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Abstract
During coordinated eye– hand movements, saccade reaction times (SRTs) and reach reaction
times (RRTs) are correlated in humans and monkeys. Reaction times (RTs) measure the degree of
movement preparation and can correlate with movement speed and accuracy. However, RTs can
also reflect effector nonspecific influences, such as motivation and arousal. We use a combination
of behavioral psychophysics and computational modeling to identify plausible mechanisms for
correlations in SRTs and RRTs. To disambiguate nonspecific mechanisms from mechanisms
specific to movement coordination, we introduce a dual-task paradigm in which a reach and a
saccade are cued with a stimulus onset asynchrony (SOA). We then develop several variants of
integrate-to-threshold models of RT, which postulate that responses are initiated when the neural
activity encoding effector-specific movement preparation reaches a threshold. The integrator
models formalize hypotheses about RT correlations and make predictions for how each RT should
vary with SOA. To test these hypotheses, we trained three monkeys to perform the eye– hand
SOA task and analyzed their SRTs and RRTs. In all three subjects, RT correlations decreased with
increasing SOA duration. Additionally, mean SRT decreased with decreasing SOA, revealing
facilitation of saccades with simultaneous reaches, as predicted by the model. These results are not
consistent with the predictions of the models with common modulation or common input but are
compatible with the predictions of a model with mutual excitation between two effector-specific
integrators. We propose that RT correlations are not simply attributable to motivation and arousal
and are a signature of coordination.

Introduction
Coordinating eye and arm movements is central to our natural behavior. Eye–hand
coordination depends on a combination of retinal and extra-retinal signals necessary for
accurate movement (Crawford et al., 2004). Saccade reaction times (SRTs) and reach
reaction times (RRTs) are highly variable and are correlated from trial to trial with a variable
degree of correlation (Herman and Maulucci, 1981; Lünenburger et al., 2000; Boucher et al.,
2007b) (for an example, see Fig. 1A). Because saccade durations are stereotyped (Bahill et
al., 1975), one possible advantage of correlated reaction times (RTs) is to allow the eye to
acquire a target at a consistent time with respect to the arm movement. This temporal
consistency could enhance the performance of visual processes guiding manual accuracy
(Neggers and Bekkering, 2002). Therefore, RT correlations may constitute a signature of
coordinated eye and arm movements.
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RT correlations, however, are not necessarily a measure of behavioral coordination. They
occur in behavioral paradigms such as dual-task paradigms designed to tax cognitive
processing and perceptual paradigms with time-consuming sensory processing (Pashler,
1994; Tombu and Jolicoeur, 2002). RT correlations may also result from global changes in
responsiveness caused by changes in arousal or motivation (Boucher et al., 2007b). Global
changes modulate motor preparation and could lead to RT covariations independently of
sensorimotor coordination. Correlations could also be attributable to bottlenecks in
processing if longer processing of the first process delays the second process (Pashler, 1984;
Navon and Miller, 2002).

Dual-task paradigms can be applied to looking and reaching to test the link between RT
correlations and coordination. We can cue movements to be made together and coordinated
or to be made separately at different, unpredictable times by introducing a random delay, or
stimulus onset asynchrony (SOA), between the cue onsets. Varying the SOA will
manipulate coordination and test the relationship between RT correlations and sensorimotor
coordination.

Computational models allow us to explicitly distinguish between different hypotheses for
the possible mechanism underlying RT correlations. Many modeling approaches of RTs are
based on the integrator paradigm, in which information is accumulated until a behavioral
response is initiated (Laming, 1968; Luce, 1986). The diffusion model, a type of stochastic
integrator model in which activity grows continuously in time (Ratcliff, 1978), can account
for the chronometry of RT tasks with single (Smith, 1995) and simultaneous cues
(Diederich, 1995), and in two-choice RT tasks (Usher and McClelland, 2001; Eckhoff et al.,
2008). The model is also consistent with the neuronal activity during detection (Hanes and
Schall, 1996), perceptual discrimination (Roitman and Shadlen, 2002; Gold and Shadlen,
2007), and other sensorimotor tasks (Cisek, 2007) and can be implemented in biophysically
plausible network models (Wong and Wang, 2006), whose properties can be related to
diffusion model parameters (Roxin and Ledberg, 2008).

Here, we combine computational models with behavioral experiments. We extend the
diffusion model to dual-task paradigms using two interacting nonlinear leaky integrators that
encode the preparation of saccades and reaches. Model predictions are tested against
behavioral data from three monkeys performing an SOA task that involves looking and
reaching.

Materials and Methods
Training and surgical procedures

Monkeys made visually guided saccades and reaches for juice rewards. Reaches were made
to a touch-sensitive screen (ELO Touch Systems) mounted in front of either a liquid crystal
display or a custom light-emitting diode (LED) board on which targets were presented. Eye
position was monitored with an optical video eye tracker (ISCAN). Behavior was controlled
using custom Labview (National Instruments) code running on a real-time PXI platform.
After several weeks of training, a head-restraint prosthesis was implanted to maintain stable
head position during recordings. All procedures were done under isoflurane anesthesia and
sterile conditions. At least 3 weeks after surgery, the monkeys began training in eye
movement and reaching tasks. All surgical and animal care procedures were done in
accordance with the National Institute of Health guidelines and were approved by the New
York University Animal Care and Use Committee.
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Behavioral tasks
Behavioral data were collected from three adult male rhesus macaques (monkey H, monkey
J, and monkey S). In the SOA task, each trial started with the illumination of a red and green
central target (Fig. 1B). Monkeys were required to fixate and touch the screen within 4° of
the stimulus, after which a yellow peripheral location cue appeared 20° to the left or right of
center. When the location cue appeared, the red center fixation point was simultaneously
extinguished, cuing a saccade to the peripheral cue. At a randomized interval after the
saccade go cue, the monkey received an auditory cue to make a reach to the same peripheral
target. The speaker for the auditory cue was located behind the touch screen and in the same
location for all trials and thus did not contain information about the target location on each
trial. Each trial was initiated when a monkey touched a pair of proximity sensors placed near
the body with his hands. The non-reaching hand was required to maintain touch on a
proximity sensor throughout the trial. A brief auditory tone preceding reward delivery
served as a secondary reinforcer on all correct trials.

