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Abstract
Three dimensional image reconstruction for multi-modality optical spectroscopy systems needs
computationally efficient forward solvers with minimum meshing complexity, while allowing the
flexibility to apply spatial constraints. Existing models based on the finite element method (FEM)
require full 3D volume meshing to incorporate constraints related to anatomical structure via
techniques such as regularization. Alternate approaches such as the boundary element method
(BEM) require only surface discretization but assume homogeneous or piece-wise constant
domains that can be limiting. Here, a coupled finite element-boundary element method (coupled
FE-BEM) approach is demonstrated for modeling light diffusion in 3D, which uses surfaces to
model exterior tissues with BEM and a small number of volume nodes to model interior tissues
with FEM. Such a coupled FE-BEM technique combines strengths of FEM and BEM by assuming
homogeneous outer tissue regions and heterogeneous inner tissue regions. Results with FE-BEM
show agreement with existing numerical models, having RMS differences of less than 0.5 for the
logarithm of intensity and 2.5 degrees for phase of frequency domain boundary data. The coupled
FE-BEM approach can model heterogeneity using a fraction of the volume nodes (4–22%)
required by conventional FEM techniques. Comparisons of computational times showed that the
coupled FE-BEM was faster than stand-alone FEM when the ratio of the number of surface to
volume nodes in the mesh (Ns/Nv) was less than 20% and was comparable to stand-alone BEM (±
10%).

1. Introduction
1.1 Introduction to 3D diffuse optical imaging

Diffuse optical imaging provides functional information related to the physiological status of
tissue non-invasively. Absorption, fluorescence and Raman optical imaging have
demonstrated ability to provide molecular fingerprints of tissues in healthy and diseased
states [1–5]. These optical techniques require a model for image reconstruction from
boundary measurements of tissues when used in tomographic applications in-vivo. Image
reconstruction involves solving a model for light propagation (called the forward model)
iteratively to fit the measured data and recover optical parameters. Traditionally, image
reconstruction techniques have used the approximation that light propagation is two-
dimensional. However, more recently interest in 3D image reconstruction has grown
because it is more accurate than 2D models given that light propagation is inherently three-
dimensional [6].

Three-dimensional models have been successfully applied to simple geometries such as
cylinders, slabs and spheres where algorithms have been explored for better localization and
quantification. For example, Yalavarthy et al [7] used a generalized least squares
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minimization incorporating data and parameter variances to accelerate 3D image
reconstruction for under-determined problems. Using a level-set technique for image
reconstruction, Schweiger et al [8] showed that detection and localization of small objects
could be improved in 3D. Boverman et al [9] used a parametric approach to reconstruct
shape and contrast of piece-wise constant regions in 3D with spherical harmonics for
modeling sharp boundaries in tissue and demonstrated quantitative results in a domain with
a single inclusion. Zacharopoulos et al [10] used a similar strategy and showed that they
could accurately recover location and contrast of an anomaly in experiments on a domain
with single inclusion. Srinivasan et al [11] used a dynamic criterion based on the least
squares error norm of model-data mismatch to reduce the size of large data sets and speed
up 3D image reconstruction. However, applications of 3D image reconstruction to arbitrary
shaped geometries such as breast and brain have been more limited, especially as in the
setting of multi-modality imaging.

1.2 Multi-modality optical imaging reconstruction techniques
Multi-modality imaging has gained interest as an approach for improving the contrast
recovery of diffuse optical imaging and fluorescence [12–15]. Multi-modality imaging uses
prior anatomical structure to guide the diffuse optical reconstruction spatially, making it less
ill-posed and the images better resolved. In this reconstruction process, the optical imaging
domain is typically defined by segmentation and volume meshing of conventional medical
images (MRI, X-Ray or CT). Image reconstruction techniques involving multimodal data
have generally evolved in two categories of implementation of the spatial data, including:
(1) soft prior information and (2) hard prior information. Soft prior info refers to the
application of anatomical constraints, which allow for optical property variations to occur
within segmented regions. Studies have used algorithms based on total variation
minimization [16], sparsity regularization [15], Laplacian and Helmholtz regularizations
[14,17,18], data-specific spatially varying regularization [19], with all predominantly in the
finite element method (FEM) framework. Hard prior info strictly enforce the tissue
boundaries to represent homogeneous or piece-wise constant optical property regions. This
has been implemented using FEM [20,21] and the boundary element method (BEM) [22].
Many of these studies have been on simulations with couple of case studies resulting from
experimental or clinical data; extensive testing in experimental or clinical data is still to be
demonstrated.

