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Abstract
Depressive symptoms often coexist with memory deficits in older adults and also are associated
with incident cognitive decline in the elderly. However, little is known about the neural correlates
of the association between depressive symptoms and memory deficits in nondemented elderly.
Fifteen amnestic mild cognitive impairment (aMCI) and 20 cognitively normal (CN) subjects
completed resting-state functional magnetic resonance imaging (R-fMRI) scans. Multiple linear
regression analysis was performed to test the main effects of the Geriatric Depression Scale (GDS)
and Rey Auditory Verbal Learning Test delayed recall (RAVLT-DR) scores, and their interaction
on the intrinsic amygdala functional connectivity (AFC) network activity. Severer depressive
symptoms and memory deficits were found in the aMCI group than in the CN group. Partial
correlation analysis identified that the RAVLT-DR scores were significantly correlated with the
AFC network in the bilateral dorsolateral prefrontal cortex (DLPFC), dorsomedial and anterior
prefrontal cortex, posterior cingulate cortex (PCC), middle occipital gyrus, right inferior parietal
cortex, and left middle temporal gyrus (MTG). The GDS scores were positively correlated with
the AFC network in the bilateral PCC and MTG, and left DLPFC. The interactive effects of the
GDS and RAVLT-DR scores on the AFC network were seen in the bilateral PCC, MTG, and left
DLPFC. These findings not only supported that there were interactive neural links between
depressive symptoms and memory functions in nondemented elderly at the system level, but also
demonstrated that R-fMRI has advantages in investigating the interactive nature of different neural
networks involved in complex functions, such as emotion and cognition.
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Introduction
Several clinical and epidemiologic studies have demonstrated that depressive symptoms and
memory deficits often coexist in late life (Alexopoulos 2003; Schweitzer, et al. 2002;
Steffens, et al. 2006; Wilson, et al. 2002). It has been reported that depressive symptoms are
highly prevalent in subjects with amnestic mild cognitive impairment (aMCI), and the
presence of mood symptoms increases the risk of progression from aMCI to Alzheimer’s
disease (AD) (Apostolova and Cummings 2008; Lu, et al. 2009; Modrego and Ferrandez
2004; Rozzini, et al. 2008; Steffens, et al. 2006). Similarly, the presence of cognitive deficits
in patients with late-life depression is associated with future incidence of AD (Alexopoulos,
et al. 1993; Devanand, et al. 1996). The co-occurrence of depressive symptoms and memory
deficits increases the risk of subsequent cognitive decline and incident AD in nondemented
older adults. Recently, advances in the development and application of imaging approaches
and network analyses have made it possible to investigate the underlying mechanisms of the
complex relationship between depressive symptoms and memory deficits, and to study how
these two behaviors are linked or interacting at the neural network level.

Previous studies have employed task-driven functional magnetic resonance imaging (fMRI)
experiments to investigate the functional localizations related to depression and cognition
(Depue, et al. 2007; Elliott, et al. 2002; Koechlin and Hyafil 2007; MacDonald, et al. 2000;
Siegle, et al. 2007). These studies have identified the task-dependent brain network
activation, but provide limited information as to how these regions are functionally
interconnected to one another (Dosenbach, et al. 2008). Recently, resting-state functional
MRI (R-fMRI), as a novel technique, has been increasingly applied to study activity in the
context of the neural networks, in healthy individuals, as well as patients (Biswal, et al.
1995; Etkin, et al. 2009; Fox and Raichle 2007; Greicius, et al. 2007; Harrison, et al. 2009;
He, et al. 2007; Li, et al. 2002; Sheline, et al. 2009). Functional connectivity measures
temporal correlations between the spontaneous blood oxygenation level-dependent (BOLD)
signals in different brain regions, while subjects are at rest. Therefore, R-fMRI could
provide new information into how structurally segregated and functionally specialized brain
networks are interconnected with network analysis methods.