The SOA task requires animals to dissociate the timing of the saccade from the reach.
However, when each monkey was initially presented with the saccade and then reach cues,
they tended to perform a reach and saccade together and did not dissociate the movements
from each other. In pilot experiments, we determined that we could train the monkeys to
follow the cues more accurately by using an uneven distribution of the duration of the
interval between go cues, SOAs, and by interleaving different task conditions. We obtained
the best results when SOA was 0 in 70–90% of the trials each day; in the remaining 10–30%
of trials, the SOA was a random number drawn from a uniform distribution with range 0–
620 ms (Fig. 1C). To discourage monkeys from always preparing reaches as soon as a
location cue appeared, we interleaved SOA task trials with delayed saccade and touch task
trials in which the location cue was red and signaled a saccade alone. In those trials, subjects
were rewarded after a saccade to the target while continuing to touch the center green
stimulus. Delayed saccade and touch trials constituted 10–20% of total trials each day and
accounted for 11% of successful trials for monkey H, 19% of successful trials for monkey J,
and 18% of successful trials for monkey S.

The full set of trials, therefore, included a set of trials in which the reach was made quickly
together with the saccade (SOA of 0 ms), a set of trials in which the reach was never made
(delayed saccade and touch), and a set of trials in which the reach movement was made at
varying delays with respect to the saccade (SOA between 0 and 620 ms).

To further discourage early or late movements, each monkey was trained to wait until the go
signal for each movement before promptly making that movement. To discourage late
movements, monkeys had to respond to the appropriate go signal with a saccade within 350
ms and a reach within 600 ms (700 ms for monkey S). To keep animals from trying to
predict the go signal and moving early, a trial was aborted if the SRT was shorter than 120
ms or if the RRT was shorter than 150 ms. These constraints on maximum and minimum RT
encouraged monkeys to prepare each movement immediately after the relevant cue.

To control for the influence of an auditory go cue for the reach compared with a visual go
cue for the reach, we also ran a separate set of trials with a modified SOA task in one animal
(monkey H). In the modified, visual–visual SOA task, we delivered a visual go cue for the
saccade and a visual go cue for the reach. All other details of the visual–visual SOA task
matched the SOA task described above.

Data collection and basic analysis
Eye position and touch position on the screen were sampled at 1 kHz. Each signal was time
stamped and streamed to disk along with data about each trial from the Labview behavioral

Dean et al. Page 3

J Neurosci. Author manuscript; available in PMC 2011 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



control program. The time of the visual cue presentation was recorded as the time at which a
photosensor detected a simultaneous stimulus change on the monitor or LED board. Reach
start was recorded as the time at which the touch was no longer detected within a 4° window
around the central touch point. Eye position was filtered and instantaneous velocity
calculated. Saccade start was defined as the time at which velocity first exceeded 50°/s at the
beginning of the movement after the saccade go cue that resulted in peak velocity >200°/s.

Behavioral analysis
Reach and saccade RTs were binned according to the SOA using 13 bins of 50 ms from 0 to
650 ms. The trial counts per bin were 19,567, 268, 899, 754, 940, 770, 577, 542, 954, 1158,
941, 720, and 478 for monkey H, 1155, 406, 298, 262, 307, 274, 301, 283, 330, 396, 352,
236, and 81 for monkey J, and 16,242, 333, 312, 355, 335, 354, 362, 372, 274, 310, 317,
261, and 98) for monkey S.

Overlap in movement preparation for each trial was computed as the elapsed time between
the reach go cue and the saccade start (Fig. 1C). Thus, overlap depends on both the SOA and
the monkey’s SRT on that trial. If the reach go and saccade go cue are given simultaneously
in a trial, the overlap is the SRT. Because the reach go cue always occurred with or after the
saccade go cue, the largest overlap value is the longest SRT when SOA was zero. The
overlap is negative when the reach go is given after the saccade begins. Because SRT varies
from trial to trial, a given SOA duration is associated with a distribution of overlap
durations. We tested SOA intervals uniformly distributed over more than two times the
range of SRT so that, when we grouped trials by overlap, the distribution of SRTs for a
given overlap condition was not distorted.

To graph the effect of overlap duration on the RT correlation, trials were binned by overlap
time using 9 bins of 50 ms from −250 to 200 ms. The resulting trial counts per bin were 931,
679, 558, 542, 1401, 567, 691, 1561, and 7691 for monkey H, 397, 343, 259, 395, 211, 285,
289, 546, and 3104 for monkey J, and 298, 317, 336, 494, 242, 291, 405, 1064, and 9374 for
monkey S. Bins with <10 trials of data were not subject to additional analysis.

The correlation between SRT and RRT for each group of trials was computed using
Pearson’s correlation coefficient. The 95% confidence intervals were computed as
tanh(arctanh(R) ± 1.96 × SE), where R is the correlation coefficient, and ,
with N being the number of trials in the bin (Zar, 1996).

Computational models
Leaky nonlinear integrators for saccade and reaches—In the computational
models, preparation and initiation for saccades and reaches is encoded in the activity of two
neuronal populations, s and r (Fig. 2A). A particular movement is initiated when the mean
firing rate of the corresponding population reaches a threshold (Fig. 2B). The mean firing
rate of each population obeys a differential equation of the type

(1)

where τ is the recruitment time constant of the neuronal population, of the order of 100 ms,
ϕ(·) is an input–output transfer function, and Ii is the net input received by the integrator,
which consists of a sum of external and recurrent inputs induced by the coupling within and
between populations (Wilson and Cowan, 1972; Amit and Tsodyks, 1992; Pinto et al.,
1996). The first term on the right side of Equation 1 accounts for the decay of network
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activity in the absence of inputs. The function ϕ(I) is the steady firing rate with which the
population responds when driven by a constant input I and is in general a nonlinear and
monotonically increasing function of the input. A parsimonious and mathematically
convenient choice for ϕ(I) is a threshold-linear function:

(2)

where g > 0 is a gain modulation factor, and θ is a threshold related to the rheobase current
of neurons. When inputs are below threshold, the transfer function is 0 and the population
activity ri(t) decays to zero with time constant τ. When they are above threshold, ri(t) grows
at a rate dictated by the magnitude of the input Ii, also with characteristic time constant τ. In
its simplest form, the input received by each population is a sum of recurrent inputs,
proportional to the mean firing activity of the population and population-specific external
inputs:

(3)

where α >0 is the strength of the recurrent coupling, and Ei(t) is the movement-specific
external input, which provides the available moment-by-moment information relevant for
initiation of movement i. This information is brought about by bottom-up sensory signals as
well as top-down urgency signals and may vary over the course of the trial. We lump
together these two contributions and model the net external input as a single time-dependent
signal ei(t) perturbed by additive noise. The noise reflects instantaneous fluctuations in the
form of neuronal and synaptic noise, both along the sensory pathway as extrinsic from the
incoming signal, as well as intrinsic noise attributable to the spontaneous background
activity from other brain areas. The external input has therefore the form

(4)

where σ is the noise intensity, and ηi(t) is a source of Gaussian noise with white spectrum,
that is, the values of the noise are uncorrelated at different times. Except for the model with
shared fluctuations, described below, the noise sources ηs(t) and ηr(t) are uncorrelated with
one another. We choose a very simple form for the time-dependent movement-specific
signal ei(t), which switches from 0 to 1 at the time onset of the go cue for movement i. This
sudden increase in the input at the go cue is sufficient to drive the unit from the subthreshold
regimen, Ii < θ, where the unit does not integrate inputs, to the suprathreshold regimen, Ii >
θ, where it does. The dynamical equation of the integrator is obtained by plugging Equations
2–4 into the differential Equation 1. In the suprathreshold regimen, the resulting equation
has the form

(5)

With  and σ′ ≡ gσ. Equation 5 describes a stochastic
integration of the signal  in which the rate of accumulation depends linearly on the
accumulation variable [Ornstein-Uhlenbeck process (Gardiner, 1985)]. The value of the
coefficient k reflects the net balance between the positive feedback generated by the gain
and the recurrent excitation on the one hand, and the negative feedback attributable to the
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leakage on the other. When k > 0, negative feedback dominates and the activity of the
accumulator grows until eventually approaching a steady state determined by the signal
strength . Conversely, when k < 0, positive feedback is dominant and the firing activity
blows up exponentially unless some mechanism for threshold detection comes into play. In
either case, the characteristic time constant of the dynamics is 1/k. The particular case k = 0
corresponds to an infinitely long exponential decay (or growth) and so to a lossless
integration of the external input . The integrated variable ri(t) follows in such
case a Brownian trajectory with a constant drift toward the threshold that is proportional to
the signal strength , like the classic diffusion model.

The parameters are chosen so that the integrator remains silent in the absence of stimulation,
i.e., when es = er = 0. At the onset of the go cue signal for movement i, at t = Tonset i, the
deterministic component of the input ei switches from 0 to 1, and, as a result, the activity of
ith unit starts increasing. This rise in activity persists until the activity of the unit reaches a
threshold value H at some time t = Tcross i. After movement initiation, the sensory signal for
a particular movement is switched off when the corresponding unit has reached threshold
(Fig. 2B), that is,

(6)

The total RT is the sum of a constant residual time T0, which represents the net effect of
delays attributable to transduction and transmission of signals, and the time of integration to
threshold: RT = T0 + Tcross i − Tonset i. The duration of the integration process, Tcross i −
Tonset i, is a random variable by virtue of the noise present in the sensory signal Ei(t).

Models of interaction between integrators
Gain modulation model: Effects of slow, trial-by-trial changes in excitability, such as
might occur as a result of arousal or motivation, were modeled with a gain g that was

randomly drawn on each trial from a normal distribution with mean 1 and variance 
(Fig. 3, left). The value of the gain was identical in both integrators and was fixed
throughout the trial. Note that changes in gain are not independent from changes in other
parameters because modifying the gain is equivalent to changing appropriately the self-
excitation α, the SD σ, and the threshold of the input–output function, θ, as can be seen in
the definitions following Equation 5.

Common noise model: The condition that fluctuations in the inputs be uncorrelated among
units is relaxed in the common noise model (Fig. 3, middle). In that model, the inputs
received by the saccade and the reach units at any given time have correlated variabilities of
magnitude cσ2, where c is the correlation coefficient of the two inputs and satisfies 0 ≤ c ≤
1. The covariance matrix of the inputs is then nondiagonal and can be written as

(7)

where angle brackets denote average over trials, δ(t − t′) is the impulse function, and ρij = 1
if i = j, whereas ρij = c if i ≠ j. The impulse function on the right side of this equation
expresses the fact that fluctuations at different times are uncorrelated. Fluctuations with this
covariance matrix are generated from a sum of a shared noise source, ηc(t), and an unit-
specific noise source, ξi(t), both with zero mean and unit variance:

Dean et al. Page 6

J Neurosci. Author manuscript; available in PMC 2011 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

The scaling in c of the coefficients ensures that the variance of the net fluctuations remains 1
as we vary the correlation coefficient.

Shared signal model: Forward excitation is implemented by adding a fraction f of the
signal to the counterpart unit (Fig. 3, right). The net signals received by both units are then

(9)

where ei(t), with i = r, s, is given by Equation 6 and 0 < f < 1.

Mutual excitation model: The integrators can be coupled by adding a cross-term to the
inputs:

(10)

The parameters βr and βs are positive, not necessarily equal, and represent the excitatory
coupling strength between integrators. In the following, we refer to the case in which βr and
βs are equal as the symmetric mutual excitation model, whereas we call the case in which βs
= 0 the asymmetric excitation model.

The models with gain modulation, common noise, shared signal, and mutual excitation
(symmetric and asymmetric) have the same number of free parameters. Given that the
complexity of the models is the same, we used the goodness of fit of these different
architectures to select the model that accounts best for the data.

