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Abstract
The neural mechanisms that enable recognition of spiking patterns in the brain are currently
unknown. This is especially relevant in sensory systems, where the brain has to detect such
patterns and recognize relevant stimuli by processing peripheral inputs; in particular, it is unclear
how sensory systems can recognize time-varying stimuli by processing spiking activity. Because
auditory stimuli are represented by time-varying fluctuations in frequency content, it is useful to
consider how such stimuli can be recognized by neural processing. Previous models for sound
recognition have used pre-processed or low-level auditory signals as input, but complex natural
sounds like speech are thought to be processed in auditory cortex, and brain regions involved in
object recognition in general must deal with the natural variability present in spike trains. Thus we
used neural recordings to investigate how a spike pattern recognition system could deal with the
intrinsic variability and diverse response properties of cortical spike trains. We propose a
biologically plausible computational spike pattern recognition model that uses an excitatory chain
of neurons to spatially preserve the temporal representation of the spike pattern. Using a single
neural recording as input, the model can be trained using a spike timing dependent plasticity-based
learning rule to recognize neural responses to 20 different bird songs with over 98% accuracy, and
can be stimulated to evoke reverse spike pattern playback. Although we test spike train
recognition performance in an auditory task, this model can be applied to recognize sufficiently
reliable spike patterns from any neuronal system.

Keywords
Object recognition; Spike Trains; Discrimination; Auditory cortex; birdsong; learning and
memory

Introduction
To effectively recognize objects in nature, sensory systems must use neural processing to
recognize patterns from the peripheral spike trains evoked in response to those objects. The
question of how such object recognition occurs in the brain has been studied using static
images in vision (Logothetis and Sheinberg, 1996; Riesenhuber and Poggio, 2000), but how
sensory systems recognize objects with time-varying characteristics remains unclear. This
type of object recognition requires that sensory processing mechanisms recognize the
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appropriate time-varying internal representations evoked in response to stimuli, likely in the
form of spiking patterns.

The problem of how the brain recognizes time-varying stimuli can be studied effectively in
the auditory domain, where relevant stimuli are defined by time-varying fluctuations in their
frequency content. Current auditory stimulus recognition models operate on artificially pre-
processed sounds (Tank and Hopfield, 1987; Gutig and Sompolinsky, 2009) or low-level
onset-offset auditory inputs (Gollisch, 2008) instead of the input to the brain's auditory
recognition system: namely neural spike trains, most likely from auditory cortex. This issue
is critical for two reasons. First, realistic sensory processing models must deal with the
intrinsic variability present in spike trains in vivo, such as spike timing imprecision and
unreliabilty. Second, speech perception and animal vocal communication are disrupted by
lesioning auditory cortex (Penfield and Roberts, 1959; Hefner and Heffner, 1986) and the
recovery of speech perception in humans requires cortical plasticity (Rauschecker, 1999;
Fitch et al., 1997; Shepherd et al., 1997). This suggests that models for auditory object
recognition in particular should operate effectively using representations available at the
level of cortex, despite the fact that these representations have greater diversity and
increased complexity compared to upstream representations (Woolley et al., 2009). To date,
no spike pattern recognition model has demonstrated a solution to these problems.

To address this, we designed and tested a novel spike pattern recognition model using a
chain of connected neurons. We tested the model in an auditory recognition task using the
zebra finch auditory system, a model with striking analogies to humans in the context of
speech (Doupe and Kuhl, 1999). We recorded responses in field L, an area analogous to
auditory cortex in humans (Wang et al., 2010), evoked in response to zebra finch songs.
Field L neurons show a stronger preference for such conspecific vocalizations compared to
upstream auditory midbrain areas such as mesencephalicus lateralis dorsalis (MLd) (Grace
et al., 2003; Theunissen and Shaevitz, 2006), which suggests that field L neurons likely play
a role in the recognition of such vocalizations in subsequent processing, despite having a
higher level of spike train variability compared to MLd neurons (Woolley and Casseday,
2004; Wang et al., 2007; Amin et al., 2010). Using a simple spike-timing dependent
plasticity-based learning rule, we trained the computational model to effectively recognize
songs using spike trains recorded from individual field L auditory sites, and observed
reverse spike pattern playback with a simple alternative activation of the network.