In general, conceptual perspectives of the relationships between anatomical sites, neural
networks, and behaviors in studying cognition and emotion have been proposed (Pessoa
2008). Brain areas are connected to form networks and can be analyzed by graph theory
(Bullmore and Sporns 2009). The main hypothesis of this model is that multiple neural
network interactions underlie behaviors, and each behavior has both affective and cognitive
components. In the present study, the R-fMRI method will be employed as a powerful
approach to examine the possible neural substrates responsible for linking depressive
symptoms and cognitive deficits in the nondemented elderly population.

Specifically, it has been demonstrated that the amygdala, as a neural hub, is central to the
cognitive-emotional interactions, and is critical for regulating and integrating information
between brain regions that are involved in memory and emotional processing, as extensively
reviewed (Pessoa 2008; Phelps 2006). In addition, studies in patients with mild AD showed
amygdala atrophy that is at least as severe as the volume loss in the hippocampus (Basso, et
al. 2006a; Basso, et al. 2006b). Also, structural and functional abnormalities in the amygdala
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are seen in patients with major depression (Drevets 2003; Hamilton, et al. 2008; Peluso, et
al. 2009; Siegle, et al. 2007) and aMCI (Luckhaus, et al. 2010; Qiu, et al. 2009; Rosenbaum,
et al. 2010; Striepens, et al. 2010). Recent fMRI activation studies have demonstrated that
depression is associated with sustained and enhanced amygdala activation to emotional task
performance (Siegle, et al. 2007) and to unattended fear-related stimuli (Fales, et al. 2008).
These studies strongly support our justification to use the amygdala as a seed region in this
R-fMRI study. We hypothesized that investigation of the brain network activity centered on
the amygdala would provide a better understanding of the relationship between depressive
symptoms and memory deficits.

The specific objectives of this study, therefore, were to identify the neural substrates that
link depressive symptoms and memory impairment on the intrinsic amygdala functional
connectivity (AFC) network by using the R-fMRI approach, and enrolling nondemented
elderly study subjects with aMCI, in addition to cognitively normal (CN) subjects.

Methods and Materials
Participants

Sixteen aMCI and 20 age-matched CN subjects were recruited through the Medical College
of Wisconsin Memory Disorders Clinic and local advertising. Written informed consent was
obtained from all subjects, and study protocols were approved in accordance with the
Medical College of Wisconsin Institutional Review Board. One aMCI subject was excluded
from the analysis because of excessive motion artifact (i.e. exceeding more than 1-mm
translational movement or more than 1° rotational movement).

All aMCI and CN subjects were in good general health with adequate visual and auditory
acuity to allow cognitive testing, and had a reliable informant. All subjects underwent a
battery of neuropsychological tests. aMCI study subjects were diagnosed according to the
Petersen criteria (Petersen 2004), as described previously (Xu, et al. 2007). CN study
subjects were required to have a Clinical Dementia Rating global score of 0, a Mini-Mental
State Examination (MMSE) score 24 and a Yesavage 30-item Geriatric Depression Scale
(GDS) score of < 10. Exclusion criteria were: history of neurological and psychiatric
disease, seizures, head injury, stroke or transient ischemic attack; drug or alcohol abuse;
major psychiatric diagnoses, including schizophrenia and other psychotic disorders.

All study subjects underwent a physical examination, according to their medical records. In
addition, they had a complete neurological examination, which was performed by two
neurologists with expertise in dementia, and consensus diagnoses were reached. In the aMCI
group, four study subjects had a GDS score >10. These subjects did not endorse a history of
a clinical diagnosis of depression or treatment prior to the aMCI diagnosis. We performed
the Grubbs test (Grubbs 1969) to determine that the four aMCI subjects who had GDS
scores greater than 10 were not outliers, and included them in the final analyses.
Additionally, one aMCI subject with a normal GDS score was taking bupropion and
donepezil, but no medicine was administered 48 hours prior to the scan.

