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Abstract
Myc proteins control several cellular processes, including proliferation and growth, and they play an
important role in human tumorigenesis. Several years ago, single homologs of Myc, its interaction
partner Max, and its antagonist Mnt were identified in Drosophila melanogaster. Here, we review
the function of this so-called Max network in fruit flies, with a particular emphasis on its most obvious
biological activity: the control of cellular and organismal growth. We describe the molecular basis
for this growth function, as well as the interaction of Myc with other pathways known to control
growth, the insulin, TOR, and hippo pathways. In addition, Drosophila Myc also controls DNA
replication and influences apoptosis, both cell-autonomously and non-autonomously, in a process
known as cell competition. In the future, we expect that further functions of Myc will be uncovered
and that genetic approaches will increasingly be used to characterize the evolutionarily conserved
molecular mechanism of Myc action, thus also benefitting our understanding of Myc biology in
vertebrates.
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Introduction
The Myc/Max/Mnt Network

Extensive investigations of Myc proto-oncoproteins in vertebrate systems have revealed a
network of interacting and partially redundant factors: the transcriptional activators of the Myc
family (c-, N-, L-Myc), several transcriptional repressors (Mxd-1 through 4, Mnt, Mga), and
their common dimerization partner Max (reviewed in Meyer and Penn1). The analogous
network in Drosophila is considerably simpler: it consists of a single transcriptional activator
(called Myc; the corresponding gene is named diminutive, in short dm), a single repressor
(called Mnt), and their common partner Max (reviewed in Gallant2). These proteins show
similar protein:protein and protein:DNA interaction specificities as their vertebrate
counterparts. Thus, Myc:Max heterodimers bind E-box sequences and activate nearby genes,
whereas Mnt:Max dimers repress transcription through similar sequence elements. 3,4
Moreover, vertebrate and Drosophila Myc proteins can partially substitute for each other: a
truncated version of human c-Myc (called c-MycS) rescues a lethal Drosophila Myc allele,5
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and Drosophila Myc overcomes the proliferation block in murine embryonic fibroblasts
carrying a conditionally knocked-out c-Myc gene6; Drosophila Myc can also cooperate with
oncogenic Ras[V12] in transforming rat fibroblasts.7

Transcriptional Activity of Myc
Like its vertebrate counterparts, Drosophila Myc influences the expression of a large number
of genes that are involved in diverse cellular processes.8–12 A prominent group of Myc-
activated targets code for proteins involved in ribosome biogenesis, translation, and
metabolism, and many of these genes are repressed by Mnt, consistent with the antagonistic
roles for Myc and Mnt in promoting and suppressing cellular growth, respectively (see below).
In addition, Myc also stimulates the synthesis of noncoding RNAs that are involved in these
processes—on one hand by inducing the expression of the transcription factor TIF-1A (and
thereby activating RNA polymerase I), on the other hand by a physical interaction with the
transcription factor Brf, which presumably directly increases RNA polymerase III activity.
10,13 Of note, this effect on RNA polymerase III is the only molecularly defined activity of
Myc that does not involve Myc:Max heterodimers (i.e., does not require Max).13

The mechanisms by which Myc and Mnt control their target genes are presumably similar to
those employed by their vertebrate homologs, but to date, only few transcriptional cofactors
have been studied in detail in Drosophila. Thus, the DNA helicase Pontin/Tip49 (and, more
weakly, the related protein Reptin/Tip48) interacts genetically and physically with Myc and
contributes to the repression of certain target genes.14 In addition, 3 members of the trithorax
group of transcription factors bind to Myc and are essential for its biological activities in
vivo: the histone-methyltransferase subunit Ash2 (ASH2L in vertebrates), the histone-
demethylase Lid (related to vertebrate Rbp-2/JARID1A and PLU-1/JARID1B), and the
ATPase Brahma (homologous to human hBrm and Brg1),15 although it is still unclear how
they affect Myc’s transcriptional output. Finally, the corepressor Groucho (TLE3 in
vertebrates) can interact with Myc and prevent it from activating certain target genes.16

The Biological Activity of Drosophila Myc: Control of Growth
Downstream Effect on Ribosome Biogenesis