Materials and Methods
Electrophysiological Recording

We performed extracellular neural recordings in field L in adult male zebra finches
(Taeniopygia guttata). All procedures were in accordance with the National Institutes of
Health guidelines approved by the Boston University Institutional Animal Care and Use
Committee. Following previous methods, we conducted acute (Narayan et al., 2006;
Billimoria et al., 2008) and awake restrained recordings (Grana et al., 2009) using 3–4 MΩ
tungsten microelectrodes. Sounds were presented at 75 dB sound pressure level, and
auditory sites were identified using a paired t-test for firing rate compared to background
firing rate (p ≤ 0.05). For identified sites, we played 100 repetitions of 20 randomly
interleaved recordings of conspecific songs truncated to the shortest length (820 ms), and
units were isolated using threshold-based spike detection and waveform-based sorting
software.
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Data Analysis
We used a measure of neural discrimination to quantify the reliability and discriminability of
the neural responses (Narayan et al., 2006). First, the van Rossum spike distance metric (van
Rossum, 2001) was used to determine the dissimilarity between all pairs of spike trains
evoked in response to the 20 stimuli. To determine the dissimilarity between two spike
trains, both spike trains (represented as a string of zeros and ones) were convolved with a
decaying exponential function with time constant τ, and the van Rossum distance between
the spike trains was calculated as the normalized squared Euclidean distance between their
convolved responses. Using a template-matching scheme outlined previously (Machens et
al., 2003), each spike train evoked in response to the 20 songs was then categorized based on
the minimum distance between itself and randomly-selected spike trains from each song
category—repeating this procedure for all spike trains then yielded a percent correct
discrimination score. To determine the neuron’s optimal time scale, we varied the
exponential time-constant τ from 1 ms to 1 s and chose the time constant which maximized
the percent correct discrimination score.

We used two previously defined metrics to examine the temporal properties of our recorded
spike trains. We measured reliability of a neural recording’s spike trains using a correlation-
based measure Rcorr (Schreiber et al., 2003), which assesses both the spike timing precision
(timing stability) and reliability (addition/removal of spikes) of a set of responses to a
particular stimulus. Rcorr calculates reliability by smoothing spike trains with a normal
kernel and computing normalized inner products between smoothed spike trains, yielding
reliability values between 0 (unreliable) and 1 (perfectly reliable). We measured spike train
sparseness using a previously-defined technique (Vinje and Gallant, 2000) that uses a
normalized peristimulus time histogram-binning procedure to calculate sparseness values
ranging from 0 (not sparse) to 1 (maximally sparse). Both of these metrics have a single
parameter that determines the analysis time scale, which was taken to be the same as the
optimal neural discrimination time scale. Reliability and sparseness values were calculated
for responses to each song, and these were averaged across songs to yield total measures of
reliability and sparseness for each recording. Pearson’s correlation coefficients were also
used to establish significance (p ≤ 0.05) and assess the strengths of relationships between
variables.

After testing model performance classifying field L spike trains (see Results), we used a
simple spike train modification scheme to help us assess the selectivity and error tolerance
of the recognition network. We took each spike train to be classified, selected a time
window of varying length (0–800 ms) and varying start time (in increments of 100 ms), and
randomized the time of each spike within the window. This scrambled the timing
information in part of the spike train. Averaging across the network performance
recognizing these modified spike trains across all songs, trials, and start times yielded a
percent correct recognition for a given scrambling window size. These percent correct
values were then normalized by the baseline (unscrambled) performance to yield a percent
error induced by the spike timing randomization procedure. This procedure was then
repeated for spike removal within windows of varying duration, yielding percent error
induced by spike deletion. This allowed us to assess how changing varied durations of the
spike trains to be recognized affected system performance. One of the 29 recognition
networks analyzed was excluded from this analysis because its low baseline performance
(<1%) prevented proper induced error normalization.

Computational Model and Parameter Optimization
Model neurons behaved according to a standard integrate and fire equation (Dayan and
Abbott, 2001) for synaptically-coupled neurons with an input current, integrated using an
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exact method (Brette, 2006). For all simulated neurons, we used a leak voltage 70 mV,
threshold voltage −55 mV, reset voltage −80 mV, excitatory synapse reversal potential 0
mV, and inhibitory reversal potential −90 mV, all chosen to be in the physiologically
plausible range. While all simulations used these particular cell parameters, the model did
not require them to take on these specific values to function properly.