MRI Acquisition
Imaging was performed using a whole-body 3T Signa GE scanner (Waukesha, Wisconsin)
with a standard transmits-receive head coil. During the resting-state acquisitions, no specific
cognitive tasks were performed and the study participants were instructed to close their eyes,
and relax, and the ears were occluded. Sagittal R-fMRI datasets of the whole brain were
obtained in six minutes with a single-shot gradient echo-echo planar imaging (EPI) pulse
sequence. The R-fMRI imaging parameters were: TE of 25 ms, TR of 2 s, flip angle of 90°;
36 slices were obtained; slice thickness was 4 mm with a matrix size of 64×64 and field of
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view of 24×24 cm. High-resolution spoiled gradient-recalled echo (SPGR) 3D axial images
were acquired for anatomical reference. The parameters were: TE/TR/TI of 4/10/450 ms,
flip angle of 12°, number of slices of 144, slice thickness of 1 mm, matrix size of 256×192.

Data Analysis
Data Preprocessing—R-fMRI data analysis was carried out by using AFNI software
(http://afni.nimh.nih.gov/afni) and MATLAB programs (The MathWorks, Inc., Natick,
Massachusetts), as summarized in Figure 1. In brief, motion correction was performed by
volume registration on the resting-state fMRI data (3dvolreg); then, detrending was carried
out to remove Legendre polynomials (3dDetrend). Possible contamination from the signals
in white matter, cerebrospinal fluid, the six-motion vectors, physical noise (cardiac and
respiratory signal) and global signal were regressed out from each voxel time series. A band-
pass filter was applied to keep only low-frequency fluctuations within the frequency range
of 0.015 Hz and 0.1.

Manually Traced Amygdala Mask as a Seed Region in the R-fMRI Study—The
left and right amygdala masks were manually traced on T1-weighted 3D SPGR images,
according to literature (Honeycutt, et al. 1998; Roy, et al. 2009). The most posterior
boundary of the amygdala adjoins the anterior alveus of the hippocampus and the temporal
horn of the lateral ventricle in the sagittal plane. The anterior boundary follows the natural
boundaries of the gray matter in the anterior direction in the axial plane. The superior and
inferior boundaries were coronally defined as the ventral horn of the subarachnoid space and
the most dorsal finger of the white-matter tract under the horn of the subarachnoid space,
respectively. The lateral and the mesial boundaries were coronally defined at 2 mm from the
surrounding white matter, and from the subarachnoid space, respectively. Operationally, a
mouse-controlled cursor traced relevant coronal, sagittal, and axial slices. Boundaries were
displayed in real time on these orthogonal MRI slices with AFNI software.

Participant-level Analysis for the AFC Network Pattern—The traced amygadala
masks from high-resolution SPGR images were coregistered to EPI images. Because the
spatial resolutions in SPGR (1.0-mm) and EPI images (3.75 mm) were different, only those
voxels in EPI images that contained at least 70% of amygdala voxels masked on the 3D
SPGR images were included in the voxel time course analysis (Xu, et al. 2008). These voxel
time courses within the amygdala masks were averaged as the seed time course. Then, the
seed time course was correlated to the time courses of the whole-brain voxels using the
Pearson cross-correlation. The Pearson correlation coefficients (r) were subjected to a Fisher
Transform Analysis, which yielded variants of approximately normal distribution [m = 0.5
ln(1+r)/(1−r)](Zar 1996). These voxelwise m values were spatially transformed to the
Talairach template coordinates (adwarp), resampled to 2-mm isotropic voxels, and smoothed
with a Gaussian kernel (6-mm Full Width Half Maximum) using AFNI software (3dmerge),
obtaining an AFC map for each individual.