1.3 Need for efficient 3D technique for complex 3D domains
In our experience, one of the key challenges in adopting 3D multimodal optical imaging for
large clinical studies is in image segmentation and meshing of arbitrary shapes. Figure 1
shows a schematic of a typical workflow before image reconstruction. The process involves
segmentation of medical image data, surface rendering (which produces a surface mesh as
output) and volumetric meshing. The last step of obtaining a volume mesh for 3D image
reconstruction can be time-consuming and difficult to automate in a clinical workflow.
Studies in brain and small-animal imaging have used a standard anatomical atlas to by-pass
the problem of obtaining subject-specific meshes [23,24]. However, some tissues such as the
breast and the prostate show considerably larger heterogeneity between subjects [25] where
a subject specific mesh is imperative to the imaging process. Use of a BEM approach as an
alternative to FEM for hard priors alleviated the meshing complexity by requiring only
surface discretization as compared to volume meshing for modeling light diffusion in 3D
[22,26]. BEM showed promise for multimodal image guided diffuse optical spectroscopy of
piece-wise constant regions (hard priors) by simplifying the meshing process and
implementing the assumption in the forward model itself [22].
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However, using piece-wise constant optical property approximations has limitations: (1) it
cannot model tissues which are known to have spatially varying optical property
distributions such as large solid tumors [27] (2) results are affected when the prior
information on tissue boundaries is imperfect [17,21], and (3) insufficient information exists
when the boundary data is simply not available as in the case of false-negative findings in
MRI. An efficient method to counter these limitations is needed without the complexity of
creating a full 3D volume mesh.

1.4 Coupled finite element – boundary element method (FE-BEM)
Here, we present a hybrid method for modeling the diffusion equation, which combines the
strengths of BEM in terms of reduced meshing dimensionality with FEM in terms of
modeling optical property heterogeneity. The approach is akin to a tailored method for
incorporating soft priors in a modified form in the forward model, itself, i.e. in modeling the
light diffusion equation instead of within the image reconstruction formulation. The coupled
FE-BEM scheme introduced here assumes homogeneous regions in certain tissue types,
which are known to have low variation in functional parameters (e.g. fat) and heterogeneous
distributions for other tissues such as tumors, which are known to have large variations in
optical properties. The advantage of this technique over FEM is that it does not require
volume discretization of the entire 3D domain, but only for tissues with known
heterogeneity; surfaces will suffice for the rest of the tissues within the domain of interest.
The advantage over BEM is that it can model heterogeneity in certain tissues whereas BEM
assumes only piece-wise constant regions. We present an implementation of the coupled FE-
BEM system for modeling light diffusion in 3D. Results are reported for light fluence
distributions and frequency domain boundary measurements of intensity and phase as well
as computational times for realistic tissue geometries and are compared to existing
numerical models. The examples presented correspond to breast imaging, although the
concept can be readily extended to other sites and applications such as brain and small
animal imaging.

2. Methods
2.1 Introduction to Diffusion equation

The diffusion equation can be derived from Radiation transport equation under the
assumption that light propagation is just linearly anisotropic [28]. This diffusion
approximation has been commonly used to model light transport in tissues where scatter
dominates over absorption and at distances more than several transport scattering lengths

( , where  is the reduced scattering coefficient) from the
source [29]. This model is given in the frequency domain as:

(1)

where Φ(r,ω) is the photon density or fluence at position r in the bounded imaging domain
Ω, D is the diffusion coefficient given by:

(2)
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μa is the absorption coefficient, ω is the frequency and q(r,ω) is the isotropic source
distribution. The source distribution is modeled as a point source located at a depth of one
scattering distance inside the boundary where an optical fiber would be [30]. At the outer
boundary of the domain, the relationship between photon fluence and flux is given by a
Robin type boundary condition [30]:

(3)

where α incorporates refractive index mismatch.