Some model parameters (see Spike Pattern Recognition Model and Learning Rule below)
were optimized across the recording sites to maximize song recognition performance.
Chain-to-detector synapses had a time constant of 1 ms and the detector neuron had
membrane time constant 3 ms, while the chain-to-chain synapses had time constants 0.5 ms
and chain neurons had membrane time constant 1 ms; these short time scales allowed fine
timing information to be transmitted. The standard deviation of the Gaussian learning rule
was chosen to be σ = 1.5 ms, also to emphasize fine timing features. The depression-
potentiation probability ratio was optimized to be 0.6, which is less than one (equal
potentiation and depression) likely because the Poisson firing assumption was not well
satisfied for our data set. The learning rate was optimized to be 0.02, and the learning
multiplier was optimized to be 1.1, compromising between learning speed (higher rates,
larger reinforcement) and more exact final weights (lower rates, smaller reinforcement). The
ratio of excitatory weights to inhibitory weights (3.5) was chosen to equal the ratio of the
excitatory and inhibitory reversal potentials. The parameters of the intra-chain connections
were chosen for highly reliable spike transmission. Only the mean chain-to-detector synaptic
conductance was optimized for each site individually, and they had a product with the
membrane resistance ranging from 0.0031 to 0.0130.

For spike train replay (see Spike Train Replay, below), three parameters were fixed across
all recognition networks to optimize the similarity between the replay-based and data-based
discrimination performances: the input current was chosen such that the effective resting
potential of the cell was only 0.01mV from threshold; the product of the detector membrane
resistance and synaptic conductance of the random Poisson input was 0.09 and the rate was
twice that of the original data firing rate to add noise and a baseline firing rate. To trigger
playback, 10 successive spikes at 250 Hz were delivered to the detector neuron. This
balanced timing precision and replay de-noising, but more or fewer spikes at different firing
rates could also be used with varying effects on firing rate and reliability of replayed spike
trains.

Results
Neural Recordings

We recorded extracellular field L neural responses to 100 repetitions of 20 different zebra
finch songs (one example song spectrogram shown in Fig. 1A, four song spectrograms
shown in Fig. 1B) from 26 sites in 8 anesthetized birds and 3 sites in 2 awake restrained
birds, yielding 29 total recording sites. Prior work has shown no significant difference
between awake restrained and anesthetized recordings in zebra finch field L (Grana et al.,
2009) and we also found this to be the case, so both types of recording were pooled for
subsequent analysis. The rasters from one example site in response to one song are shown in
Fig. 1A.

Spike Pattern Recognition Model
The recognition model (schematic in Fig. 1A) uses a synaptically coupled chain of integrate
and fire neurons alongside a set of individual song detector neurons to recognize learned
spike sequences. The chain is constructed using sequentially synaptically coupled neurons
that preserve prior temporal input states in a distributed spatial activity pattern. Only the first

Larson et al. Page 4

J Neurosci. Author manuscript; available in PMC 2011 May 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



neuron in the chain neuron receives sensory input spikes (here from a field L neuron), and
each successive chain neuron only receives input from its neighbor in the form of synaptic
excitation with a delay of 2 ms (with neuron and synapse parameters chosen to ensure spikes
are transferred with high fidelity, see Methods). This causes input spikes to traverse
successive chain neurons, where each chain neuron effectively corresponds to a 2 ms time
window of activity in the original input—each chain neuron’s activity, then, mirrors the
activity of the original sensory input with some fixed delay. To recognize patterns from the
original time-varying sensory input, all neurons in the circuit’s chain also either excite or
inhibit song detector neurons. The synaptic weights from chain neurons to a given song-
detector neuron are derived from the time-varying properties of the neural response (Fig.
1A); consistent activity at a particular time in the input causes a particular location in the
chain to excite the detector neuron, and consistent temporal inactivity causes a location to
inhibit the detector neuron. When a learned spike pattern has been fed into the chain, most
active chain neurons activate excitatory synapses on the detector, causing it to fire, signaling
detection of that pattern (Fig. 1B). When patterns that do not match the trained spike pattern
are fed into the chain, they activate neurons that have inhibitory connections and neurons
that have excitatory connections to the detector, but the inhibitory connections prevent the
detector from firing (Fig. 1B).

