° NAT/O

1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

N, NIH Public Access

(<
A 5 Author Manuscript
P repSS

Published in final edited form as:
JNeurosci. 2010 October 6; 30(40): 13211-13219. doi:10.1523/INEUROSCI .2532-10.2010.

Mapping of Cortical Activity in the First Two Decades of Life: A
High-Density Sleep Electroencephalogram Study

Salomé Kurth?, Maya Ringlil, Anja Geigerl-z, Monique LeBourgeois3v4, Oskar G. Jennil:2,
and Reto Huberl:2

1 Child Development Center, Children’s University Hospital Zurich, CH-8032 Zurich, Switzerland 2
Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich,
Switzerland 2 University of Colorado at Boulder, Department of Integrative Physiology, Boulder,
Colorado 80309 # The Warren Alpert Medical School of Brown University, Department of
Psychiatry and Human Behavior, Providence, Rhode Island 02912

Abstract

Evidence that electroencephalography (EEG) slow-wave activity (SWA) (EEG spectral power in
the 1- 4.5 Hz band) during non-rapid eye movement sleep (NREM) reflects plastic changes is
increasing (Tononi and Cirelli, 2006). Regional assessment of gray matter development from
neuroimaging studies reveals a posteroanterior trajectory of cortical maturation in the first three
decades of life (Shaw et al., 2008). Our aim was to test whether this regional cortical maturation is
reflected in regional changes of sleep SWA. We evaluated all-night high-density EEG (128
channels) in 55 healthy human subjects (2.4 —19.4 years) and assessed age-related changes in
NREM sleep topography. As in adults, we observed frequency-specific topographical distributions
of sleep EEG power in all subjects. However, from early childhood to late adolescence, the
location on the scalp showing maximal SWA underwent a shift from posterior to anterior regions.
This shift along the posteroanterior axis was only present in the SWA frequency range and
remained stable across the night. Changes in the topography of SWA during sleep parallel
neuroimaging study findings indicating cortical maturation starts early in posterior areas and
spreads rostrally over the frontal cortex. Thus, SWA might reflect the underlying processes of
cortical maturation. In the future, sleep SWA assessments may be used as a clinical tool to detect
aberrations in cortical maturation.

Introduction

Evidence about the generation and functions of cortical activity during sleep is accumulating
(Steriade, 2006; Tononi and Cirelli, 2006; Diekelmann and Born, 2010). In particular, the
slow fluctuations of cortical activity during deep sleep have become a primary focus of
many studies. First described by Steriade et al. (1993), these so-called “slow oscillations”
are found in virtually all cortical neurons (Steriade et al., 2001; Timofeev et al., 2001).
When slow oscillations are synchronized and involve the majority of cortical neurons in a
certain region, they become visible in the surface electroencephalography (EEG) as slow
waves (Vyazovskiy et al., 2009). The activity of sleep slow waves [slow wave activity
(SWA), frequency range of 1-4.5 Hz] reflects the depth of sleep (Borbély and Achermann,
2000) and seem also be related to processes of brain plasticity (Sejnowski and Destexhe,
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2000; Steriade and Timofeev, 2003; Born et al., 2006; Tononi and Cirelli, 2006).
Interestingly, sleep slow waves exhibit substantial changes from early childhood through
adolescence (Jenni and Carskadon, 2004; Campbell and Feinberg, 2009), a developmental
time window with massive changes in brain morphology and function (Johnson, 2001). The
activity of slow waves during sleep increases in the first years of life, reaches its maximum
shortly before puberty, and declines throughout adolescence (Feinberg, 1982; Gaudreau et
al., 2001; Jenni et al., 2004; Campbell and Feinberg, 2009). This inverted U-shaped change
of SWA as a function of subject age shows similarities with the time course of synapse
density, which peaks between 4 and 6 years in prefrontal cortex (Huttenlocher and
Dabholkar, 1997), and with cortical gray matter volume, as tracked by magnetic resonance
imaging (MRI), presumably indirectly reflecting changes in synapse density (Giedd, 2004).
Such longitudinal MRI studies indicate that not all cortical regions undergo maturational
changes at the same speed and time (Giedd, 2004; Sowell et al., 2004; Shaw et al., 2008).
Maturation follows a posteroanterior shift across the cortex (Giedd, 2004; Sowell et al.,
2004; Shaw et al., 2008). According to these studies, occipital regions develop first and
frontal areas mature last, which is consistent with the observation that many cognitive and
behavioral functions related to the frontal cortex do not mature until late adolescence (Luna
and Sweeney, 2004). Based on these observations, we examined whether the expression of
SWA during sleep follows a similar spatial evolution during development.

