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Abstract

Epidemiological studies of zoonotic influenza and other infectious diseases often rely upon analysis
of levels of antibody titer. In most of these studies the antibody titer data are dichotomized based on
a chosen cut-point and analyzed with traditional binary logistic regression. However, cut-points are
often arbitrary, particularly those selected for rare diseases or for infections for which serologic assays
are imperfect. Alternatively, the data can be left in the original form, as ordinal levels of antibody
titer, and analyzed using the proportional odds model. We show why this approach yields superior
power to detect risk factors. Additionally, we illustrate the advantages of using the proportional odds
model with the analyses of zoonotic influenza antibody titer data.
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Introduction

Antibody titer is often an important diagnostic tool in epidemiologically assessing infections,
especially in retrospective and prospective studies where infection may be sub-clinical. Such
is the case for epidemiological studies of influenza infection where laboratory methods such
as microneutralization and hemagglutination inhibition are used [1]. Although the
concentration of antibodies in sera is actually continuous, the use of some methods based on
titers often produces data that are categorized into ordinal levels. For example, if the antibody
concentration is so low that antibodies cannot be detected at a dilution of 1:10, then the
concentration is recorded as “<1:10”. If the antibody is detected at a dilution of 1:10 but not
at a dilution of 1:20, then the concentration is recorded as “1:10”. Thus, data are recorded in a
sequence of titer categories (e.g. <1:10; 1:10; 1:20; 1:40, etc.), composing an ordinal response.

Often in examining titer data, a cut-point is selected to dichotomize the response into a simple
classification of disease vs. non-disease. In outbreak situations, cut-points are useful in
estimating the number of cases or in searching for risk factors for infection. However, cut-
points are often arbitrary, particularly those selected for rare diseases or for infections for which
serologic assays are imperfect. For example, considering serologic testing for a HIN1 avian
influenza virus, antibody detection may be influenced by a subtle mismatch in wild vs. assay
virus, cofounded by previous exposure to a human H1N1 virus or vaccine, or masked by some
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inhibition of immune response. For this reason, some scientists conduct risk factor analyses
by fitting logistic regression models based on several different cut-points [2]. Although this
type of sensitivity analysis has some merit, it has the disadvantage of providing several different
answers which may be difficult to reconcile if they are inconsistent with each other. In addition,
for disease such as avian influenza in humans, where it is difficult to identify symptomatic
cases, itis hard to verify classification accuracy perfomed with any optimal cut-point technique,
with available methods such as ROC curve [3]. This paper illustrates how the proportional
odds model can provide a single answer that summarizes the information from analyses based
on several possible cut-points, and that this modeling approach has advantages over using
logistic regression models that use only one cut-point.

The proportional odds model

The proportional odds model is a type of cumulative model that enables logistic regression to
be generalized to ordinal outcomes. It is similar to the concept proposed by Aichinson and
Silvey in 1957, developed and popularized by Walker and Duncan in 1967 and by McCullagh
in 1980 [4-6]. The motivation of the models is the existence of an underlying continuous and
perhaps unobserved random variable [6].

Consider a situation where the response Y is binary (0 and 1). The odds of disease, Pr(Y=1)/
Pr(Y=0) can be related to a linear function of a predictor variable X through the inverse log
function, i.e.,

Pr(Y=1) _ ,ipx
Pr(Y=0)

where o represents the intercept and 3 the slope.

If data are ordinal with K+1 levels, then Y can take on values 0, 1, 2,...,K. For k=1,2,...,K,
the odds of Y being at least equal to k (considered to be “cumulative odds”), can be related to
a predictor X in similar fashion as with binary data, namely,

Pr(Y > k)
Pr(Y<k)

ap+px

The “proportional odds” assumption is that all By are equal to a common B, which means that
the odds of being above any cut-point is the same for all cut-points. In other words, instead of
having several different odds ratio for a predictor such as exposure status, a single odds ratio
is calculated. Figure 1 illustrates this constraint, showing the perfect situation where equal odds
ratios can be found at any cut-point, and there is no violation of the proportional odds
assumption.

The proportional odds model illustrated above can be generalized to several predictors (x1, X2,
...)., for example assess the effect of exposure while adjusting for cofounders, namely,

Pr(Y Z k) :e(YA+ﬂ1_x'1+ﬁl,\‘l+...
Pr(Y<k) '

In standard practice, the null hypothesis of equal slopes (proportional odds) is tested with the
score test for proportional odds. This test is provided by most of the standard statistical
packages. A statistically non-significant test is considered sufficient evidence that the

Influenza Other Respi Viruses. Author manuscript; available in PMC 2008 January 4.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Capuano et al.

Page 3

proportional odds assumption was not violated. Because this test is sensitive to sample size
and may be significant in cases with minimum deviation from proportionality, some authors
recommend plotting the log odds generated by each cut-point as a complementary analysis for
proportionality of odds [7].

An illustration with avian and swine influenza

We used existing influenza serological titer data to compare the binary logistic model and the
proportional odds models. Titer results were reported as the reciprocal of the highest dilution
of serum that inhibited virus-induced hemagglutination of red blood cells. Data included
antibodies against: swine HIN1 and H1N2 viruses among 788 agricultural workers (687
exposed and 87 non-exposed); avian H1 virus among 73 avian-exposed veterinarians and 94
non-avian-exposed controls; and swine HIN1 viruses among 49 swine confinement workers
and 78 non-swine-exposed controls [8-10].

For the binary logistic model, we adopted the antibody titers of 1:40 as cut-point for swine
influenza viruses [8] and 1:10 for avian influenza viruses [1], and compute unadjusted odds
ratios, as well as odds ratios adjusted for gender alone, and for gender and age. When the
standard algorithm for fitting this method was unsuccessful (which happens, for example, when
all the exposed subjects have a positive response or when all the non-exposed are negative), a
computer-intensive algorithm known as the exact method was used.