A coupled FE-BEM approach for the diffusion equation in multi-layered media was
implemented by assuming homogeneous optical properties in outer layers and
heterogeneous optical properties in the innermost tissue layer. Figure 2 shows a schematic of
such a layered media illustrated in 2D for simplicity. In this domain, the exterior tissue
(labeled I) was homogeneous and bounded by Γa (containing Na nodes) and Γb (containing
Nb nodes). Γb also bounds an interior layer (labeled II) containing Nb nodes on the boundary
and Ni nodes on the interior. In the coupled FE-BEM, BEM was used to model the exterior
layers and FEM was used for the interior layer. These are discussed below in the context of
the coupled system.

2.2 Diffusion equation modeled with FEM
The Galerkin formulation was used for FEM where the orthogonality condition 〈R, Wi〉 = 0
is satisfied [31]. Here R is the residual of Eq. (1), Wi is the weighting function and symbol
〈 〉 represents integration. Using linear basis functions φj as the weighting function, we
obtain the formulation for Eq. (1):

(4)

The first term in Eq. (4) was integrated using Green’s theorem, to give:

(5)

where the integration applies for interior tissues (region II in Fig. 2 bounded by Γb); note
that the right hand side source contribution is zero since no source exists within the interior

tissue region. Approximating  and , using piece-wise linear
basis functions φi and nodal values for fluence and flux Eq. (5) becomes:

(6)

where Nv is the total number of volume nodes (Nv = Nb + Ni). Equation (6) can be written in
matrix form as:
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(7)

where

(8)

Separating boundary (b) and interior (i) nodes of the inner region II, Eq. (7) expands as:

(9)

where AI = A−1. Φb can be obtained from

(10)

this relationship between fluence Φb and flux  is applied within the BEM integral
equation as described in the next section.

2.3 Diffusion equation modeled with BEM
Under the assumption that the tissue contains boundaries known a priori which separate into
piece-wise constant homogeneous regions, the diffusion equation can be written in the form
of a modified Helmholtz equation given in each region by [22,26]:

(11)

where

(12)

Here subscript l refers to the region label and applies to homogeneous region I in Fig. 2
bounded by Γa and Γb. The fundamental solution given by the Green’s function for Eq. (11)
satisfies:

(13)

where
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(14)

The boundary integral form of Eq. (11) was derived using weighted residuals, Green’s third
identity and the fundamental solutions [32] and appears as:

(15)

for the Green’s function which is singular in node i where , and Ω is the solid
angle enclosed by the boundary at node i.

The photon fluence and flux are discretized using linear basis functions ψi defined on the

triangles of the surfaces, as  and , where Ns is the number of
boundary nodes on the surface (Ns = Na + Nb). In discretized form, Eq. (15) becomes:

(16)

which can be written as matrix equation

(17)

where

(18)

The Robin boundary condition specified in Eq. (3) is applied for the outer boundary. For
multi-region problems, continuity conditions are enforced across the interior boundaries. For
a two-region problem, the matrix form was derived by separating nodes on boundaries Γa
and Γb as (see Appendix for details).

(19)

Note from Eq.s 10 and 19 that both BEM and FEM formulations containing fluence Φb on
boundary nodes of interior tissue which couples the FEM and BEM system of equations.
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2.4 Coupled FE-BEM for Diffusion equation
To derive the coupled FE-BEM formulation, we note that the fluence has to be the same
whether derived from BEM or FEM for interior boundaries and the flux has to be
continuous. This can be stated mathematically as:

(20)

The negative sign for the flux is because the BEM formulation derived flux going outwards
from region I into II, and FEM formulation has flux going into region I from II.

Using these relations and substituting for Φb from Eq. (10) into Eq. (19) produces

(21)

This system was solved for fluence on the outer boundary and flux on inner boundary. The
flux was used from this solution to solve the FEM equation [Eq. (9)] for interior field. Also
note that matrix A has already been inverted when solving Eq. (10), so this step is
straightforward. The size of the matrix to be inverted in Eq. (21) is Ns × Ns. Equation (21)
represents a two-region problem but the approach is easily extended to multiple regions as
shown in the Appendix. The coupled FE-BEM equations were implemented in Matlab and C
and used to generate fluence distributions in the domain.