Learning Rule
To train the synaptic weights from the chain to a song’s detector, the chain was fed field L
responses to 90 repeated presentations of all songs. Every chain neuron began with zero-
strength excitatory and inhibitory connections to each of the 20 detection neurons. This is
functionally equivalent to having an excitatory and an inhibitory neuron for each member of
the chain. During training, a suppressive negative supervisory current was supplied to the 20
detector neurons to prevent them from firing until the spike train to be learned reached the
end of the chain (e.g. 820 ms after it started), when a positive current was delivered that
caused the appropriate detector neuron to fire. A spike-timing dependent synaptic plasticity
(STDP) rule (Abbott and Nelson, 2000) was then applied to modify the chain-to-detector
synaptic weights. For the excitatory synapses, a chain neuron (presynaptic) spike that
occurred within a small window of time of a detector (postsynaptic) spike caused synaptic
strengthening. The change in synaptic conductance was given by the product of an
optimized learning rate (0.02) and the value of a vertically-offset zero-mean Gaussian (σ =
1.5 ms, unity height) based on the presynaptic-to-postsynaptic timing difference (Fig. 2A).
This learning rule was reversed for inhibitory synapses; spikes that occurred within a small
time window of the detector spike caused synaptic weakening.

Because the vertical offset of the Gaussian determined the relative amounts of synaptic
strengthening and weakening, a simple rule set the offset value. Assuming chain firing to be
Poisson (with firing rate λ given by the chain firing rate during the postsynaptic spike), the
probability of time to nearest spike for each chain neuron would be a symmetric exponential
distribution with parameter 2λ (Fig. 2B). On each STDP learning iteration, the offset was
chosen such that the product between this probability distribution (Fig. 2B) and the offset
Gaussian (Fig.2A) maintained a constant ratio of negative area to positive area (e.g. of
depression to potentiation; 0.6 here) (Fig. 2C). While a static vertical offset would also allow
the network to learn, this rate-adapting offset allowed the network to better minimize false
alarms while improving correct detections.

During learning, changes in synaptic weights occurred each time the postsynaptic detector
neuron fired. To prevent synaptic weights from growing without bound and to stabilize
learning, the maximum total (excitatory plus inhibitory) conductance between the chain and
each detector was fixed. On each learning iteration, if all conductance had not been used,
synaptic conductances were multiplicatively increased (by a factor of 1.1 here). After around
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30 presentations of the spike train to be learned, the synaptic weights stabilized near their
90-presentation final values (Fig. 2D–E). While this multiplicative increase was not
necessary for network functionality, it greatly improved the learning rate.

Auditory Recognition Using a Single Trial
For a given recording site, 20 chain detectors (one for each song) were trained using 90 song
responses to form chain-to-detector neuron synaptic weights, and the model was tested on
recognition of 10 untrained responses to all songs. We used a strict recognition criterion for
correct responses: for the duration of a particular song, the correct song’s detector must have
fired without any of the incorrect detectors firing. Using this paradigm, three recording sites
yielded chain recognition networks that operated with over 90% accuracy (average
53.6±4.4% SEM, N=29). The best recognition network accuracy was 98.3%, achieving
92.4% when trained on only 30 trials (Fig. 2E), as network performance increased the most
between 10 and 30 learning iterations. During training, if a static learning vertical offset was
used instead of adapting to the chain firing rate, recognition performance decreased on
average by 6.8% (σ = 8.3%); if no negative feedback current was used, performance
decreased on average by 11.6% (σ = 9.2%). This suggests that the negative current and
adaptive threshold assisted learning by preventing mis-learning of patterns and by balancing
excitation and inhibition.