We used SAS (SAS version 9.1, Cary, NC) for these statistical analyses. The binary logistic
model and the proportional odds model were both fit using Proc Logistic. This procedure
employed the standard computing algorithm to fit the model or the exact method, as
necessitated by the data. A number of other statistical packages can also be used to fit these
models, although not all of them can employ the exact method.

Comparison of theoretical power

We used Whitehead’s formulae for calculations of sample size for the proportional odds model
[11]. After rearrangements the power can be written as:

1 - B=a (|log(6) VV | - probit(l - a/2)),

where @ is the standardized normal cumulative distribution function, 0 is the expected odds
ratio, a is the significance and V is the Fisher’s information.

The proportional odds Fisher’s information, Vp, is defined by:

K 3

NeNehn n;\°
iz || 2l |
. 3(n+1)2( n ]

i=0

where ng is the exposed group sample, n. is the non-exposed group sample, n is the total sample
and n; /n is the hypothetical anticipated proportion of the total sample expected to be in the
level “i” of the ordinal outcome (where i =0 to K).

Considering the binary logistic as a special case of the proportional odds for a number outcome
with only 2 levels (j=0 or 1), we can write the Fisher’s information of the binary logistic V
as:
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When an ordinal data set is dichotomized at a cut-point “L”, these two levels formed are the
sum of the sample in the level equal or above L and the level lower then L. In this case we can
also represent the binary logistic V}, as:

e - (5] o2 )

To demonstrate that the power of the proportional odds model is greater then the binary logistic,
we have to show that:

@ (|10g(8) /V,,| — probit(1 — /2)) >® (|1og(6) V| - probit(1 — @/2)).

Considering the significance o to be fixed, and the expected odds ratio 6 to be common between
models, we can simplify the inequality to:

1N L\ -l L
2 : 2 : 3 2 : 3
n;| + n;| > n;+ n;
i=1 i=1

i=1 i=l

Hence, the power for the proportional odds model will always be greater than the power of the
binary logistic.

To illustrate we performed power calculations under a variety of hypothetical scenarios:
different odds ratios, number of serological titer levels, sample sizes (at an exposed/non-expose
rate of 1:4) and hypothetical anticipated proportions of subjects per serological titer response.
As a relative measure of the performance of these models, we also calculated the relative
asymptotic efficiency [12], defined as the limit of the sample size ratio required for two methods
to reach the same power.

The calculations were the “hmisc” procedure [13] of R software (R: A Language and
Environment for Statistical Computing, Vienna, Austria). Additionally, a SAS macro for
computing the power for the proportional odds model is provided (Table 1).

In some datasets, the sparseness of the sample in some titer categories led us to group adjacent
categories together. This resulted in acceptable (non-significant) tests of the proportional odds
assumption. The proportional odds model revealed equal or greater evidence of risk factors
and outcome associations compared to the binary logistic model (Table 2). This increased
evidence is seen in higher Chi-square values, lower p-values, and narrower confidence
intervals. The odds ratios were very compatible between models.

In accordance with the mathematical demonstration, the power calculations illustrate the
superiority of the proportional odds model over the binary logistic model. For the same power,
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the proportional odds requires a smaller sample compared to binary logistic model (Fig. 2-A).
A loss of power is noticed when response categories are collapsed (Fig. 2-B). Changes in
hypothetical anticipated proportions of subjects per serological titer response and adoption of
different cut-points were responsible for most of the variation in efficiency (data not shown).
The highest relative efficiency of the proportional odds model compared to the binary logistic
model was obtained when differences between risk groups are hidden when data are
dichotomized.

Discussion

In previous studies we successfully used the proportional odds model, which allowed us,
sometimes with a small sample size, to determine risk factors for zoonotic influenza [8,9].
However, our search of the medical literature indicates that the use of the proportional odds
model is infrequent. The loss of information observed when ordinal data were grouped into
two categories (dichotomization), has been previously reported [7]. Recently in other fields,
the superiority of the proportional odds model over the binary logistic model have being
explored analytically, yet without comparisons of power [14]. We provide infectious disease
epidemiologists with a more definitive argument.

Our data show that, when the proportional odds assumption is met, the odds ratio calculated
with proportional odds will be within the confidence interval of the binary logistic odds ratio.
With this observation we raise the question: Should we ever dichotomize the ordinal data?
Perhaps we should do so when there is strong data supporting that a specific cut-point provides
definitive evidence of protection against infection (e.g. vaccine titer data). Such might justify
the lost of power.

The proportional odds model provides an intermediate approach between the cut-point
approach and identification of the actual underlying continuous distribution of serological
responses. The interpretation of the proportional odds model is easy because it is similar to the
binary logistic, and is unaffected by the direction chosen to model (higher to lower titer vs.
lower to higher titer) [15]. However, because of the proportional odds assumption constraint,
this model is not appropriate for all data. Brender and Groven demonstrated that the use of
POM can lead to invalid results if the proportional odds assumption is violated [16]. When the
proportional odds score test is statistically significant with graphical evidence of non-
proportionality, the investigator may choose to fit a partial proportional odds model. This
revised model loosens the constraint that all variables must have proportional odds.

In summary, these analyses illustrate the advantages of examining the entire spectrum of
serological response in an epidemiological study by using the proportional odds method.
Because of its superior power, the proportional odds model may identify risk factors that would
be otherwise remain undetected by the more often used dichotomization of serologic data. The
proportional odds model allows epidemiologists to use smaller sample sizes, which ultimately
offers a more economical analysis.
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