Simulations
The dynamical Equations 1 were integrated with a time step dt = 0.5 ms using an extension
of a Heun algorithm to include stochastic terms (Honeycutt, 1992) and drawing
pseudorandom numbers from a Mersenne–Twister generator. First-passage times to
threshold were estimated with a first-order interpolation between time steps. RTs were
modeled as a sum of the first-passage time to threshold and a fixed residual time T0, which
was a free parameter of the model. Although we are using eight different parameters in the
single integrator model [namely, τ, α, g, θ, H, σ, and T0, and the scale of input switch ei(t),
Eq. 6], the first-passage times of the integrator depend only on the combination of
parameters (Smith, 1995):

(11)

which represents the distance between the effective drive and the threshold scaled by the
intensity of the fluctuations. Parameter values are therefore undetermined with respect to
first-passage times and, consequently, to RTs. We set H = 1, σ = 0.1, θ = 0.5, ei = {0,1}
throughout and took the remaining parameters as free. Also, the gain g was 1 except in the
model with gain modulation.
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To estimate the mean and the Pearson’s correlation coefficient of the simulated RTs for each
particular parameter set, we ran a sample of 10,000 trials using different realizations of the
noise. We used such high number of simulated trials to guarantee a good estimate of the
Pearson’s correlation coefficient, with an SD smaller than 0.05. The confidence intervals of
the Pearson’s correlation coefficient were estimated from a bootstrap of 1000 replicates.

Results
Saccade and reach RTs in a simple eye– hand coordinated movement are correlated. Figure
1A presents SRTs plotted against RRTs during an example behavioral session when monkey
J was required to make both a saccade and a reach from an initial central touch and fixation
point to an eccentric target. Each data point represents SRT and RRT for a single trial. The
RTs for these coordinated movements are variable (SRT = 219 ± 37 ms, RRT = 294 ± 41
ms, mean ± SD) and correlated (R = 0.55, p < 0.05).

To understand the significance of RT correlations, we studied a dual reaction time task in
which subjects had to respond with a saccade and a reach to their corresponding go cues.
Our first aim was to study how saccade and reach RTs are affected by the degree of
coordination between movements. A simple way to manipulate the degree of coordination is
by cuing the two movements with a temporal separation between cues, or SOA, that is
varied on a trial-by-trial basis (Fig. 1B) (see Materials and Methods). The idea is that
movements that are cued separately and unpredictably in time will be less coordinated than
those that are cued simultaneously. We used the dependence of the statistical properties of
RTs on SOA to constrain the set of possible mechanisms underlying eye–hand coordination.
We focused in particular on the dependence of the means and correlations between saccades
and reach RTs. We first hypothesize about mechanisms that could give rise to correlations in
the RTs of saccades and reaches and explore these mechanisms using a family of diffusion
models of RT. The basic assumption of these models is that RTs are dependent on the time
taken for an activity-dependent random walk to reach some prescribed threshold. Although
these models are purely phenomenological, recent experimental work suggests that such an
accumulation process may be encoded in the activity of neural populations in cortical areas
(Hanes and Schall, 1996; Shadlen and Newsome, 2001; Roitman and Shadlen, 2002).
Inspired by this link to the neurobiology, we explore several plausible mechanisms that
could give rise to correlated RTs in a dual reaction time task. Using a framework of two
integrate-to-threshold units, we have studied how RTs are affected when simultaneous gain
modulations, common noise, shared signal inputs, and mutual coupling affect the integration
process (see below, Model predictions). Each model makes testable predictions for how the
mean RT of saccades and reaches and the correlations between the two should vary as
movements are increasingly separated in time. We then analyze behavioral data collected
from three monkeys performing the SOA task and compare the results with the predictions
of the models (see below, Behavioral results). The models with simultaneous modulation
and shared input fail to account for the behavioral data. Only the model with mutually
excitatory units captures the main trends in mean RTs and correlations. Based on the
behavioral results, we then develop interacting integrate-to-threshold models and compare
the model predictions with behavior (see below, Interacting accumulator models). Finally,
we mathematically fit the parameters of an interacting integrator model to the behavioral
data (see below, Model fits to behavioral data).

Model predictions
We studied models of two neural integrators that determine the RT of saccades and reaches.
Each neural integrator is associated with one particular movement and responds selectively
to the associated go cue signal by undergoing a stochastic rise of activity (Fig. 2). The
behavioral response is assumed to initiate when the buildup of activity reaches a threshold.
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Immediately after the integrator hits threshold, the selective input responsible for the buildup
is switched off, causing the integrator to decay to zero. In this framework, there exist several
mechanisms that may potentially give rise to correlations between saccade and reach RTs.
We first examine the predictions of each model for mean saccade and reach RT and their
correlations as SOA varies.

Independent integrators—If saccades and reaches are generated by two parallel
sensorimotor pathways and two independent neuromodulation mechanisms, an integrator
model with two independent integrators would describe their behavior (Fig. 2A). This
hypothesis gives the simplest dual-integrator model. The lack of interaction between
integrators results in SRTs and RRTs that are uncorrelated and do not depend on SOA
(results not shown). The presence of RT correlations when movements are instructed
together rules out this possibility.

Gain modulation—The neuronal populations involved in the preparation of saccades and
reaches may experience a common neuromodulatory signal that affects their sensitivity to
inputs (McCormick, 1989), akin to the effect of motivation or arousal. It has been shown
that arousal effects are mediated by monoaminergic and cholinergic ascending pathways
from the brainstem and the basal forebrain (Sarter et al., 2005; Herrero et al., 2008), which
generally change over hundreds of milliseconds. Given these relatively long durations,
neuromodulation is likely to alter response times on a trial-by-trial basis, but it is probably
too slow to induce appreciable changes within the course of a single trial. Despite their
relative slowness, these simultaneous and global changes in the circuitry encoding
movement preparation could result in correlations between RTs.

A simple model of common neuromodulation can be implemented with two integrators
whose sensitivity to inputs is varied identically in every trial (Fig. 3A, left). Sensitivity to
inputs is controlled by the gain of the integrator, which ultimately reflects the excitability of
the neural population encoding movement preparation. The gain, although variable from
trial to trial, is identical for both integrators and constant throughout a trial to account for the
global and slow character of neuromodulatory signals. With such a model, neither mean RTs
nor correlations will depend on SOA (Fig. 3B, C, left) because there is no interaction
between integrators and no temporal dependence of the passive parameters. Common
neuromodulation can, however, give rise to RT correlations. These arise because both
responses will be fast when the integrator gains are high and slow when gains are low.
Consistent with this intuition, the magnitude of RT correlations depends on the variance of
intertrial gain modulations (Fig. 3C, left).