Research supporting regional differences in the expression of sleep SWA stems from adults
(Werth et al., 1996a; Cajochen et al., 1999; Finelli et al., 2001; Huber et al., 2004). These
studies show that SWA is most pronounced over frontal cortices (Cajochen et al., 1999;
Finelli et al., 2001). Furthermore, the origin of slow oscillations is particularly frequent over
anterior regions (Massimini et al., 2004). Regional aspects of SWA are attributed to use
dependent changes (Kattler et al., 1994) or, more specifically, to plastic changes induced by
learning processes (Huber et al., 2004). Thus, the frontal predominance of SWA is in
accordance with the observation that the frontal cortex is the brain area most “used” or
plastic in adults (Horne, 1993; Couyoumdjian et al., 2010). Finally, the close relationship
between cortical plasticity and sleep SWA may also be reflected by the association of slow
waves and synaptic density or strength (Tononi and Cirelli, 2006). For example, using
multiunit activity recordings in rats, Vyazovskiy et al. (2009) demonstrated a relationship
between sleep homeostasis and the synchronization of neuronal population activity.
Specifically, in early sleep, when sleep SWA is high, they found that most individual
neurons stop or resume firing near synchrony; however, in late sleep, when SWA has
dissipated, the entry into “on” and “off” periods was much more variable across neurons.
Conversely, computer simulations electrophysiological and molecular data support a
relationship between sleep homeostasis and synaptic strength, i.e., synaptic strength
generally decreases during sleep and increases during wakefulness (Esser et al., 2007;
Vyazovskiy et al., 2008). Together, it seems that synchronization depends on the level of
synaptic strength: the denser and stronger synapses are, the faster they synchronize their
activity and the larger is the resulting potential change measured by standard EEG over the
cortex.

Thus, to explore the relationship between the extensive remodeling of brain circuits during
cortical maturation and sleep EEG activity, we collected all-night high-density (HD) EEG
recordings from 55 children and adolescents (age, 2.4-19.4 years). We found that the
location on the scalp showing maximal SWA underwent a shift from posterior to anterior
regions from early childhood to late adolescence. Because anatomical maturation starts in
posterior areas and spreads rostrally over the frontal cortex, we conclude that SWA might
reflect the underlying processes of cortical maturation.
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Materials and Methods

Participants

A total of 55 healthy subjects (range, 2.4-19.4 years; 29 males) were recruited. Subjects
underwent a telephone and questionnaire screening to exclude personal or family history of
psychopathology, chronic diseases, sleep disorders, and current use of psychoactive agents
or other medications. No participants traveled across more than one time zone in the 4
months before the study. Written informed consent was obtained from the parents or from
the participants of full age after explanation of the study methods and aims. The procedures
were approved by the local ethics committee, and the study was performed according to the
Declaration of Helsinki.

Participants or parents completed daily sleep diaries. Participants also wore wrist actigraphs
to ensure schedule compliance before the recording night. Subjects were required to refrain
from alcohol and medication. No naps were allowed 24 h preceding the testing, but in
children used to regular napping (i.e., nap opportunity each day and falling asleep at least 4
d/week), the subjects were permitted to nap on the day of assessment so as not to introduce
heightened sleep pressure (this was the case in two children of ages 4.7 and 5.1 years). Even
if changes in the level of sleep pressure in our young subjects existed, we believe that these
did not affect the topographical power distribution for several reasons: (1) comparing
baseline and sleep after sleep deprivation, Finelli et al. (2001) found a very similar
topographical power distribution in adult subjects; and (2) we examined a later time window
of sleep and found a similar EEG power distribution as in early sleep (see Results).
Recordings in postpubertal females were scheduled to the follicular phase. This approach
was chosen to prevent the variation of sleep EEG activity markers (e.g., spindle activity) as
a function of the menstrual cycle phase (Driver et al., 1996).