The prominent role for the Myc network resides in the control of growth and animal size.
Mutations in Myc show profound growth defects: dm4 (null) mutant embryos hatch as larvae
at the same time as wild-type animals but fail to grow and mostly die early in development,
17 while weak hypomorphic alleles (dm1, dmP0) allow the development of small, but normally
proportioned, adult flies carrying disproportionately short and thin bristles. 18,19 All Myc-
mutants are composed of small cells containing small nucleoli (with an according reduction of
rRNA levels19,13). Conversely, overexpression of Myc increases cell size by accelerating
cellular growth.19 Cells overexpressing Myc show a dramatic increase in nucleolar size and
of ribosomal contents, 10 and expression of Myc throughout the animal increases the size of
the adult fly by nearly 30%.20 On the other hand, Mnt null mutants are viable and have growth
phenotypes that are opposite to those of Myc mutants, as cells mutant for Mnt are larger than
normal, and Mnt mutant adults are heavier than wild type flies.4 Moreover, loss of Mnt partially
rescues Myc mutant larvae, consistent with the opposing effect of Myc and Mnt on growth.
11,13 Taken together, these data, as well as the analysis of the transcriptional target genes (see
above), indicate that Myc induces cell-autonomous growth in large part by modulating
ribosome biogenesis.

Interaction of Myc with the Insulin Pathway and with TOR
Besides Myc, the target of rapamycin (TOR) and the insulin receptor (Inr) signaling pathway
have emerged in recent years as two central players in the control of growth. These pathways
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mediate the animal’s growth response to changes in nutrient abundance,21 and both of them
also influence Myc. On one hand, Myc appears to be an important downstream mediator of
TOR activity because many of the genes that are induced in response to TOR activation are
also Myc targets, in particular genes involved in ribosome biogenesis and protein synthesis.
12 Indeed, TOR was found to contribute to the stabilization of Myc protein,22 possibly by the
inhibition of GSK3β, as has been shown for vertebrate Myc23 (PB, unpublished data).

On the other hand, the activation of the insulin pathway also inhibits GSK3β activity and
thereby increases Myc stability (see below). One might thus expect that the Inr pathway also
shares some transcriptional targets with Myc. Indeed, such an overlap between Inr and Myc
targets can be seen in Drosophila S2 cells (PB, unpublished data), although it has not been
reported for transcriptome analyses of whole larvae12; however, the effect of the Inr pathway
on Myc is known to differ in different tissues (see below), and the complex mixture of tissues
in an entire larva is likely to obfuscate some of the interactions between Myc and the Inr
pathway. Another downstream effector of this pathway is the transcription factor Foxo, which
is active under starvation conditions but inhibited by Inr signaling via protein kinase B (PKB/
Akt) when food is plentiful.24 Foxo has been shown to interfere with Myc’s transcriptional
output in cultured cells, although the molecular basis for this effect is not known.25 In addition,
Foxo differentially affects Myc mRNA expression in different tissues; for example, in the fat
body, Foxo activates Myc under starvation conditions (see below), whereas it does not
contribute to Myc activation in the muscle.22

Myc Activity in the Fat Body
The response to environmental nutrient abundance is (at least in part) mediated by the fat body,
an insect organ with some functional homology to vertebrate liver and adipocytes.26 The fat
body produces endocrine signals that are needed for larval growth,27,28 and it thereby
contributes to the release of Drosophila insulin-like peptide 2 (Dilp2) from the brain, which
then activates the Inr cascade throughout the animal.29 At the same time, the fat body (like any
other tissue) also responds to circulating insulin levels, such that the transcription factor Foxo
becomes active when the animal is starved and insulin levels are low. In this situation, Foxo
was found to be required for maintaining Myc mRNA expression specifically in the fat body.
22 This observation is reminiscent of the finding in vertebrates that Myc mRNA is upregulated
in the adipocytes and liver in response to caloric restriction, suggesting that Myc is required
for maintaining the metabolic rate of these tissues during starvation.30,31