If we relax the assumption of static gains by letting the gain change with some characteristic
time constant throughout the trial, the RT properties depend only on SOA at the time
constant of the gain changes (data not shown). This result reinforces the intuition that
models with arousal-like gain modulation predict that changes in RT correlations do not
occur quickly (i.e., within a reaction time).

The gain modulation model shows that effector-specific mechanisms of coordination are not
necessary to generate RT correlations. Nonspecific arousal-like mechanisms can generate
RT correlations, but the correlations do not depend on SOA.

Fast interactions—RT correlations may arise from common inputs driving the areas
preparing and initiating reaches and saccades. We will distinguish between common inputs
in the form of shared signals and of common noise (Gawne and Richmond, 1993; Averbeck
et al., 2006). By signal, we mean the component of the input that encodes information
specific to the preparation of movements. In the model, the signal is the deterministic
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component of the input, which drives the unit to threshold. Noise is lumped as the stochastic
component of the input. Although one might expect correlated inputs to be a mixture of
shared signals and common noise, we consider each factor separately to isolate their role in
the dependence of RT correlations on SOA.

Common noise model—The areas responsible for the initiation of saccades and reaches
may have shared fluctuating inputs. This common noise can arise from the activity of brain
regions that innervate the areas guiding both movements but do not carry information about
the signals specific for the task, such as sensory information about the go cues. This form of
nonspecific activity can be modeled as correlated noise in the inputs to both integrators
generating the movements.

To examine the effect of common noise fluctuations in isolation from signal changes, we
varied the correlation coefficient, c, between the external input driving both units (Fig. 3A,
middle) (see Materials and Methods). The coefficient c can be interpreted as the fraction of
fluctuating inputs that are shared among units when the mean and the variance of the inputs
are kept constant. Because the deterministic component of the input is unaffected by the
amount of correlated noise, mean RTs are not modulated by c (Fig. 3B, middle). In addition,
mean RTs do not depend on the SOA because the signals of both integrators are effectively
independent of one another. In other words, fluctuations in the input to one unit do not
convey any information about the signal of the other unit.

Common noise introduces RT correlations (Fig. 3C, middle). These correlations arise
because both units are driven to threshold by the same fluctuations when they are activated
close in time, as occurs at short SOA. Also, the correlation coefficient between SRTs and
RRTs is larger when the incoming noise among units is more correlated. Correlations in RT
decay monotonically as SOA increases and approach zero when SOA is longer than the
mean SRT. This trend results from the shortening of the time window during which both
units share the same fluctuating inputs.

The common noise model illustrates that effector-specific mechanisms of coordination are
not necessary to generate RT correlations that decrease with SOA. Nonspecific mechanisms
can generate RT correlations that decay with SOA but do so in a manner that influences
mean SRTs and RRTs equally and independently of SOA.

Shared signal model—The preparation stages of saccades and reaches may interact
through some type of feedforward excitatory shared signal. For example, a common sensory
stage in the processing pathway would feed into areas responsible for preparing the saccade
and reach. This would influence subsequent RTs.

To model shared signals, we introduce a deterministic signal received by a unit that includes
not only the signal specific to it but also some fraction of the signal driving the other unit
(Fig. 3A, right) (see Materials and Methods). Shared signal interaction provides an
implementation for the so-called “energy integration” models, according to which the
“energy” of different sensory modalities is assumed to sum somewhere in the nervous
system (Todd, 1912; Hershenson, 1962; Diederich, 1995).

In the shared signal model, mean RTs for reaches and saccades are the same, as in the
common noise model. Forward excitation speeds up the integration to threshold if there is
some overlap in the stimulation periods of both units, resulting in shorter RTs. Therefore,
mean RTs depend on SOA, unlike the common noise model. RTs are on average faster, and
therefore movements are facilitated, at short SOAs when the overlap between saccade and
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reach preparation is longer (Fig. 3B, right). Facilitation disappears for SOA longer than the
mean RT of the independent integrator.

Interestingly, unlike the common noise model, shared signal excitation gives rise to negative
RT correlations when reach and saccade preparation overlap in time (Fig. 3C, right). The
values of the RT correlations are relatively constant for short SOAs, unlike RT correlations
caused by common noise, which progressively decay as SOA increases. The reason for
anticorrelation between the RTs is that faster saccadic responses lead to shorter overlaps
between preparation stages. This leads to shorter windows of facilitation that result in slower
reach responses and hence anti-correlated RTs.

Comparing model predictions across the three integrator models demonstrates that each
model makes specific predictions about the mean RTs and the RT correlations and their
dependence on SOA. Next, we analyze behavioral RTs during an SOA reach and saccade
task and compare the results with the model predictions.

Behavioral results
The SOA task aimed to manipulate coordination between the saccade and reach by
separating movements by a random time interval, the SOA duration (Fig. 1). The reasoning
behind the SOA task is that saccade and reach movements made separately at large,
unpredictable SOA intervals should be less coordinated than movements made together at
short or zero SOA intervals. Therefore, if RT correlations reflect coordination, they should,
at a minimum, fall as SOA increases. However, as the integrator models above demonstrate,
RT correlations could arise from other mechanisms that we would not necessarily consider
to be specific to coordination, such as common gain modulation, common noise, or shared
signals. We analyze RT correlations in the behavior of three monkeys performing the SOA
task to test the predictions of each model and determine whether the pattern of RT
correlations with SOA and overlap reflect any of the potential nonspecific mechanisms
modeled above or if another mechanism is necessary to explain the pattern of results.