EEG recording

All-night sleep EEG, electrooculogram, and electromyogram were recorded in 41 subjects
(age range, 8.7-19.4 years; 23 males) in the sleep laboratory of the University Children’s
Hospital Zurich (Zurich, Switzerland). Of the 41 subjects, three pairs were siblings (six
subjects). Fourteen children (age range, 2.4-8.0 years; six males) were recorded at home (in
Providence, RI). Of this sample, one pair were siblings, and, twice, four children were
siblings (two boys were monozygotic twins). In total, 55 subjects were recorded. We
excluded two subjects from the analysis: one girl because the recording did not taking place
during the appropriate menstrual phase, and one subject because bedtime reports identified
the individual as an extremely short sleeper. Thus, 53 subjects were included in the analysis
unless explicitly stated. All participants were monitored during 1 night using HD sleep EEG
(Electrical Geodesics Sensor Net for long-term monitoring, 128 channels, referenced to a
vertex electrode for direct visualization and to the average across all channels for data
analysis; details follow). The nets were adjusted to the vertex, and the cap electrodes were
filled with gel electrolyte. The use of gel ensured the maintenance of good signals even after
8-10 h (Landsness et al., 2009; Maatta et al., 2010). Impedances were measured after
applying the gel and at the beginning of the recording. Electrode impedances were set below
50 kQ. In one subject, the electrodes were removed after 5 h because of discomfort. The
sleep episode of each subject was scheduled according to individual reported bedtime.
Subjects were awakened in the morning to allow school or job participation, resulting in
variable bedtimes and rise times (variables not further examined).

Preprocessing

Data were sampled at 500 Hz (0.01-200 Hz) and referenced to the vertex (Cz). Then the
EEG was bandpass filtered (0.5-50 Hz) and downsampled to 128 Hz. In one subject with
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low-frequency sweating artifacts, a 0.75 Hz high-pass filter was used. Artifacts were
rejected on a 20 s basis after visual inspection and if power exceeded a threshold based on a
mean power value in the 0.75-4.5 and 20-30 Hz bands (Huber et al., 2000). Poor quality
EEG channels were excluded (on average, four channels per subject). In total, 11.1% of the
epochs were rejected (no significant age-related differences; two subjects were excluded
from this age comparison because of poor signal during >1 h). All additional analyses are
based on re-referenced data: for every EEG sample, the value of each channel was divided
by the average value across all 109 channels above the ears that were not excluded (only
good quality channels).

The EEG was visually scored for sleep stages (20 s epochs, C3A2 or C4A1) based on
American Academy of Sleep Medicine standard criteria (Iber et al., 2007). Non-rapid eye
movement (NREM) sleep episodes were defined according to standard criteria
(Rechtschaffen and Kales, 1968; Feinberg and Floyd, 1979) and adapted because of
frequently occurring “skipped” rapid eye movement (REM) sleep after the first NREM sleep
episode (“skipped” REM occurred in 26% of the nights). Specifically, similar to the studies
of Jenni and Carskadon (2004) and Kurth et al. (2010), we manually subdivided the first
NREM sleep episode if (1) the duration of the first NREM episode exceeded 120 min, and
(2) stage 3 sleep in the first NREM episode was interrupted for at least 12 continuous
minutes of stage 1 sleep, stage 2 sleep, wakefulness, or movement time. If both criteria were
met, the first NREM sleep episode was subdivided at the lowest SWA. If the criteria were
not met but the hypnogram and the SWA time course appeared as skipped REM (i.e.,
apparent interruption of sleep stage 3, obvious drop in SWA), we subdivided the cycle
manually (11% of the recordings). In one subject, only the first 7 h of data were included in
the analysis because of poor signals. In another subject, the EEG signal was affected by
artifacts in the frequency bands 14.5-15.5 and 22-23 Hz (bands omitted for the analysis).

Spectral analysis

For qualitative exploration, spectral analysis was performed for all channels [fast Fourier
transform routine, Hanning window, 20 s epochs (averages of five 4-s epochs), frequency
resolution of 0.25 Hz]. The 20 s spectral power values were then averaged for a certain time
window. Comparisons in EEG power spectra were assessed by ANOVA (one-way) with
factor age group. When the ANOVA reached significance, we performed post hoc Scheffé’s
test for multiple comparisons (significance at the 5% level). The lowest frequency bins (<1
Hz) were excluded from the analysis because of possible interactions with the high-pass
filter at 0.5 Hz (see above, Preprocessing). Spectral data was analyzed up to 25 Hz. Based
on the spectral profile (see Fig. 2), subsequent analyses were restricted to specific
(commonly used) frequency bands, including slow waves (1-4.5 Hz), theta (4.75-7.75 Hz),
alpha (8-9.75 Hz), sigma (10-15 Hz), and beta (20-25 Hz).