We also examined the relationships between input spike train reliability, sparseness, and
performance using the Rcorr and sparseness measures (see Methods; Fig. 3B–C). Rcorr gives
a quantitative measure of the spike timing precision of the neural input ranging from 0
(unreliable) to 1 (maximally reliable), while sparseness gives a measure of how distributed
or concentrated in time neural firing is, ranging from 0 (constantly firing, non-sparse) to 1
(rarely firing, very sparse). We found strong correlations between reliability and
performance (correlation R = 0.514, p = 0.005) and sparseness and performance (Figure 2D;
R = 0.639, p < 0.001), but not between performance and firing rate (R = 0.045, p = 0.9) or
sparseness and reliability (R = −0.076 p = 0.7). This suggests that the model performs better
on more reliable, sparser inputs regardless of firing rate.

We also tested the network by training it on partial spike sequences of shorter duration (25
ms to 820 ms). To optimize performance for each duration, we constructed multiple
detectors of the appropriate length with different starting times (e.g. for the 400 ms case,
constructed detectors trained on input spiking activity from 0–400ms, 50–450ms, 100–
500ms, etc. for each song) and selected the detector for each song that had the best detection
versus false alarm performance (e.g. the 50–450ms detector for song 1, the 200–600 ms
detector for song 2, etc.). We then used this optimized network of 20 detectors to recognize
songs from the learned partial sequences embedded within the complete 820 ms spike trains,
thereby increasing the amount of untrained spiking activity presented and implicitly testing
for false alarm robustness. The best performance recognizing songs based on 400 ms song
segments was 88.5% (Fig. 3A), suggesting reliable song recognition for shorter durations
despite the presence of additional untrained stimulus.

To quantify the selectivity and error tolerance of the network, we tested performance
recognizing spike trains that were systematically corrupted in two ways (see Methods). For
all spike trains in the test set to be recognized, spikes occurring within temporal windows of
varying widths were either randomly temporally shuffled (Fig. 3D) or removed entirely (Fig.
3D). The resulting recognition performance was used to calculate the error induced by spike
train corruption, which ranged from 0% (same as baseline performance) to −100% (no spike
trains recognized correctly). Corruptions by shuffling and deletion of the same duration as
the average zebra finch song syllable (94.5 ms or 11.5% of the total duration; Glaze and
Troyer, 2006) caused average errors of 18% and 28% respectively. This suggests that
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removing or substituting one song syllable while preserving the absolute timing of other
syllables would decrease network recognition performance, with network performance
falling off rapidly with increasing spike train corruption.

Spike Train Replay
This trained network can also be used to play back its learned spike patterns. To trigger
replay, the detector neuron received an input current, bringing the cell within 0.01mV of
firing, and an excitatory spiking Poisson input with firing rate equal to twice that of the
average firing rate of the sensory input used to train the network. This caused the detector
cell to fire with a background rate approximately matched to that of the original sensory
input to the circuit. The first chain neuron then received a short burst of spikes (10 spikes at
250 Hz), causing a reliable propagation of activity through the chain that modulated the
random firing of the detector neuron. Successive chain neurons modulated this firing
according to the synaptic connections formed during learning, which in turn corresponded to
temporal activity in the original spike trains, thereby causing the detector neuron to play out
the learned spike train in reverse (Fig. 4A).

To quantify how similar these replay spike trains were to the original spike train data, we
first used the van Rossum discrimination method. This method uses a spike distance metric
(van Rossum, 2001) to determine distances between spike trains, followed by a nearest-
neighbor template-matching scheme classify spike trains (Machens et al., 2003). By varying
which spike trains were classified and which templates were used to classify them, for each
recording site data (D) and its corresponding reversed replayed spike trains (R), we
measured: the ability of each sensory neuron to discriminate songs by discriminating data
spike trains using data spike train templates (DD); the similarity between the data and replay
spike trains by discriminating data using reversed replay templates (DR); and how well the
replay spike trains could be used to discriminate songs by discriminating replays using
replay templates (RR) (Fig.4D). We then compared the DD, DR, and RR reliabilities (Fig.
4B). There were no significant differences between the mean DD, DR, and RR
discrimination performances, or the DD and RR sparseness (Fig.4C) and firing rates (Fig.
4E), suggesting that the replay spike trains were similar to the original spike trains.
However, the RR reliability was significantly greater than DR or DD (p < 0.001). This
increase in reliability was likely due to the fact that the network learned synaptic weights by
effectively averaging noisy spiking responses across trials, and uses a highly reliable chain
for input activity propagation. Thus, we found that the network would reliably play back the
learned spike sequences in reverse using a simple network activation.