2.5 Simulation setup
Realistic breast-shaped imaging domains were generated using a clinical MRI data set
collected from a female volunteer diagnosed with infiltrating ductal carcinoma as part of an
ongoing clinical trial with MRI/optical imaging. A 3T Phillips scanner was used to collect
the MRI and contrast-enhanced MR data sets. Using the MR volume, image segmentation of
adipose, fibroglandular and tumor tissues was performed with the use of software package
Mimics™ [33]. In addition, spherical inclusions were also simulated within the outer breast
region. Using these geometries, six test cases of multiple regions were created for the
simulations as shown in Fig. 3. The volume meshes for interior tissues of interest were
generated with the same software. Combining these surfaces and volumes provided meshes
for the coupled FE-BEM. The corresponding mesh sizes are given in Table 1 for each of the
test cases.

To compare the results from the coupled FE-BEM, forward data was also generated using
BEM and FEM techniques both of which have been validated previously [34,35]. For the
BEM, only surfaces were required, and multiple homogeneous regions were simulated. For
the FEM, a full 3D volume mesh was required with the interior boundaries preserved for
consistency. The volume meshes for each of the test cases were created with a 3D pixel-
based mesh generator [36], which used the average edge size from the surfaces for
generating the volume mesh. A schematic of such a mesh is shown in Fig. 1 (last step).
Mesh sizes used in BEM and FEM only reconstructions are also given in Table 1. The
meshes for testing all three models were of comparable mesh resolutions and with interior
boundaries preserved. The computer time for volume mesh generation varied from 260
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seconds to 323 seconds. The source-detector geometry for the imaging domains contained
sixteen sources with fifteen detectors per source in a circular ring around the periphery of
the breast, giving a total of 240 measurements [4]. The fiber indentations for the sixteen
locations can be seen in the surface rendering (Fig. 3).

3. Results
3.1 Photon fluence distribution from coupled FE-BEM

The coupled FE-BEM was applied to generate the photon fluence in the six test cases shown
in Fig. 3. In the simulation, both the exterior and interior tissues had homogeneous
distributions of optical properties where μa = 0.006 mm−1 and  for outer
region(s) and μa = 0.02 and  in the interior tissue. The logarithm of fluence
distribution at the boundaries of the tissues for a single source is shown in Fig. 4 for test
cases 1 and 6 where the diffusive pattern typically expected from the diffusion equation is
seen.

3.2 Comparison of boundary data using BEM, FEM and Coupled FE-BEM
To compare the results from the coupled FE-BEM with existing models, the boundary data
at detector locations were computed. The logarithm of intensity and phase is shown in Fig. 5
at the boundary detector locations for 240 measurements (16 sources × 15 detectors/source)
generated using the three models (BEM, FEM and coupled FE-BEM) for test case 1. The
measurements show good agreement with RMS differences in logarithm of intensity
between BEM and the coupled model of less than 0.1 and in phase of less than 1 degree. The
RMS differences between FEM and the coupled model was less than 0.5 for logarithm of
intensity and 2.5 degrees for phase. These differences are likely due to the differences in the
mesh types and discretization.

3.3 Modeling heterogeneity
One of the drawbacks of BEM is that it cannot model heterogeneity of tissue due to the
inherent assumption in the model: the Diffusion equation only reduces to modified
Helmholtz in BEM formulation for piece-wise constant or homogeneous regions. For
modeling heterogeneity, the coupled model offers an alternative solution. To illustrate the
change in fluence with increasing heterogeneity, a cross-section along the center of the inner
sphere in test case 2 is shown in Fig. 6 for a single source. The left column indicates the μa
property distribution and right column shows the corresponding logarithm of fluence
distribution for a (1) homogeneous domain (sphere to background contrast of 1:1), (2)
heterogeneous domain (2:1 sphere to background contrast) and (3) heterogeneous domain
with spatially varying contrast in the sphere (2:1 varying with background). As the
heterogeneity in the absorption increases, a decrease in fluence is observed in parts of the
sphere, as expected. A decrease in intensity also occurred at the boundary as a result of the
heterogeneity.