Power analysis and statistics

For additional investigation, power maps were calculated for the defined frequency bands
for all channels. EEG power for each electrode within a map was normalized to the average
across the map. To further assess the age-related changes in topography along the
posteroanterior axis, we compared the location of maximal power across five selected
clusters of electrodes (see Fig. 4) (for more details, see supplemental Fig. S3, available at
www.jneurosci.org as supplemental material). For each subject, the electrode with maximal
power across all electrodes included in the five clusters was identified. The number of the
cluster (from 1 to 5) that contained this electrode defined the region index (RI) (from 1 to 5).
Thus, in each subject, the region index reflected the approximate location of maximal power
for a defined frequency band. Next, individual region indices were averaged for each age
group and statistically compared with ANOVA [two-way, factors age group (see Results)
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and time (early and late sleep; for details, see Fig. 2)], followed by Scheffé’s multiple
comparison test (significance at the 5% level). To account for differences in sleep episode
durations, we included the first 60 min of NREM sleep stages 2 and 3 (if no additional
information is given in the text). Data variability is described as SEs. All analyses were
performed with the software package MATLAB (MathWorks).

Anatomical localization of electrodes was verified in 35 subjects (8.7-19.4 years) using
magnetic MRI and the positioning system Northern Digital Navigation System. Electrodes
were digitized and coregistered with the subject’s MRI using SofTaxic Optic (EMS Inc.)
and the three-dimensional optical digitizer (Polaris Vicra; Northern Digital). T1-weighted
anatomical images were obtained on a 3 T scanner, a General Electric Signa HDx. MR scans
were collected in the axial plane (repetition time, 8.928 ms; echo time, 3.496 ms; flip angle,
13°; final resolution, 0.94 x 0.94 x 1.2 mm).

For the assessment of age-dependent changes, we subdivided the study population into the
following six age groups: pre-schoolers (2-5 years), school-age children (5-8, 8-11, and
11-14 years), young adolescents (14-17 years), and older adolescents (17-20 years). First,
we examined visually scored sleep variables to evaluate the sleep quality of the sample
(Table 1). Sleep quality was good, i.e., rather short sleep latency and high sleep efficiency,
and we did not find a difference between home and laboratory recordings for sleep latency
and efficiency (unpaired t tests, p > 0.05). Sleep efficiency (group means from 84 to 91%)
and sleep latency (ranging from 13 to 25 min) were consistent with laboratory-based
measures reported from other studies (Mason et al., 2008). We did not observe any age
effect on sleep latency and efficiency, which is in agreement with previous findings
(Ohayon et al., 2004). However, we found age-dependent changes for REM sleep: in line
with previous findings (Roffwarg et al., 1966), increasing age was associated with a
significant decline in REM sleep (2-5 year olds, 28%; groups including 8-20 year olds, 18—
20%) (for details, see Table 1). In summary, we found minor age-related changes in sleep
architecture based on standard visual scoring. Subsequent quantitative sleep EEG analysis
was performed to investigate the predominant EEG activities during sleep.

Age-related changes in the spectral profile of the sleep EEG

Visual inspection of the sleep EEG revealed distinct age-related aspects. As expected, the
three individual representative examples of different ages showed prominent slow waves
(red marks) during deep sleep, but their expression was variable (Fig. 1). Most pronounced
slow waves were found in school-age children (Fig. 1, middle). The sleep EEG of the
preschooler showed characteristic theta oscillations (Fig. 1, top, blue marks).

Next, we quantified age-related changes in the sleep EEG by spectral analysis and observed
the classical spectral profile of the NREM sleep EEG (Fig. 2A). All age groups expressed
the greatest power in the SWA range (1-4.5 Hz). A second and third local maximum was
found in the theta (4.75-7.75 Hz) and sigma (10-15 Hz) frequency ranges of the power
distribution. In general, the most pronounced group differences in the first 60 min of NREM
sleep were present in the low frequencies (SWA and theta) (Fig. 2B). Fewer group
differences were found in the alpha frequency range, whereas in the high sigma range, no
differences between age groups were observed. Differences in the beta frequency range were
similar to those observed in the alpha frequency band. We performed the same analysis for a
later time window during the sleep period and found a similar pattern of age group
differences (supplemental Fig. S1, available at www.jneurosci.org as supplemental
material). We limited subsequent analyses to specific frequency ranges (SWA, theta, alpha,
sigma, and beta) as defined by the spectral profile across all age groups (Fig. 2A).
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Sleep EEG topography from early childhood through late adolescence