Discussion
Model Dynamics

The basic architecture of our model builds upon a proposal by Hopfield and Tank (Tank and
Hopfield, 1987), using the intuitive idea of “concentrating information” spread over time,
effectively transforming temporal information into a distributed spatial representation.
However, by avoiding long axonal delay lines which biophysically limit sequence duration,
our model can be easily adjusted for duration by varying the number of neurons in the chain.
This sequentially-activated continuous processing allows the system to compensate for
phase alignment by testing all phase relationships between the input and learned patterns.
Although the model as proposed here would not correctly recognize inputs that have been
stretched or compressed in time, it might be possible to use a hierarchical network to
recognize time-warped inputs. Combining a layer of shorter-duration chain detectors to
recognize features on short timescales (thereby dealing with local temporal variations) with

Larson et al. Page 7

J Neurosci. Author manuscript; available in PMC 2011 May 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



a more temporally flexible sequence detection circuit (possibly another chain) may enable
detection of globally and locally time-warped inputs.

The chain model proposed here shares some similarity to a liquid state machine (LSM)
recognition network (Maass et al., 2002) in that it uses a “pool” of neurons to convert
temporal spiking patterns into a distributed spatial pattern of neural activity states, and
performs parallel computations on these states to recognize spiking inputs. However, the
LSM and the chain model use different mechanisms for both encoding previous states and
reading out patterns from those states (Buonomano and Maass, 2009). In the LSM, a
randomly connected pool of neurons implicitly encodes previous states, and readout neurons
use linear fitting on those unknown states to achieve desired outputs. In our model, on the
other hand, neural states in the pool (the chain) form a delay line-like structure to explicitly
encode previous states, and the readout mechanism (the song detector) training utilizes a
task-specific STDP-based learning paradigm utilizing this organization. This mode of
transforming a temporal representation to a spatial one also differentiates our model from a
previous model (Jin, 2004), which uses a synaptically coupled chain of neurons to recognize
a multiple-input sequence by having the chain gate the propagation of activity based on how
multiple sensory input neurons each activate independent chain neurons.

While previous sound recognition models have used inputs from artificial or natural front-
ends that signal onsets and offsets (Gollisch, 2008; Gutig and Sompolinsky, 2009) or letter
detection events (Tank and Hopfield, 1987), our model operates on real spike trains from an
animal model of auditory cortex. This recognition model recognizes learned sounds using
representations of those sounds generated by the brain’s auditory processing mechanisms. In
addition, this model uses input from only a single sensory neuron to achieve good
performance, suggesting that combining across multiple detectors that each used
independent sensory neurons as input would yield even higher performance levels. This
model also uses a simple spike timing dependent plasticity learning rule (Abbott and Nelson,
2000) to teach the chain network the appropriate chain-to-detector weights, suggesting a
relatively simple and plausible biological implementation.

Generality and Predictions
This model can in principle be trained to recognize any sufficiently reliable sequence of
spikes, including those outside the auditory system. In audition or other sensory modalities,
the model will better recognize inputs that have higher spike timing precision, reliability,
and sparseness. Also, as the model requires a reasonable number of neurons to operate and
works with a simple learning scheme, this model could be implemented in hardware for
artificial systems use.