As a consequence of these different effects of the insulin receptor pathway, Myc activity in the
fat body may be kept high when insulin levels are high and the downstream kinase PKB is
active (through the inhibition of GSK3β and the concomitant stabilization of Myc protein) but
also under starvation conditions when insulin levels are low and PKB is inactive (through the
effect of Foxo on Myc expression). This would ensure a minimal metabolic rate in this
regulatory organ, the fat body. Preliminary experiments suggest that it is indeed important for
the animal to maintain a minimal amount of Myc activity in the fat body because specific
knockdown of Myc in the fat body strongly reduces organismal viability (PB, unpublished
data). Such animals contain low levels of triacylglycerides and of glucose, possibly because
the low level of Myc activity in the fat body impairs its metabolism, which would then non-
autonomously affect the growth of the whole larva (PB, unpublished data). Such a non-
autonomous effect of Myc on growth was recently also reported in experiments with the
molting hormone ecdysone, which was shown to regulate Myc levels in the fat body and thereby
control the growth of the entire animal.32
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Control of Myc Stability
Some of the effects described above affect Myc stability. In mammals, Myc protein has a short
half-life of about 30 minutes, which is controlled in part by phosphorylation on specific sites
within the conserved Myc box 1 (MB1, amino acids 45–63 in human c-Myc) and Myc box 3
domains (MB3, amino acids 259–266), the latter of which is flanked by putative PEST domains.
33 Upon activation by growth factors, the Raf/Ras/ERK kinase cascade mediates the
phosphorylation of Serine 62.34,35 This phosphorylation is required for the scaffold protein
Axin to recruit Myc to a multiprotein complex, containing the glycogensynthase kinase 3β
(GSK3β) and possibly CK1α,36 and it serves as a priming event for GSK3β, which then
phosphorylates Myc on Threonine 58. As a consequence, the ubiquitin-ligase SCFFbw7 (E3-
enzyme containing Skp1, a Cullin, and the F-box protein Fbw7) binds c-Myc and promotes its
degradation by the proteasome pathway.37

The phosphorylation and ubiquitination events that regulate Myc protein turnover seem to be
conserved in Drosophila. Mutation of the ubiquitin-ligase archipelago (ago), the Drosophila
orthologue of mammalian Fbw7, results in Myc protein accumulation,38 and overexpression
of activated Ras augments Myc level in vivo, presumably via an effect on its protein stability.
39,40 A sequence analysis of Drosophila Myc identified optimal consensus sites for
phosphorylation by Shaggy (Sgg), the Drosophila orthologue of GSK3β and for CK1α, a
member of the casein kinase 1 family.41 In contrast to its vertebrate homologs, Drosophila
Myc was shown to contain multiple domains that are responsible for its degradation by these
kinases.41 Mutations in these domains result in a partial resistance of Myc to the degradation
mediated by Ago.41 Interestingly, one of these domains, situated near the conserved MB3,
shows similarity to a sequence in β-catenin that was proposed to mediate binding to Axin, as
well as the priming phosphorylation by CK1α and the subsequent degradation by GSK3β.42

Indeed, Axin was found in a complex with Myc (PB, unpublished data), suggesting that this
homologous domain might favor the formation of a complex that presents Myc to GSK3β and
CK1 in order to allow its degradation. Consistent with this idea, we have observed that insulin
increases Myc stability in Drosophila tissue culture, via PKB-dependent inactivation of
GSK3β (PB, unpublished data).

A second domain involved in GSK3β-dependent degradation of Drosophila Myc also contains
consensus sites for another kinase, casein kinase 2 (CK2).41 Mutation of these sites also
stabilized Myc, suggesting that additional signaling pathways contribute to the control of Myc
protein stability (PB, unpublished data).

Control of Myc by the Hippo Pathway
As might be expected, Myc activity is also influenced by other growth regulatory pathways.
The Hippo tumor suppressor pathway is one of the central controllers of organ size in flies and
mammals.43,44 Briefly, inactivation of this pathway allows the downstream component Yorkie
(Yki; YAP in vertebrates) to enter the nucleus and, in conjunction with transcription factors
such as Scalloped (Sd), activate the expression of genes that promote cellular growth and
proliferation and prevent apoptosis.45,46 c-Myc was found transcriptionally induced in liver
of mice expressing YAP,44 raising the possibility that part of YAP’s/Yki’s functions are
regulated by Myc. Similarly in Drosophila, Myc was found to be regulated in vivo in response
to inactivation of the Hpo pathway or ectopic expression of Yki (Laura Johnston, personal
communication, 2010; Daniela Grifoni, personal communication, 2010). It will be of interest
to understand how Myc contributes to these different activities, particularly because the YAP/
Yki axis affects several of the processes that are also influenced by Myc (see below: cellular
growth, apoptosis, and cell competition47).
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Tissue Regeneration
An important aspect of growth is the capability of some animals to regenerate damaged body
parts after an injury.48,49 This process, called regeneration or regenerative growth, starts with
the formation of a blastema, composed of proliferating cells that will give rise to the
replacement tissue.48 Recent studies showed that regenerating Drosophila wing imaginal disks
upregulate Wingless (Wg), which indirectly induces Myc expression.50 This effect of Wg on
Myc may involve a double repression mechanism that has previously been described in a
different context, whereby Wg represses Notch (N), which otherwise would repress Myc,
resulting in Myc upregulation.51 Consistent with a role for Myc in regeneration,
overexpression of Myc after tissue ablation enhanced the regenerative process, whereas
stimulation of other growth pathways (e.g., by overexpression of cyclin D and Cdk4) did not,
suggesting that Myc may contribute in some specific (as yet uncharacterized) way to tissue
regeneration.50