Group-Level Analysis for the AFC Network Pattern—Individual AFC maps were
grouped together for the CN and aMCI groups, respectively. The AFC map for each group
was generated by applying a voxelwise t-test within a group of subjects against a null
hypothesis of no connectivity (corrected for multiple comparison with AlphaSim, P<0.01,
cluster size of 1,072 mm3). For obtaining the difference in connectivity strength between the
aMCI group and the CN group in the AFC maps, a two-sample t-test was used (P < 0.05,
cluster size > 312 mm3, false discover rate (FDR) corrected). All the results were projected
on the surface brain template (Van Essen 2005).
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Correlation of Behavioral Scores with the AFC Network Activity—To investigate
the neural substrates underlying the functions of the GDS and RAVLT delayed recall
(RAVLT-DR) scores on the AFC network, a multivariate linear regression analysis was
employed (3dRegAna, AFNI) as below:

[1]

Where mi is the m value of ith voxel across group subjects, β0 is the intercept of straight line
fitting in the model. β1, β2, and β3 are the effects of GDS scores, RAVLT-DR scores, and
their interaction on the functional connectivity strength of ith voxel within AFC network,
respectively. β4 and β5 are the effects of group subjects and ages in the CN and aMCI
groups, as covariance in the above linear regression model. The voxelwise multivariate
linear regression map was generated after multiple comparison analysis (AlphaSim, AFNI,
α = 0.05, P<0.05 and cluster size > 4,048 mm3) to identify the correlation maps of RAVLT
and GDS scores, as well as their interactions.

Results
Subject Characterization and Behavioral Performance

Fifteen aMCI study subjects (77.9 ± 6.0 years of age, including six females) and 20 CN
(75.0 ± 6.2 years of age, including 9 females) were included in the final data analysis.
Demographic information and clinical evaluations are shown in Table I. No significant
differences in age or gender were noted between aMCI and CN groups. In the aMCI group,
RAVLT-DR scores were significantly lower (F(1,33) = 15.372, P < 0.001), and GDS scores
were significantly higher (F(1,33) = 7.343, P < 0.01), relative to the CN group. In addition,
GDS scores were inversely correlated with RAVLT-DR scores (r = −0.37, P < 0.028), as
shown in Table I and Figure 2.

Altered Intrinsic AFC Network Connectivity in the aMCI Subjects
The resting-state intrinsic AFC network pattern in the CN and aMCI groups included the
frontal, parietal, temporal lobes and subcortical regions, as shown in Figures 3A and 3B. In a
two-group comparison, altered resting-state intrinsic AFC network connectivity was
observed in the aMCI group compared to the CN group, as shown in Figure 3C. Brain
regions in the AFC network were projected on the surface brain template. Regions with
significantly enhanced connectivity in the AFC network included the right dorsolateral
prefrontal cortex (DLPFC), inferior frontal gyrus (IFG), superior marginal gyrus (SMG)/
inferior parietal cortex (IPC), left insula and precuneus, while significantly decreased
connectivity in the AFC network was seen in left IFG, inferior temporal cortex (ITC),
cuneus, and medial prefrontal gyrus (MeFG). Table II lists the size, location, and the highest
z-scores of each cluster with differential connectivity between aMCI and CN groups.

The Effects of RAVLT-DR and GDS Scores on the AFC Network
Voxelwise multivariate regression analysis identified the main effect of RAVLT-DR and
GDS scores and their interactions on the AFC network activity. The main effect of the
RAVLT-DR scores on the AFC network activity was seen in regions that included the
bilateral DLPFC, dorsomedial prefrontal cortex (DMPFC), anterior prefrontal cortex
(aPFC), PCC, and middle occipital gyrus (MOG), right IPC, and left MTG, as shown in
Figure 4 and Table III; the main effect of GDS scores on the AFC network activity was in
the regions of the bilateral PCC and MTG, and left DLPFC, as shown in Figure 5 and Table
III. The interactive effects of the RAVLT-DR and GDS scores on the AFC network activity
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were seen in the bilateral PCC and MTG, and left DLPFC, as described in Figure 6 and
Table III.