3.4 Analysis of computational times between Coupled FE-BEM and FEM
The computational time required by coupled FE-BEM was a function of the surface mesh
size and was found to scale as Ns

3.2, where Ns is the number of nodes in the surface mesh.
This outcome was expected given that the matrix assembly and solving the BEM component
of the coupled model consumed the most time and the BEM was found to scale with surface
node size as Ns

3.5. The scaling was obtained for the two region and three region problems in
complex domains presented here, but was smaller (Ns

2.7 quoted previously for BEM [22]) in
simple two region domains. The FEM component of the coupled model consumed less than
0.5% of the total time.
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Since the computational time of coupled FE-BEM scales with surface mesh size, it is
reasonable to assume that the speed-up of the coupled model when compared to stand-alone
FEM will be a function of the ratio of the number of surface to full 3D volume nodes (Ns/
N). Figure 7 (top row) shows a plot of the ratio of computational times of coupled FE-BEM
to FEM time, as a function of Ns/N, the values for Ns and N can be found in Table 1 (first
column and last columns respectively). The plot shows that for ratio of Ns/N < 20%, coupled
FE-BEM was faster (ratio of times < 1) whereas for Ns/N > 20%, stand-alone FEM was
faster (ratio of times > 1). This data did not include the computational time for creating a
large 3D volume mesh for FEM. It is important to note that when the meshing time for FEM
was included, coupled FE-BEM was always faster than FEM (ratio < 1) for the cases
presented here (ratio of times ranged from 0.14 to 0.92).

Since the metric (Ns/N) requires a volume mesh to be created, we also chose the physical
surface area to volume ratio (SA/V) as another metric for comparing computational times,
and can be obtained from image segmentation. Figure 7 (bottom row) shows that the
coupled model was faster than FEM (ratio of times < 1) when SA/V < 10%. These plots
illustrate that we can use quantitative metrics to determine the most efficient 3D forward
model for the imaging domain under consideration.

3.5 Analysis of computational times between Coupled FE-BEM and BEM
A similar comparison was performed for the ratio of computational times of coupled FE-
BEM and BEM. Since the number of surface nodes was the same for the coupled FE-BEM
and BEM models (See Table 1), the time differences depend on the total number of volume
nodes used in the interior tissue region (Nv = Nb + Ni) as compared to the surface nodes
(Nb) on the boundary in the same region (see region II in schematic of Fig. 2). For small Nb/
Nv, the volume nodes dominate such that coupled FE-BEM was longer to compute than
BEM. For larger Nb/Nv, surface nodes dominate and hence coupled FE-BEM was faster
than BEM. Overall, the differences in the two models were less than 10% for the test cases
presented here (see Fig. 8, top row). A ratio of 50% Nb/Nv appeared to be the delineating
value. Similarly, a ratio of 20% appeared to separate the two models in terms of ratio of
interior tissue surface area (ISA) to interior tissue volume (IV), see Fig. 8 (bottom).

4. Discussion and Conclusions
Coupled FE-BEM methods have been used extensively in other fields such as electrostatics
[37], electromagnetics [38] and in biomedical applications to model cardiac tissue [39];
among others, Here we present application of this technique to diffuse optical tomography.
The coupled FE-BEM method provides an elegant solution to the practical problem in
multimodality optical imaging of how to model heterogeneity in tissues whose boundaries
are known, without complex volumetric meshing of the full 3D domain. In this method, the
volume meshing has not been eliminated, but rather the size of the domains were reduced
for which it is needed. Therefore, this has an impact on both the meshing time as well as the
computational time for the forward solver.

Different implementation options exist [40], and we chose one does not change the
bandwidth of the matrices involved. Specifically, the sparsity of the FEM matrix, which is a
highly desirable aspect of finite elements, was not altered. No increase in the size of dense
BEM matrix to be solved occurred as well. The computational time of the coupled method
was governed primarily by the BEM matrix size (> 99% of total time) for the domains
described here. This will likely change for larger volumetric FEM computations within the
domain, or larger areas of heterogeneity, but is not anticipated in the current application.
Comparison to existing and validated numerical models based on FEM alone and BEM

Srinivasan et al. Page 9

Biomed Opt Express. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



alone showed good agreement with RMS differences of less than 0.5 in logarithm of
intensity and less than 2.5 degrees in phase.

The coupled FE-BEM method incorporates the idea of soft priors directly into the forward
model itself, which is different from traditional techniques where regularization is used in
the image reconstruction or inverse problem. The choice of numerical technique for the
forward model will depend on the problem, the imaging domain and its approximations with
respect to homogeneity/heterogeneity. These a priori assumptions when used intelligently
can greatly influence the choice of the model to be used. We have shown that the coupled
FE-BEM is faster than FEM when the surface to volume node ratio was less than 20% and
when the total surface area to volume was less than 10%. However, when meshing time was
included, the coupled FE-BEM was always faster and the ratio of computational times
(Coupled/FEM) ranged from 0.14 to 0.92. Coupled FE-BEM was comparable to BEM (±
10%) for the range of mesh sizes and tissue types examined here. We have presented results
from realistic breast-shaped models in these simulations. While the results presented here
are from breast geometries, the model can be applied to other tissue regions as well.