Additional Biological Activities of Myc
Apoptosis and Cell Competition

Another conserved activity of Myc proteins is their ability to induce apoptosis. Strong
overexpression of Drosophila Myc (or of human c-Myc5) in imaginal disk cells triggers their
death, whereas a reduction of Myc levels (by means of a hypomorphic allele) reduces the
tendency of imaginal disk cells to undergo apoptosis in response to damaging ionizing
radiation.13,52 This process does not require Drosophila p53 but involves one or more pro-
apoptotic proteins of the hid, grim, reaper, and sickle group, whose expression may be directly
induced by Myc.52

A second type of apoptosis is observed in mosaic imaginal disks, composed of cells with
different Myc levels (recently reviewed by Johnston53). In such a situation, cells have a higher
probability of undergoing apoptosis when they are situated close to cells with higher Myc levels
—such that moderate Myc overexpression in one cell triggers apoptosis non-autonomously in
the neighboring cells.20,54 An analogous phenomenon was first described 35 years ago under
the name of “cell competition” 55: cells heterozygous for a so-called Minute mutation were
shown to be outcompeted by neighboring wild-type cells and ultimately lost from the imaginal
disk epithelium, even though such Minute heterozygous cells are perfectly viable in the absence
of wild-type cells.55,56 Indeed, Minute- and Myc-dependent cell competition affect the same
process, as most Minute genes code for ribosomal proteins and Minute mutations reduce the
rate of protein synthesis and growth,57,58 as do mutations in Myc (see above). Moreover,
heterozygosity for a Minute mutation impairs the ability of cells overexpressing Myc to
outcompete wild-type neighbors,54 consistent with the idea that Minute and the control of
protein synthesis lie downstream of Myc. Therefore, cell competition leads to the elimination
of slower growing, “less fit” cells and thereby is thought to increase the overall fitness of a
developing organ.20

The mechanisms, by which moderate differences in Myc levels (and growth rates) between
neighboring cells are translated into differential survival, are only beginning to be understood.
Thus, for example, cell competition requires the engulfment of the competed “loser” cells—if
engulfment is blocked, these cells are not killed in the first place,59 but the molecular
connection between this pathway and differential Myc activity is currently unknown.

Competition also occurs between female germ line stem cells occupying the same niche.53

Differences in Myc levels may contribute to this process, as one group recently found that stem
cells with comparatively less Myc are evicted from the niche at the expense of their wild-type
competitors,60 although a second report has found no influence of Myc levels.61
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Cell competition has been best studied in Drosophila. However, some forms of cell competition
also occur in vertebrates, 62,63 and it has been speculated that Myc-induced competition may
contribute to the excessive growth of transformed cells that harbor elevated levels of Myc
protein.64

Cell Proliferation and Endoreplication
Vertebrate Myc proteins are well known for their effects on cell cycle progression and
proliferation rates. In contrast, over-expression of Drosophila Myc does not alter the doubling
time of normal imaginal disk cells; although such cells have a shorter G1-phase, they
concomitantly extend their G2-phase.19

A much more dramatic effect of Myc on cell cycle progression is observed in endoreplicating
cells.11,13,17,65 Such cells can reach ploidies of up to 1000 n; they make up most of the larval
mass, and they are found in developing egg chambers. In a Myc mutant background,
endoreplication is strongly impaired, and the nuclear volume of these cells is reduced; as a
consequence, Myc mutant larvae are considerably smaller. Conversely, Myc overexpression
in polyploid cells induces overreplication and a massive increase in nuclear volume.17 We
consider it likely that Myc’s effects on endoreplication in polyploid cells and on G1-phase
length in diploid cells have a common basis, but the molecular mechanisms are currently
unknown.

Outlook
Many aspects of Myc function are evolutionarily conserved, to the extent that the fly and
vertebrate proteins can substitute for each other. The simplicity of the Drosophila Myc/Max/
Mnt network, coupled with the experimental tractability of the model system, promises
significant progress in our understanding of animal Myc biology. Areas of intensive research
include the interaction of Myc with other growth-controlling pathways and the effects of Myc
on animal growth. Of particular interest are novel findings showing that Myc also influences
growth non-autonomously, in neighboring cells via cell competition and systemically from the
fat body. Future investigations will need to address the molecular basis of these phenomena
and determine which role they play in vertebrate development and disease.
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