The aMCI and control groups demonstrated no significant volume difference in the area of
the amygdala. Also, there was no correlation between the AFC network strength and the
amygdala volume across all subjects (P> 0.64). In addition, a 48-h interval may not be
sufficient time for buproprion and donepezil to be “washed out.” We reanalyzed the entire
dataset without the aMCI subject who was taking buproprion and donepezil; results did not
significantly differ.

Discussion
Intrinsic AFC Network Differences between the aMCI and CN Subjects

It is well established that the relationships between the amygdala and the prefrontal cortex
and parietal cortex are functionally involved in decision making, emotion, and memory
processing (Andersen and Cui 2009; Etkin, et al. 2009; Spielberg, et al. 2008). A meta-
analysis has demonstrated that the amygdala is a critical node in the multiple neural
networks involved in emotional-cognitive integration among nonhuman and human primates
(Robinson, et al. 2010). Previous anatomical studies in nonhuman primates have
demonstrated that a wide range of cortical regions, including the medial frontal gyrus, IFG,
insula, temporal lobe and subcortical regions (e.g. caudate) have reciprocal connections with
the amygdala (Etkin, et al. 2009; Kita and Kitai 1990; Mufson, et al. 1981; Packard, et al.
1994). A recent R-fMRI study among healthy adults showed delineation of the amygdala
functional connectivity pattern with brain regions located in the frontal-parietal system,
limbic system and subcortical region (Roy, et al. 2009). In the present R-fMRI study, the
data regarding the brain regions involved in the amygdala network in CN subjects are
consistent with previous findings. Our new findings in the current study are that the AFC
network connectivity is significantly altered in the frontal, occipital, and temporal lobes in
aMCI subjects. It is known that the connectivity between amygdala-MeFG and amygdala-
IFG regions in normal subjects is balanced to reflect the emotional regulation through
cognitive control (Etkin, et al. 2009). The abnormal connectivity in these regions among
aMCI participants may result in reduced cognitive and emotional performance. In the
present study, we also found decreased connectivity of the amygdala in the occipital and
temporal lobe. Such disrupted connectivity in the aMCI subjects could alter the semantic-
memory network, as recently described (Binder, et al. 2009; Etkin, et al. 2009).

Although the present study involved no explicit tasks or stimuli, the altered connectivity in
the intrinsic AFC network in the aMCI subjects may reflect the affective elaboration on
persistent sad feelings or negative topics. This notion is consistent with previous findings
demonstrating that emotional stimuli alter amygdala activity (Fales, et al. 2008; Siegle, et al.
2002; Siegle, et al. 2007).

Relationship of the AFC Network Activity and Memory Deficits
A factorial analysis was performed with the RAVLT-DR scores. Figure 4 shows that the
strength of the intrinsic AFC network was positively correlated with memory performance
in critical brain regions, which include the frontal-parietal system (bilateral aPFC, left
DLPFC), midline core structures (PCC, DMPFC) in the default mode network (Buckner, et
al. 2008; Gusnard and Raichle 2001), and the temporal-occipital system (MTG, MOG)
(Buckner, et al. 2009; Hagmann, et al. 2008; Tambini, et al. 2010); while negatively
correlated regions were found in the right DLPFC and IPC. These regions, which are
considered hubs, are shown to have widespread brain connections and are essential for
diverse informational processing, which are especially needed for emotional and memory
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formation. More importantly, these regions within the AFC network are also primary sites
affected the earliest by β-Amyloid proteins accumulation (Buckner, et al. 2009; Jack, et al.
2008; Small, et al. 2006). Moreover, the medial temporal lobe structures, including the
amygdala, are more susceptible to the neurotoxic effects of the amyloid (Frisoni, et al.
2009). Taken together, these findings reveal a functional specialization within the amygdala
network for memory performance, and suggest that the amygdala network is crucial for
memory processing. Therefore, it is plausible that the distinctive change in the AFC network
observed in this study is related to memory deficits.

