive performance in older adults. Although we were
primarily interested in how levels of neural specificity predicted individual differences in
older adults, we also collected data from younger adults to replicate previous findings of
age-group differences in behavioral performance and neural specificity. As expected, older
adults showed decreased performance in fluid processing tasks compared to younger adults
while their performance in a crystallized knowledge task was comparable to that of younger
adults (Table 1). Likewise, there was a group difference in the measure of neural specificity
(Figures 1 and S2).

In order to test our primary hypothesis, we examined the relationship between neural
specificity and various behavioral measures in older adults using correlation and regression
analyses. We found that neural specificity in the older adults, measured using two different
approaches, was significantly associated with measures of fluid processing ability, but not
with crystallized knowledge. The failure to explain crystallized knowledge is of particular
interest given that there was a moderate correlation between the Shipley-vocabulary score
and fluid processing ability (r=0.421, t(17)=1.916, p=0.073, two-tailed), suggesting that the
behavioral effect of neural specificity is unique to fluid processing ability. Furthermore,
nearly thirty percent of the variance of fluid processing ability was explained by neural
specificity in response to simple visual stimuli that have no obvious similarity to the
psychometric measures collected outside of the scanner. These results suggest that neural
specificity may be a fundamental neural measure associated with performance on complex
cognitive tasks.

This interpretation is consistent with the hypothesis that age-related decline in the efficacy
of neurotransmitter function and neuromodulation leads to less distinctive neural
representations, which in turn underlie deficits in behavioral performance (Backman et al.,
2000; Li et al., 2001; Li and Sikström, 2002). Our results demonstrate that variability in
neural specificity within a group of older adults, possibly due to individual differences in
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neural noise during the processing of visual categories, is strongly related to individual
differences in behavioral performance. Of course, declines in neural specificity are just one
type of age-related neural change. There are a number of others, including bilateral
recruitment (Cabeza, 2002; Reuter-Lorenz, 2002) and suppression deficits in sensory cortex
and default networks (Gazzaley et al., 2005; Park et al., 2010). These changes may be quite
different from the sensorimotor specificity investigated in this study. Future work should
study the relationship between these different types of neural change and their association
with behavioral measures.

In conclusion, neural specificity predicts fluid processing ability in older adults. These
findings demonstrate that declining neural specificity may play an important role in
cognitive decline and that preserved neural specificity may even be an indicator of healthy
cognitive aging.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A dot plot of neural specificity of the visual activity measured as classification accuracy of a
linear-SVM classifier. Neural specificity was significantly higher in the younger adults than
in the older adults (t(36)=3.268, p=0.001). Chance performance is 0.5, indicated with a gray
dashed line.
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Figure 2.
Visualization of category-selective ROIs determined by the multivariate voxel selection
method. Category-selective ROIs from individual subjects were aggregated in the standard
normalized MNI space in order to visualize the category-selective regions for the visual
categories at the group level. Note that these are not activation maps. Colored areas indicate
voxels that reliably contributed to distinguishing patterns of activity elicited by face versus
house conditions (for the visual task) (p<10−6, uncorrected). The left hemisphere appears on
the left. Coordinates for these axial slices are given in MNI space.
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Figure 3.
Scatter plots showing the relationship between the measure of neural specificity from the
SVM approach and five fluid processing tasks (A), the composite measure of the fluid
processing tasks (B), and a crystallized knowledge task (C) in older adults. Zero-order
correlations (r) illustrate simple linear relationships between each behavioral measure and
neural specificity; semipartial correlations (sr) illustrate the unique contribution of neural
specificity in predicting a behavioral measure controlling for age (* p<0.05; ** p<0.01; ***
p<0.001). In all plots, each data point represents a single older adult.
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Figure 4.
Scatter plots showing the relationship between the measure of neural specificity from the
correlation approach and five fluid processing tasks (A), the composite measure of the fluid
processing tasks (B), and a crystallized knowledge task (C) in older adults. Notational
conventions are the same as in Figure 3.
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