We next examined the topographical distribution of EEG power of the selected frequency
ranges in the defined age groups (Fig. 3). All frequency ranges showed specific distribution
patterns with maximal and minimal power expressions. These maxima and minima are
indicated next to each plot and illustrate the overall time course of EEG power across age. In
agreement with previous findings (Campbell and Feinberg, 2009), we found a significant
power loss with an onset at approximately age 10 years for all frequency ranges. Only the
slow-wave and sigma frequency ranges showed an increasing trend within the first decade of
life.

Given the overall time course of EEG power across ages, we normalized each map to the
average value across the map to assess age-related changes in topography. We found marked
changes in the SWA range: in the two youngest groups, SWA was prevalent over the
occipital lobe, whereas power showed a forward shift in the subsequent age groups. In
contrast, other frequency ranges revealed only minor changes across age. Sigma power
showed a prefrontal maximum that elongated toward central and occipital regions in the
oldest group. A subdivision of the sigma range into slow and fast spindles (Werth et al.,
1997b) revealed that the latter accounted for the central relative increase, whereas slow
spindles extended more toward frontal and occipital regions in the oldest group (data not
shown). To quantify the variability of the topography across subjects, we calculated the
relative error of the mean for each electrode (supplemental Fig. S2, available at
www.jneurosci.org as supplemental material). The variability across subjects was low (with
the exception of few electrodes). Variability was largest in the beta frequency range,
indicating that these topographical distributions should be interpreted with caution. We also
assessed the stability of topographical patterns across the night. The late sleep time window
showed similar topographical distribution of EEG power in all frequency ranges and age
groups (data not shown).

Maximal expression of sleep EEG power along the posteroanterior axis

For a statistical comparison of the shift of EEG power along the posteroanterior axis, we
limited the analysis to five regions of interest (Fig. 4). A number ranging from 1 (most
posterior) to 5 (most anterior) indicated the region of interest in which the power maxima for
a certain frequency range and age group occurred (region index) (for more details, see
Materials and Methods). We found significant age-dependent effects only for the SWA
range. The Rl of SWA showed a significant increase with age reflecting the shift of the
power maxima from posterior to anterior cortical regions (from 1.3 £ 0.2 in the youngest to
4.0 = 0.8 in the oldest group), with the most apparent change below the age of 11 years (Fig.
4). Other frequency ranges did not exhibit significant age-related changes of RIl. We again
tested this observation for stability across the night and found the similar age-related
posteroanterior shift of SWA maxima in late sleep (and no age-related changes in other
frequency ranges) (data not shown).

For an anatomical localization of the RI, we coregistered the electrodes with individual T1-
weighted magnetic resonance images (for more details, see Materials and Methods). An
orthogonal projection of the electrode onto the cortex showed the SWA maxima in
preschoolers over the occipital lobe (lingual gyrus) and in older adolescents over the frontal
lobe (medial frontal gyrus) (Table 2).

Figure 5 illustrates the ratio of EEG power of frontal (F) to occipital (O) electrodes and
quantifies the age-related shift of maximal expression of SWA along the posteroanterior
axis. The F/O ratio of SWA correlated strongly with age (R2 = 0.67; p < 0.0001) and
remained stable across the night (R = 0.66 for late sleep; p < 0.0001).
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Discussion

This study examined sleep EEG topography from early childhood through adolescence. The
main finding shows that the location with maximal SWA undergoes a shift from posterior to
anterior regions across childhood and adolescence. None of the other frequency ranges
demonstrated similar age-related spatial changes. This finding fundamentally expands
previous knowledge about the maturation of the sleep EEG, because no comprehensive
examination exists so far regarding (1) the first two decades of life and (2) the spatial
resolution that allows for the description of regional differences. According to anatomical
(Von Economo, 1929), neuroimaging [e.g., MRI gray matter thickness (Shaw et al., 2008)],
and behavioral [e.g., cognitive functions (Luna and Sweeney, 2004)] studies, cortical
maturation follows a similar time course along the posteroanterior axis. The parallel time
course of cortical maturation and sleep SWA may suggest that SWA reflects cortical
plasticity during development.