In vivo, this model predicts a sequential, temporally sparse activation of a group of neurons
in response to sound, reminiscent of the sequential activity observed experimentally in
songbird nucleus HVC (formerly known as high vocal center) during singing (Hahnloser et
al., 2002) or in rat auditory cortex in vitro (Buonomano, 2003). The recognition mechanism
requires that spiking patterns be passed along chain neurons with minimal degradation,
which could be achieved in a real system using more robust transmission methods such as
bursting propagation (Jin et al., 2007), and might not be required for use in systems with
reduced spike timing precision. The particular implementation of the model explored here
requires the use of a symmetric learning rule (not unlike that observed in rat barrel cortex
[Egger et al., 1999] or hippocampus [Woodin et al., 2003]) and short membrane and
synaptic time constants; it is currently unclear whether or not these exist in field L or
auditory cortex. Other implementations of this circuit could also make use of longer synaptic
and membrane time constants at the cost of timing precision, which might be beneficial for
circuit inputs with less precise timing or reliability than field L neurons. In the zebra finch
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auditory system in particular, this type of network could appear in auditory areas
downstream of field L, such as caudal mesopallium (CM). To recognize this type of system,
a depolarizing input to the detector unit followed by a set of input spikes to the chain would
cause the network to play back the learned sequence in reverse, a phenomenon observed in
hippocampus (Foster and Wilson, 2006). This type of spike train playback could be useful in
a system, as it could facilitate subsequent learning of subpatterns, memory consolidation
during sleep, or recall of spiking activity for other uses.
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FIG. 1.
The spike pattern recognition model uses time-varying properties of the neural responses to
recognize spiking patterns, and consists of a linear chain of neurons. Sensory input (here
from field L) feeds into one end of the chain, propagating along the chain using synaptic
delays, turning the temporal spiking pattern into a spatial activation of chain neurons. A:
Bird song (spectrogram) elicits auditory responses (spike rasters), leading to excitatory (red)
and inhibitory (blue) synapses from 298 sequentially-connected chained neurons (small
circles) that each connect to a detector (D1). The spectrogram shows the power (color, red:
high power, blue: low power) in different frequency bands (y-axis) as a function of time (x-
axis), while the rasters show one field L neuron’s responses to 100 repeated presentations
(y-axis) of the above stimulus, with each tick mark representing an elicited action potential.
B: When the chain recognition circuit (with four detectors D1–D4 shown) is fed input from
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the field L neuron in response to the concatenation of four different songs (spectrograms),
each detector fires only at the end of the correct trained song (D5–D20 not shown).
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FIG. 2.
The network learns synaptic weights through an STDP-based learning rule. A: The learning
rule determines how synaptic weights change based on the relative time between presynaptic
(chain neuron) and postsynaptic (detector neuron) spikes (x-axis). Closely-timed spikes
cause excitatory synapse strengthening (green) through long term potentiation (LTP), while
less closely-timed spikes cause synapse weakening (orange) through long term depression
(LTD). The opposite rule occurs for inhibitory synapses. B: The probability of time-to-last
spike (scaled to have unity height) given a Poisson input to the chain. C: The vertical offset
for the learning rule, which determines the relative levels of potentiation and depression, is
set such that the ratio of positive and negative areas under the product of the learning curve
(A) and the timing probability (B) is equal to 0.6 to keep learning stable. D: Chain-to-
detector synaptic weights (red=excitatory, blue=inhibitory) change as learning progresses
for the example site from Fig. 1, and the performance of the chain recognition network (E,
recording sites in gray lines) plateaus after approximately 30 learning iterations.
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FIG. 3.
The network performs well for different durations, and performs better on more reliable and
sparser inputs. A: Model performance (%) versus stimulus duration trained (each recording
in gray, mean across sites in black). B–C: There was a strong relationship between input
spike train reliability and chain recognition model performance (B; R = 0.514, p = 0.005,
linear fit in dashed black), and between sparseness and performance (C; R = 0.639, p <
0.001, linear fit in dashed black). D: Normalized model recognition error (y axis; 0% is
baseline performance, −100% is no songs recognized correctly) for each site (in light gray;
mean in black) increased with increasing percent of input spike train corruption, both for
shuffling spike times (left) and deleting spikes (right) for different amounts of time (x axis).
The average syllable duration for a zebra finch song (94.5 ms) is shown in dashed black.
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FIG. 4.
The chain recognition network can faithfully reproduce learned spike trains in reverse. A:
Three example sites (at the 75th, 50th, and 25th percentiles of recognition performance of
76%, 51%, and 36% for sites 1, 2, and 3) with 50 original data rasters (top) and 50 network-
based replay rasters (bottom). Replay spike trains come out of the network backward, and
are have been time-reversed here to align with the original data. B–E: The sparseness,
reliability, van Rossum-based discrimination performance, and firing rate for data-to-data
(DD), data-to-replay (DR), and replay-to-replay (RR) comparisons are shown (each unit in
light gray, mean plus standard error on bars), suggesting that the replay spike trains are
similar to the original data.
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