SOA—Mean RTs for saccades and reaches vary with SOA (Fig. 4A,B). We consider SRT
first. For all monkeys, SRT is generally fastest when SOA is short (Fig. 4A). Monkey H and
monkey J show clear evidence of facilitation at the shortest SOA. They also show stable
SRT for SOA greater than the mean SRT. Monkey S shows facilitation with a faster mean
SRT for SOAs shorter than 250 ms except for a single interval at SOA = 75 ms. At longer
SOA, the mean SRT for all three monkeys is generally constant. Faster SRT for shorter SOA
was not attributable to the use of an auditory cue for the reach. SRTs for a modified visual-
visual SOA task (see Materials and Methods) were the same as SRTs in the main visual–
auditory SOA task (monkey H: visual–visual SRT = 195 ms; visual–auditory SRT = 194 ms;
p = 0.53; rank sum test). The facilitation of SRT at short SOA is consistent with the shared
signal model but not with either the gain modulation or the common noise models.

Next, we consider mean RRT. For all three monkeys and all SOA intervals, RRTs are longer
than SRTs (rank sum test, p ≪ 0.05). Mean RRTs also vary with SOA significantly
differently than do mean SRTs. On average, saccades are systematically faster at short SOA.
In contrast, RRT varies non-monotonically with SOA: reaches are faster at SOA shorter than
100 ms, slower at intermediate SOAs between 125 and 225 ms, and faster again at long
SOA (Fig. 4B). In monkey H and monkey J, there was an exception to this trend at SOA =
25 ms, which elicited the slowest RRT. Here, the effect of overlap that we expect to see on
RRTs could be masked by other factors. RTs have been shown to be faster when more time
is given to prepare before a go cue. Because the location of the target is given when the
saccade is cued, longer SOAs give the reach a longer preparation time. The short SOA
leaves the monkey little additional time to prepare, leading to longer RTs. Monkey S is then
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an anomaly, but note that the mean RRT for monkey S is much longer. Monkey S may take
longer to prepare to reach, making the short preparation time much less important.

None of the nonspecific/input models predict the pattern of RT variations with SOA that we
observe.

Next, we consider RT correlations. RT correlations are significantly greater than zero at
some short SOA (<100 ms) in all three monkeys (Fig. 4C). Importantly, RT correlations
decrease with increasing SOA, becoming statistically insignificant after several hundred
milliseconds.

Precisely how RT correlations vary with SOA differs between monkeys. For monkey H,
correlations start high (R = 0.40, p ≪ 0.001), drop with SOA, and stay significantly positive
for SOA shorter than 350 ms (Fig. 4C, left). Correlations start high (R = 0.49, p ≪ 0.001) for
monkey J, fall with SOA, but become significantly negative (R = −0.13, p < 0.001) for SOA
around 300 ms, decaying to zero for longer SOA (Fig. 4C, middle). For monkey S, RT
correlations are highest when the SOA is shortest (R = 0.27, p ≪ 0.001) but quickly drop to
zero before staying slightly but significantly positive for longer SOA durations around 300
ms and returning to zero (Fig. 4C, right).

The variations in behavioral RT with SOA significantly differ from the predictions of all
three integrator models presented above. The pattern of RT correlations is not consistent
with the gain modulation model or shared signal model because RT correlations vary with
SOA and are positive at short SOA. The general decrease in RT correlations with SOA is
consistent with the common noise model, but the more complex dependence of RT
correlations with SOA, such as the negative RT correlation around SOA = 300 ms seen in
monkey J, is at odds with the common noise model. The variation of mean SRT and RRT
with SOA is also inconsistent with the common noise model.

Because nonspecific/input mechanisms do not predict the RTs observed in the SOA task,
effector-specific interactions between the integrators may provide more accurate models. To
gain insight into appropriate model architectures, we further examined the behavioral data.
We observed that the time elapsed between the auditory reach cue and the time of the
saccade, or overlap, may play an important role in understanding the behavioral RTs. For
example, the behavioral data showed that the mean RRT increased at intermediate SOAs
when the auditory reach cue was delivered around the time of the saccade. In addition, the
distribution of SRTs for trials with overlap of 125 ms, when the reach cue was delivered just
before the saccade was initiated, is bimodal (not shown here). Hence, we examined SRT and
RRT and their correlations as a function of overlap. In the model, the overlap corresponds to
the period during which both integrators are activated (Fig. 2B).

Overlap—SRT is bimodal for 125 ms overlap in all three monkeys. Therefore, we divided
trials into fast and slow subgroups by choosing a cutoff SRT that was at the minimum
between the two groups of RTs. This cutoff was 180 ms for monkeys J and H and 190 ms
for monkey S. The fast SRTs represented 40% of trials for monkey J, 61% of trials for
monkey H, and 68% of trials for monkey S. Figure 5 presents the SRT, RRT, and their
correlations as a function of overlap. For each measure, data for 125 ms overlap is presented
for the fast (solid) and slow (dashed) SRT groups. In all three monkeys, SRT was stable for
overlap durations shorter than 125 ms and was fastest for 175 ms overlap (Fig. 5A). A
bimodal distribution of SRTs is consistent with interference between the reach cue and
saccade initiation on a fraction of trials. Note that, when we separate fast and slow SRTs for
an overlap of 125 ms, all three subjects are faster than average for the fast SRTs. For the
slower SRTs, monkeys H and J have mean SRTs that are no different than the mean SRTs
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for shorter overlaps. Monkey H, however, has a slower-than-average SRT. Adding the reach
soon after the saccade go is given may disrupt saccade planning in monkey S, leading to the
anomalous mean SRT at 75 ms. The faster SRTs in all three monkeys may be attributable to
an influence of the reach go that speeds initiation of the saccade on some trials.

Consistent with the dependence of the mean RRT on SOA (Fig. 4B), the mean RRT reaches
a maximum around overlap 0 ms (Fig. 5B). That is, the RRT is on average slower when the
reach cue is delivered at the time of saccade initiation. A first plausible explanation for this
slowing is that there is bottleneck in the processing of sensory information when the saccade
is initiated. The bottleneck would only affect the initiation of reaches, because we do not
observe any consistent increase of mean SRT at that time. The explanation is, however,
incomplete because bottleneck effects predict consistent increases in the mean RRT for
positive overlaps, not only for 0 overlaps, and cannot explain the non-monotonic
dependence of the mean RRT on SOA. An alternative explanation is that this non-
monotonic dependence results from a combination of two independent factors: facilitation at
short SOAs (large, positive overlaps) and reduction of uncertainty at long SOAs, which
results from choosing a uniform distribution for SOA durations. We discuss these two
effects in detail in the next section.