Sleep depth exhibits prominent changes in the first two decades of life (Jenni and
Carskadon, 2004; Feinberg and Campbell, 2010), and such changes in sleep depth are best
characterized by EEG SWA during NREM sleep. Longitudinal and cross-sectional studies
show an inverted U-shaped time course of SWA, i.e., an increase of SWA until puberty,
followed by a decrease during adolescence (Feinberg, 1982; Gaudreau et al., 2001; Jenni et
al., 2004; Campbell and Feinberg, 2009). Campbell and Feinberg alluded to the similarity of
the time course of synapse density and SWA (Feinberg, 1982; Campbell and Feinberg,
2009), proposing that the decrease in SWA observed during adolescence reflects the
decrease or pruning of synapses (Campbell and Feinberg, 2009; Feinberg and Campbell,
2010). Our data support this notion: we also observed the same overall decrease of SWA
during adolescence. Recently, Vyazovskiy et al. (2009) used multiunit recordings in the rat
and showed that increased synaptic strength allows for faster synchronization of cortical
activity across neurons, resulting in larger-amplitude slow waves as observed with scalp
EEG recordings. This observation provides a mechanistic explanation for the parallel time
course of synapse density and overall SWA (Huttenlocher, 1979; Feinberg and Campbell,
2010; Kurth et al., 2010). Moreover, more and/or stronger synapses lead to increased energy
consumption (Attwell and Laughlin, 2001). This finding might explain the similar time
course of glucose usage, which shows a similar inverted U-shaped curve as SWA and
synaptic density during the first two decades of life (Chugani et al., 1987). If synaptic
strength is a key determinant for the level of synchronization in cortical networks, frequency
ranges other than SWA should exhibit age-dependent changes. In fact, the decrease of sleep
EEG power across adolescence is not limited to the SWA frequency range but also includes
the theta range (Campbell and Feinberg, 2009). Again, we confirm this observation in our
subject population. Finally, the effects of changes in the level of synchronization may not be
limited to sleep. EEG recordings during wakefulness showed a similar inverted U-shaped
time course of EEG power in the alpha frequency range (Gasser et al., 1988).

Previous sleep EEG studies during childhood and adolescence were restricted only to few
derivations (Feinberg, 1982; Gaudreau et al., 2001; Jenni and Carskadon, 2004; Campbell
and Feinberg, 2009). In contrast to former studies about the maturation of the sleep EEG
using a limited number of electrodes, we successfully performed HD EEG recordings (with
up to 128 electrodes) in children and adolescents to map changes in the sleep EEG with high
spatial resolution. We believe high spatial resolution is important for two reasons. First,
although sleep was considered a global phenomenon for many decades, a growing number
of studies in recent years indicate otherwise, that is, sleep is a localized process. For
example, several authors found a frontal predominance of SWA in adults (Werth et al.,
1997a; Cajochen et al., 1999; Finelli et al., 2001; Huber et al., 2004). Second, anatomical,
neuroimaging and behavioral studies report regional cortical maturation, which follows a
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tightly programmed course (Huttenlocher and Dabholkar, 1997; Luna and Sweeney, 2004;
Shaw et al., 2008).

Similar to reports from adults, we observed regional differences in the distribution of EEG
power for all classical frequency ranges. However, only the topography of EEG power in the
SWA frequency range exhibited clear age-dependent changes. Thus, the most striking
observation of our analysis was the substantial shift of the predominance of SWA during
childhood and adolescence. Our anatomical localization of maximal occurrence of SWA
revealed that, first, the maxima occurs over occipital lobe in preschoolers, followed by
parietal regions and posterior frontal lobe in school-age children (from 8 to 14 years) and,
finally, the SWA maxima spreads to frontal lobes during adolescence. Young and older
adolescents (after ~14 years of age) present a frontal predominance of SWA as found in
adults (Fig. 3) (Werth et al., 1996b;Cajochen et al., 1999;Finelli et al., 2001). However, the
frontal predominance of SWA in both younger and older adolescents is not yet as
pronounced as in adults (Huber et al., 2004). These findings indicate that SWA topography
undergoes maturational changes from childhood to late adolescence. The timing and the
location of these changes in SWA topography are closely paralleled by anatomical and
behavioral developmental changes. In the 1920s, Von Economo (1929) described
cytoarchitonical changes spreading from back to front. Huttenlocher and Dabholkar (1997)
also used postmortem samples to quantify synaptic densities of different cortical regions
across age. According to their study, all areas showed an inverted U-shaped time course of
synapse density. However, the age at which peak synaptic density was reached varied
considerably: the occipital cortex was first and the frontal cortex was last. More recently,
such regional changes in cortical maturation have been tracked by MRI. Several studies
found that primary motor and sensory areas reach peak cortical thickness first, followed by
secondary and association areas, and the frontal lobe matures last (Giedd, 2004;Sowell et al.,
2004;Shaw et al., 2008). According to these imaging studies, cortical maturation starts in
occipital poles and sensorimotor areas and spreads rostrally over the frontal cortex and
caudally over parietal and then temporal cortex (Brecelj, 2003;Shaw et al., 2008). Finally,
strong evidence for a local maturation of the cortex from behavioral observations exists. For
example, executive functions, which are strongly dependent on frontal cortices (Tau and
Peterson, 2010), are not fully mature until late adolescence (Spear, 2000;Luna and Sweeney,
2004). Conversely, visual acuity, a task predominantly performed by primary visual cortex
(occipital lobe), matures in the first years of life (Teller, 1981).