Relationship of AFC Network Activity and Depressive Symptoms
A factorial analysis was also performed with GDS scores. Figure 5 shows that the AFC
strength was correlated with GDS scores in cortical structures, including the bilateral PCC
and MTG, and left DLPFC. These results are consistent with previous studies (Greicius, et
al. 2007; Kenny, et al. 2010; Sheline, et al. 2010; Siegle, et al. 2007; Stein, et al. 2007a;
Wang, et al. 2008; Zhou, et al. 2010). For example, task-dependent fMRI studies in
depressed patients have shown a reciprocal relationship between decreased activation in the
dorsal and ventral parts of the DLPFC and dorsal ACC regions, and increased activation in
the limbic/paralimbic areas, which include the amygdala, hippocampus, thalamus, and the
basal ganglia (Sheline, et al. 2010; Siegle, et al. 2007; Stein, et al. 2007b; Wang, et al.
2008). Strong amygdala network connectivity related to the DLPFC, IPC, fusiform gyrus,
insula and thalamus has been reported previously (Etkin, et al. 2009; Roy, et al. 2009).
Furthermore, elevated cerebral glucose metabolism is seen in geriatric depression,
specifically in the frontal and temporal lobe structures, and the posterior cortical structures,
which include the precuneus and IPC. Similar to our findings, the cortical hypermetabolism
was positively correlated to depressive symptom severity (Smith, et al. 2009a). These
studies suggest that the AFC network plays an important role in emotional processing,
especially in the presence of depressive symptoms.

Neural Basis of the Interactive Effects of Depressive Symptoms and Memory Deficits on
the AFC Network

In this study, the dual functions of the amygdala network are involved in memory deficits
and depressive symptoms, thereby strongly supporting a recent conceptual hypothesis that
complex cognitive and emotional behaviors have their neural bases in the dynamic coalition
of networks with distributed brain regions (Pessoa 2008). Furthermore, their interactive
neural substrates provide insight into the neurophysiological nature of the link between
depressive symptoms and memory deficits. These results suggest that depressive symptoms
and memory function are interactive, and mediated by altering the functional connectivity
among amygdala links with bilateral PCC and MTG, and left DLPFC (Baxter, et al. 2008).

It is important to note that these interactive regions are reported to be involved in the earliest
AD neuropathology (Buckner, et al. 2009; Jack, et al. 2008; Small, et al. 2006). It is
conceivable that AFC network alterations may be associated with the amyloid plaques
deposition. Through the amygdala network interaction, the emergence of depressive
symptoms and memory deficits in aMCI subjects could occur. To our knowledge, this is the
first demonstration that the amygdala network (especially the connections among the
amygdala and the bilateral PCC and MTG, and the left DLPFC) links the emotional state
(depressive symptoms) and cognitive dysfunction (memory deficits) in nondemented elderly
subjects.

In addition, previous neuroimaging studies have shown increased brain activation in aMCI
independent of depression (Bokde, et al. 2010; Bookheimer, et al. 2000; Grady, et al. 2003;
Ries, et al. 2006; Stark and Squire 2001). It is not clear if the altered connectivity is related
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to memory deficits or depressive symptoms. With the conjunction analysis we have
identified the factor effect maps for memory function (Figure 4) and depressive symptoms
(Figure 5). It is found that there were overlapping regions between Figure 3C and Figure 4
in the right DLPFC, IPC and IFG. The overlapping areas suggest that the increased
amygdala connectivity within these regions in MCI subjects were associated with memory
deficits independent of depression. Similarly, the overlapping region between Figure 3C and
Figure 5 occurred in the left MTG, suggesting that the decreased amygdala connectivity
with the left MTG was associated with depressive symptoms independent of memory
deficits. There were no overlapping regions between Figure 3C and Figure 6, suggesting that
the interactive regions between factors of memory function and depressive symptoms did
not have significant changes in amygdala connectivity. These findings suggest that the AFC
differences in these regions are implicated in the process of memory, depressive symptoms,
or their interaction, respectively.