The correlation of SRTs and RRTs varies with overlap consistently across the three
monkeys. RT correlations are different from zero for positive overlaps and vanish for
negative overlaps (Fig. 5C). There are, however, some differences across subjects. In
monkey H and monkey S, RT correlations remain positive for all positive overlap values,
but in monkey J, correlations become negative for overlaps shorter than 125 ms. The
crossover of RT correlations for positive overlaps is notable because it is not predicted by
any of the models described above.

Interacting integrator models—Interactions between integrators associated with each
movement may be required to explain these behavioral results because the overlap in time
during which both integrators are active affects RTs and their correlations. In particular, we
find that RT correlations are only significantly different from zero when overlap is positive.
We consider two models with direct coupling between integrators (Fig. 6) (see Materials and
Methods). A similar mechanism, based on inhibitory coupling and a stochastic race model,
has been proposed as a model for movement inhibition in a countermanding task (Boucher
et al., 2007a). In the symmetric mutual excitation model, reach and saccade integrators
directly excite each other. In the asymmetric excitation model, the reach integrator directly
excites the saccade integrator but the saccade integrator has no influence on the reach
integrator. In the following, we examine the predictions of the interacting integrator models
for SRT, RRT, and their correlations.

Symmetric mutual excitation—The net input to each unit includes a positive coupling
term proportional to the activity of the partner unit. The coupling term induces excitatory
interactions between the units, leading to a positive feedback loop that causes the activity to
grow without bound unless there is saturation or a threshold detection mechanism (for an
example of the latter, see Lo and Wang, 2006). In contrast to the common noise and shared
signal models, coupling induced by mutual excitation depends on the instantaneous activity
level of the units. This results in more complex SOA dependencies (Fig. 6, left).

Mutual excitation increases the inputs to both integrators. The input facilitates both saccades
and reaches and shortens the mean SRT and RRT (Fig. 6B,C, left). As in the shared signal
model, the degree of facilitation depends on how much overlap there is between the
stimulation periods of both units. Importantly, however, with symmetric mutual excitation
the mean RRT and SRT depend on SOA differently. Mean SRTs decrease as SOA becomes
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shorter. Thus, saccades, which are instructed first, occur faster when the reach is activated
soon after the saccade. In contrast, mean RRT does not decrease monotonically with
decreasing SOA. Instead, mean RRT reaches its minimum value for SOA at around the
mean SRT, when the saccade unit reaches its peak of activity and drives the reach unit most
strongly. Mean RRT is therefore shortest when the SOA is approximately equal to the mean
SRT.

Symmetric mutual excitation leads to RT correlations that are positive for short SOA,
negative at intermediate SOA, and approach zero at long SOA (Fig. 6D, left). At short SOA,
RT correlation is positive and increases with coupling strength. RT correlation is positive
because the integrators associated with each movement effectively share the same
fluctuating inputs through mutual excitation. The effect is similar to that seen in the common
noise model, although the nature of the fluctuations differs between the two models. In the
common noise model, fluctuations shared with the other integrator enter simply as an
additive term. In the symmetric coupling model, shared fluctuations are low-pass filtered
and enter indirectly through the firing activity of the partner unit. This difference explains
why correlations stay significantly different from zero for longer SOA periods in the
symmetric mutual excitation model compared with the common noise and shared signal
models, which both reflect correlated inputs. Another difference between the symmetric
mutual excitation model and both correlated input models shows up at longer SOA. As SOA
increases, RT correlations decrease and eventually become negative for SOA longer than the
mean SRT. The reason for this change in sign is analogous to that given for the shared signal
model. Fluctuations leading to shorter-than-average SRT lead to shorter-than-average
windows of activity for the saccade integrator and, consequently, to less facilitation for the
reach unit. Faster-than-average saccadic responses are therefore paired with slower-than-
average reach responses, leading to anticorrelated RTs. RT correlations vanish for
sufficiently long SOA because the reach and saccade units become effectively decoupled
when they are activated far apart in time.

When plotted as a function overlap, RT correlations are zero for negative overlap and show
a negative-then-positive pattern for positive overlap (Fig. 6E, left). Thus, mutual excitation
critically depends on the relative timing between the reach cue and SRT. If the reach cue is
delivered after the saccade, there is no correlation between the SRT and the RRT.

Asymmetric excitation—To better understand the role of mutual excitation in the pattern
of RT predictions, we examined an asymmetric excitation model in which reach activity
affected saccade activity but there was no reciprocal connection (Fig. 6A, right). The
parameter β is the coupling strength from the integrator for reaches to the integrator for
saccades. Because the reach unit projects to the saccade unit but does not receive any
connection from it, saccade activity has no influence on reach activity. Therefore, only SRTs
are shorter as a result of simultaneous coactivation when SOA is sufficiently short (Fig. 6B,
right); mean RRTs are not modulated by β or the SOA (Fig. 6C, right). The same effect can
be restated in terms of the overlap. The effect of facilitation is stronger with more overlap
between preparatory stages (data not shown). As in all other models, facilitation disappears
when the SOA is sufficiently long. Moreover, RT correlations increase as SOA gets shorter
(Fig. 6D, right) and overlap increases (Fig. 6E, right).

In summary, when the reach unit projects to the saccade unit but does not receive any
connection from it, only saccades will benefit from the simultaneous coactivation occurring
at short onset asynchronies, and therefore only SRTs will show facilitation. Analogously,
saccade facilitation will be stronger when the overlap in preparation is longer. Facilitation
decreases monotonically with the SOA and vanishes for SOA longer than the mean SRT.
When SOA is longer than the mean SRT, the extra input provided by the reach unit comes
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too late to help the saccade unit reach threshold earlier. Moreover, with asymmetric
excitation between units, correlations are positive at very short SOA, decrease
monotonically as SOA get longer, and approach zero when SOA is on the order of the mean
SRT.