In conclusion, a coupled FE-BEM method was implemented for modeling light diffusion in
3D for multi-modality optical imaging systems and the results show good agreement with
existing numerical models but utilize a fraction of the volume mesh size required by
corresponding FEM techniques.
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5. Appendix
Equation (17) describes the matrix form of the BEM for a single region. For an external
region consisting of boundaries a and b, in region I, the matrix formulation extension of Eq.
(17) is

(22)

(23)

Substituting the boundary condition in Eq. (3) for the outer boundary, Eq. (23) becomes:
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(24)

which yields Eq. (19). For successive layers bounded by a, b and c, the matrix for BEM is

(25)

and the FEM relationship is given for an interior region as 
which is used along with continuity conditions to derive the coupled FE-BEM given by:

(26)

Srinivasan et al. Page 13

Biomed Opt Express. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
A schematic showing steps from medical image data to obtaining a volumetric mesh for
computation with examples from breast data. These steps have to be routinely performed
before image reconstruction can be done for 3D multi-modality optical imaging. Methods
for image segmentation vary between applications; here thresholding and region-growing
techniques were applied for breast tissue. Surface rendering is automatically generated by
many open source softwares, but getting a reliable volume mesh can be time-consuming and
more difficult to automate.
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Fig. 2.
Schematic of a two-layered region in 2D having homogeneous distribution of optical
properties in region I and heterogeneous distribution in region II.
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Fig. 3.
Surface renderings of the six test cases used in this study are shown, with two-three regions
created. Clockwise from top left, the six test cases show cases (1) the outer breast contour
and tumor created from clinical MRI (2) outer breast and simulated spherical inclusion (3)
Outer breast, sphere and tumor (4) Outer breast, larger sphere and tumor (5) Outer breast
and two spherical inclusions and (6) Outer breast, fibroglandular and tumor tissues.
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Fig. 4.
Logarithm of photon fluence obtained using coupled FE-BEM for a single source in test
cases 1, and 6. Left: Results from test case 1 showing outer boundary; Middle: inner tumor
boundary by making outer surface transparent; Right: Results from test case 6 for inner
tissues.
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Fig. 5.
Comparison of (a) logarithm of intensity and (b) phase at the detector locations on the
boundary ( = 240 measurement points) obtained from BEM, FEM and coupled FE-BEM for
test case 1.
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Fig. 6.
2-D cross-sections along the center of the interior spherical inclusion in test case 2 for μa
(left column) and logarithm of fluence (right column). The background was always
homogeneous. Top row shows cross-section of sphere for a homogeneous domain (1:1
contrast between sphere and background), Middle row shows 2:1 contrast between sphere
and background and bottom row shows a spatially varying distribution in the sphere (2:1
varying). As expected the fluence decreases with increasing heterogeneity.

Srinivasan et al. Page 19

Biomed Opt Express. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Ratio of computational time of coupled FE-BEM to stand-alone FEM for the six test cases,
plotted as a function of % surface to volume nodes (top) from the respective meshes (Ns/N)
where Ns is the number of boundary nodes in the coupled mesh and N is the number of
nodes in the FEM mesh and % surface area to volume ratio (bottom) of the total tissue
domain.
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Fig. 8.
Ratio of computational time of coupled FE-BEM model to BEM for the six test cases,
plotted as a function of % surface to volume nodes (top) of the interior tissue (Nb/Nv) where
Nb is the number of nodes on boundary of interior tissue and Nv is the number of volume
nodes of interior tissue, and % surface area to volume ratio (ISA/IV) (bottom) of the interior
tissue domain.
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Table 1

Mesh sizes for the different test cases used in the simulations. The first two columns of mesh sizes correspond
to the coupled FE-BEM and the last two columns correspond to mesh sizes for BEM and FEM

Test Case # #Surface Nodes # Volume Nodes # Nodes BEM Mesh # Nodes FEM Mesh

1 6471 798 6471 70423

2 6869 2171 6869 61468

3 7346 798 7346 65949

4 8297 798 8297 50203

5 8695 2171 8695 51041

6 11415 798 11415 50243
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