In summary, SWA may not only reflect global changes in synapse density but also mirror
the regional aspects of cortical maturation. A major factor underlying all such maturational
changes is the age-dependent alteration of synaptic density. Changes in cortical volume and
thickness across childhood and adolescence are attributed to the alterations in synaptic
density and linked to the maturation of cognitive functions (Sowell et al., 2004). Changes in
synaptic density lead to a change in the level of synchronization of the activity among
neurons, which on the scalp is reflected by changes in the amplitude of rhythmic activities
(Vyazovskiy et al., 2009). Although such a mechanism would explain the changes in SWA
topography, we cannot exclude the possibility that additional factors may play a role in the
relationship between cortical maturation and sleep SWA. For instance, a reduction in
synapse number could be accompanied by a reduction in glial cells, resulting for example in
changes of cortical thickness and volume (Paus, 2005). An association between glial cell
activity and sleep SWA was recently proposed (Halassa et al., 2009).

Whatever factors during cortical maturation are responsible for the significant topographical
changes of SWA, our results suggest that this relationship is frequency specific, because
none of the other frequency ranges showed a similar spatial evolution of topography. This
finding is in contrast to the global time course of EEG power across childhood and
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adolescence reported for several frequency ranges (Figs. 2, 3) (Campbell and Feinberg,
2009). Recent hypotheses about the function of sleep include sleep slow waves as the key
electrophysiological feature during NREM sleep (Tononi and Cirelli, 2006;Diekelmann and
Born, 2010). One of these hypotheses, the synaptic homeostasis hypothesis by Tononi and
Cirelli (2006), directly relates sleep slow waves to synaptic plasticity. The hypothesis
proposes that the activity of sleep slow waves directly reflects synaptic strength. Thus, the
more a cortical network undergoes synaptic potentiation attributable to learning processes
during wakefulness (Whitlock et al., 2006), the more SWA is expressed during subsequent
sleep. The synaptic homeostasis hypothesis is supported by both electrophysiological and
molecular data (Tononi and Cirelli, 2006). For instance, a major molecular marker of
cortical plasticity, brain-derived neurotrophic factor (BDNF), is causally related to SWA
(Faraguna et al., 2008). Blockage of BDNF by direct infusion of anti-BDNF results in a
subsequent reduction of SWA. In contrast, local infusion of BDNF results in a
corresponding increase of SWA. Also, experiments in humans support the relationship
between cortical plasticity and sleep SWA. For example, Huber et al. (2004,2008) reported
the induction of plastic changes either during a learning task or directly by transcranial
magnetic stimulation led to a local increase of SWA during subsequent sleep.