The Relationship between Task-Driven FMRI and Resting-State FMRI
It would be useful to discuss what we know about the relationship between the two
modalities and their potential impact on the interpretation of the results of this study. In
general, while the neurophysiology underlying the connectivity patterns in “resting-state”
low-frequency oscillations remains to be elucidated, these connectivity patterns measured by
R-fMRI are posited to reflect intrinsic representations of functional systems commonly
implicated in task-driven fMRI studies. For example, resting correlations between brain
regions have been found to replicate the similar networks typically found in task-activation
studies (Fair, et al. 2007). Recently, it was demonstrated that the full repertoire of functional
networks utilized by the brain in action is continuously and dynamically “active” even when
at “rest.” (Smith, et al. 2009b). With R-fMRI, a remarkable degree of information can be
gleaned about the complex orchestration of brain activity across a broad array of cognitive
activities, and neurological and psychiatric disorders (Fox and Greicius 2010; Rosen and
Napadow 2011). Nevertheless, the direct relationship between resting-state functional
connectivity and the BOLD response induced by task performance remains unclear. Our
early study demonstrated that acute drug administration altered functional connectivity (Li,
et al. 2000), and cognitive tasks regulated the synchrony of the low-frequency oscillations in
memory networks (Xu, et al. 2006). Recent studies show that interindividual differences in
resting-state functional connectivity predict task-induced BOLD activity (Mennes, et al.
2010), and the resting-state fluctuation of amplitude can be employed to scale hemodynamic
responses during task performance (Kannurpatti, et al. 2010).

Specifically, previous studies using task-dependent fMRI have shown that amygdala activity
increases when depressed study participants respond to emotional tasks and DLPFC
reactivity decreases in response to cognitive tasks (Siegle, et al. 2007), suggesting an inverse
functional relationship between the amygdala and DLPFC structures. It is not known,
however, how the emotional task-driven increased amygdala activity is associated with
cognitive tasks, or the manner in which the cognitive task-driven decreased DLPFC activity
is associated with emotional tasks. By using the network connectivity approach, as
demonstrated in this R-fMRI study, the depressive symptoms and memory function were
interactive to have an inverse effect on the neural links.

Our preliminary study is not without limitations. First, brain activity during the data
acquisition is not controlled by a task or consistent behavioral state across subjects, as
extensively reviewed (Fox and Raichle 2007). Future studies may address and determine to
what extent variations of measurements should be used. In addition, given the complex
nature of co-occurring depressive symptoms and memory impairment, the clinical diagnostic
process should consider that depressive symptoms in patients with aMCI may be different
from those in depressed patients without aMCI. Similarly, memory deficits in aMCI patients
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with geriatric depression may be different from those without depressive symptoms. As
suggested, future studies should assess depression in the context of cognitive impairment,
and cognitive impairment in the context of depression. Finally, large-scale network analysis
methods that use large study subject populations should be used instead of small sample size
populations that focus on the AFC network.