The current results further support a close relationship between cortical plasticity and sleep
slow waves and suggest that SWA may be used to follow cortical maturation during
sensitive periods, such as adolescence (Paus et al., 2008). “Overpruning” during adolescence
has been linked to schizophrenia, mood disorders (Saugstad, 1994), autism, and mental
retardation (Tessier and Broadie, 2009). Thus, the monitoring of synaptic remodeling during
childhood and adolescence may increase our understanding of the pathophysiology of such
disorders, lead to early diagnosis, and guide potential therapies (Woo and Crowell, 2005).
Although MRI allows for a relative easy, non-invasive method for tracking anatomical
changes, the relationship between anatomy and function are not trivial. The literature
suggesting that MRI parameters predict behavior is contradictory. For example, studies
reveal experience-dependent alterations of gray matter in specific areas (Draganski et al.,
2004; Boyke et al., 2008; Jancke et al., 2009), but the physiological or cellular basis of these
changes is unclear (Jancke et al., 2009). Only a thorough test of many cognitive functions
using functional MRI and extensive behavioral testing may allow tracking of cortical
functioning during development. Electroencephalography, i.e., the recording of the electrical
activity of the brain, may provide a more direct assessment of cortical functioning. In
particular, the activity during deep sleep permits a unique opportunity to quantify cortical
network properties because the network during this sleep stage is, compared with waking,
not disturbed by active behavior and to a lesser amount responding to external stimuli. The
cortical activity during deep sleep is dominated by sleep SWA, and recent studies indicate
that SWA reflects not only synaptic density (number) but also synaptic strength (e.g., levels
of AMPA receptors per synapse) and synaptic efficacy (magnitude of the physiological
effects, e.g., postsynaptic currents) (Tononi and Cirelli, 2006). We propose that the regional
expression of SWA across cortical maturation may be a promising marker for plastic
changes during childhood and adolescence, thus making sleep SWA a powerful tool to
investigate cortical maturation in health and disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Tracings of slow-wave sleep for different ages. Twelve second EEG segments of slow-wave
sleep in the first sleep cycle in three subjects of different ages (C3A2 derivation). Red stars
indicate slow waves, and blue stars theta waves.
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Figure 2.

A, EEG power spectra during early NREM sleep. Average of all electrodes of the first 60
min NREM sleep stages 2 and 3 in six age groups (purple, 2-5 years; green, 5— 8 years; red,
8 —11 years; yellow, 11-14 years; blue, 14 —17 years; black, 17-20 years; n = 53).
Significant ANOVAS (see Materials and Methods) (F = 2.5-25.7, df = 5) were followed by
groupwise comparisons as indicated in B. B, Post hoc Scheffé’s testing calculated for each
0.25 Hz bin and significant group differences indicated as dots (p < 0.05). Comparisons are
color coded. Groups labeled on the ordinate were compared with color-coded groups for
each particular frequency bin. A later time window of sleep showed a similar pattern of age
group differences (supplemental data, available at www.jneurosci.org as supplemental
material).
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Figure 3.

Maps of EEG power during NREM sleep. Topographical distribution of NREM sleep EEG
power for the defined age groups and frequency ranges (n = 53). Maps are based on 109
derivations from the first 60 min of NREM sleep stages 2 and 3. Maps were normalized for
each individual and then averaged for each age group. Values are color coded (maxima in
red, minima in blue) and plotted on the planar projection of the hemispheric scalp model. To
optimize contrast, each map was proportionally scaled, and values between the electrodes
were interpolated. At the top right of the maps, numbers indicate maxima and minima (in
square microvolts) for each plot.
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Figure 4.

Region index for selected frequency bands. Five cortical subregions along the inion—nasion
axis are illustrated as clusters of colored electrodes (blue, RI1; purple, RI12; yellow, RI13;
green, RI4; orange, RI5; the remaining electrodes are illustrated by turquoise and red
crosses). For each subject, the location of maximal power over all clusters was determined.
Depending on the cluster in which that maximal power value occurred, a value (RI) from 1
to 5 was given. The electrodes were digitized and coregistered with the subject’s magnetic
resonance images. RIs for age group are presented for the selected frequency bands. Two-
way ANOVA with factors age group and time (early or late sleep; see legend of Fig. 2C)
showed significant effects for age group in the SWA range (p < 0.05, F = 13.8, df = 5), theta
(p <0.05, F =4.5, df =5), and alpha (p < 0.05, F = 7.2, df = 5) bands, whereas the factor
time was not significant and no interaction was found. Post hoc testing revealed a significant
main effect for age group for the SWA range (Scheffé’s tests, p < 0.05; x indicates that 2-5
years differ significantly from 8 —11, 11-14, 14 -17, and 17-20 years; + indicates that 5- 8
years differ significantly from 8 —11, 14 -17, and 17-20 years).
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Figure 5.

F/O ratio across age. SWA within a cluster of five electrodes in the frontal region (F) was
averaged and divided by the value of five occipital electrodes (O). The cluster of electrodes
included in the F/O ratio is illustrated for an older adolescent (inset). The SWA F/O ratio
correlated significantly with age (p < 0.001).
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