Conclusion
In summary, using network-based resting-state functional connectivity analysis, we were
able to demonstrate an altered intrinsic AFC network in the aMCI subjects, and distinct
subcomponents of the amygdala network were found to be associated with depressive
symptoms and memory impairment in nondemented elderly subjects. The functional
connectivity of the amygdala-bilateral PCC, MTG, and left DLPFC regions was involved in
the interaction between mood symptoms and memory performance. Neural network analysis
provides new insight for investigating the complex association that links depressive
symptoms and subsequent cognitive decline in older adults.
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Figure 1. Overview of Data Process
Left: Data acquisition and preprocessing to obtain individual AFC network map. Right:
statistical analysis for group-level comparisons and linear regression analysis. CN,
cognitively normal; aMCI, amnestic mild cognitive impairment; SPGR, spoiled gradient-
recalled echo sequence; fMRI: functional magnetic resonance imaging; AFC, amygdala
functional connectivity; GDS: geriatric depression scale; RAVLT-DR: Rey auditory verbal
learning test delayed recall.
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Figure 2. Inverse Correlation between Depressive Symptoms and Memory Deficits
The results illustrated that RAVLT-DR scores were significantly lower (F(1,33) = 15.372, p
< 0.001), GDS scores were significantly higher (F(1,33) = 7.343, p < 0.01) in the aMCI
group compared to the CN group. In addition, GDS scores were inversely correlated with
RAVLT-DR scores (r = −0.37, p < 0.028). Red color for the RAVLT-DR scores, blue color
for the GDS scores, error bar is presented with standard error.
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Figure 3. Resting-state Amygdala Connectivity Network Pattern for A) CN Group, B) aMCI
Group, and C) Differential Amygdala Connectivity between These Two Groups
Results are projected on a surface template (Caret software; Van Essen, 2005). A) The
amygdala connectivity in the CN group was primarily in the bilateral medial temporal
lobule, right insula, parietal lobule and middle occipital gyrus; B) The amygdala
connectivity in the aMCI group was primarily in the bilateral medial temporal lobule,
parietal lobule, occipital lobule, frontal cortex and subcortical regions (both, corrected with
AlphaSim, P < 0.01). Bright color indicates positive correlation and blue color indicates
negative correlation; C) The altered amygdala connectivity was primarily bilateral frontal-
parietal-occipital system, as well as left insula and inferior temporal cortex in the aMCI
group compared to the CN group. Bright color indicates increased connectivity and blue
color indicates decreased connectivity. Color bar is presented with z score.
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Figure 4. Whole-Brain Analyses Reveal the Effects of Memory Performance on the Amygdala
Connectivity Network
Whole-brain, partial-correlation analyses were conducted between the AFC network
strength and RAVLT-DR scores after controlling the GDS scores, RAVLT-DR and GDS
score interaction, age and group factors as covariances of no interest. Results are projected
on a surface template and illustrate that the RAVLT-DR scores are positively correlated with
the strength of the distinct region of the AFC network, except for the right DLPFC and IPC.
Bright color indicates positive correlation and blue color indicates negative correlation.
Color bar was presented with z score. Abbreviations: L DLPFC, left dorsolateral prefrontal
cortex; L MTG, left middle temporal gyrus; L PCC, left posterior cingulate cortex; L
DMPFC, left dorsomedial prefrontal cortex; L MOG, left middle occipital gyrus; aPFC,
anterior prefrontal cortex; R DMPFC, right dorsomedial prefrontal cortex; R PCC, right
posterior cingulate cortex; R MOG, right middle occipital gyrus; R DLPFC, right
dorsolateral prefrontal cortex, R IPC, right inferior parietal cortex.

Xie et al. Page 17

Hum Brain Mapp. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Whole-Brain Analyses Reveal the Effects of Depressive Symptoms on the Amygdala
Connectivity Network
Whole-brain, partial correlation analyses were conducted between the AFC network strength
and GDS scores after controlling the RAVLT-DR scores, RAVLT-DR and GDS score
interaction, age and group factors as covariances of no interest. Results are projected on a
surface template. They illustrate that the GDS scores are positively correlated with the
strength of the distinct region of the AFC network. Bright color indicates positive
correlation. Color bar was presented with z score. Abbreviations: L DLPFC, left dorsolateral
prefrontal cortex; L MTG, left middle temporal gyrus; R MTG, right middle temporal gyrus;
L PCC, left posterior cingulate cortex; R PCC, right posterior cingulate cortex.
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Figure 6. Interaction of Memory Deficits and Depressive Symptoms on the Amygdala
Connectivity Network
The results show that interactive regions of depressive symptoms and memory deficits on
the AFC network include the bilateral PCC, MTG, and left DLPFC. Color bar is presented
with z scores. Abbreviations: L DLPFC, left dorsolateral prefrontal cortex; L MTG, left
middle temporal gyrus; R MTG, right middle temporal gyrus; L PCC, left posterior
cingulate cortex; R PCC, right posterior cingulate cortex.
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