Model fits to behavioral data
Of all the models considered, only the model with asymmetric mutual excitation captures
the dependencies of the behavioral measures on SOA and overlap. More specifically, it is
the only model predicting the facilitation of saccades at short SOA and the decrease of
positive RT correlations with SOA. Given that all the models have the same number of
parameters and hence similar complexity, we favor the model with asymmetric mutual
excitation as the one best describing the data. We fit the empirical data to the parameters of
this model, considering a more general case of the mutual excitation model in which the
coupling strengths between integrators take arbitrary values (Fig. 7). This allowed us to
study the continuum superset of models comprised between the symmetric and the
asymmetric excitation models. Note that, in doing so, we are adding another parameter in
the model and we are therefore increasing its complexity. It is then legitimate to ask whether
other models of similar complexity could fit the data equally well. A combination of the
shared noise and the shared signal models may also give rise to the observed dependences
on SOA with both facilitation at short SOAs and decrease of correlations for increasing
SOA. However, we have found that it is not possible to have both facilitation and a
monotonic decrease of RT correlations with SOA in a model combining shared noise and
shared signal. Instead, we have seen that the model with mutual excitation provides a better
accounting for the data (data not shown). A more quantitative comparison between models,
based on the calculation of the so-called Bayesian factors (the ratio of the probabilities of the
data given each model), lies beyond the scope of this work.

The experimental data used for the fits comprised the data in Figure 4, A and C, which
characterize the dependence of mean SRT and correlations on the SOA. We estimated
model parameters using an optimization algorithm that minimized the difference between
the experimental data and the predictions from the model, weighing each difference
according to the precision of each experimental data point (for details, see Materials and
Methods). The values of the best-fitting parameters are summarized in Table 1.

Consistent with the predictions of the mutual excitation models, the best fit coupling
parameters between the integrators are unequal. In all three monkeys, reach-to-saccade
coupling βr is at least three times as high as saccade-to-reach coupling βs. The asymmetry in
the coupling strengths obtained from optimizing the data was expected given the lack of
significant negative correlations for SOA longer than the mean SRT. Recall that, for models
with symmetric coupling, correlations are positive at short SOA and negative at longer SOA,
with comparable magnitudes.

In general, the mutual excitation model accounts for the facilitation of saccades observed at
short SOA. According to the model, mean SRT should start decreasing from its baseline
value as the SOA decreases below the mean SRT. This is because, on average, the reach can
speed up the accumulation process for the saccade only when overlap is positive. The
magnitude of the facilitation should be accentuated for shorter SOA (longer overlap) for the
same reason. These two predictions are consistent with the observations for all three
subjects, although there are some differences in the magnitude of facilitation as well as in
the SOA at which facilitation becomes noticeable. For instance, the mean SRT for monkey S
does not show a clear monotonic dependence on the SOA, in contrast to the other two
monkeys. This explains why the best-fit value for the recruitment time constant τ of the
integrator is considerably shorter than for monkeys J and H and, therefore, why the model
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predicts a mean SRT and an RT correlation that shows no clear dependence on SOA except
at very short SOA (<150 ms).

Our modeling efforts have been focused on how well the models account for the dependence
on SOA of the mean SRT and the RT correlations. We have not considered the dependence
of the mean RRT on SOA because RRT are likely to be affected by expectancy effects,
which are not accounted for by our simple models. In the dual RT task studied here, in
which SOAs are random and uniformly distributed, the saccade go signal provides
information about when the reach go signal is going to occur. This is because the probability
of appearance of the signal, given that it has not yet occurred, increases as time progresses.
Subjects are therefore more certain about when the second signal is going to appear as time
elapses since the appearance of the first signal. It has been reported that such increases in
expectancy consistently reduce RTs (Klemmer, 1957; Nickerson, 1965), and that, in general,
the mean RT is a monotonic decreasing function of the conditional probability of appearance
of the signal, or hazard function (Stilitz, 1972). It is thus reasonable to expect that the mean
RRT at long SOAs is reduced with respect to the mean RRT that would result in the absence
of expectancy effects.

When combined with the predictions of our model, expectancy effects can help explain the
observed non-monotonic dependence of RRT on SOA. According to our model, RRT are
mildly facilitated at short SOAs. Conversely, RRTs are shortened at long SOA because of
the increase of certainty brought about by the passage of time. Combined together, these two
factors leave a window of SOA values within which reaches are not speeded up, leading to a
non-monotonic dependence of mean RRT on SOA.

The reduction of RRT induced by increases in expectancy could be simply implemented in
our model by an extra input to the reach integrator. This input would be a monotonically
increasing function of the hazard function of the SOA, which for a uniform distribution is
approximately constant for short and mid-range SOA and grows increasingly faster at long
SOA, until it blows up when the SOA reaches its upper value. Because the exact dependence
of the input on the hazard function is unknown, introducing such input in the model would
require adding more free parameters to the description, which would increase the complexity
of the model.

Discussion
To better understand the mechanisms behind eye–hand coordination, we designed an SOA
task in which reach and saccade go cues were separated in time by a variable time interval.
We then studied RT correlations and mean RTs as SOA varied. RT correlations were high
when movements were cued at the same time. When movements were separated by a few
hundred milliseconds, those correlations disappeared. SRTs were on average faster than
RRTs when reach and saccade go cues were simultaneous, suggesting facilitation when
saccades are made with a reach.

We compared the behavioral data with predictions from a family of network models
implementing integrate-to-threshold dynamics. In all models, each movement RT is defined
by the time needed for neuronal activity to reach a prescribed level, consistent with the
finding that RTs are strongly correlated with the firing activity of areas coding for motor
planning and preparation (Riehle and Requin, 1993; Hanes and Schall, 1996; Roitman and
Shadlen, 2002), as well as with the phenomenological diffusion models of RT (Ratcliff,
1978). We have considered a family of models with two neuronal populations that encode
saccade and reach preparation. The working hypothesis is that facilitation and correlation of
RTs reflects interaction between neural populations involved in preparing movements. We
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have considered several plausible mechanisms of interaction, including common
neuromodulation, shared inputs, and direct coupling, and have proposed simplified models
for each of them, to disentangle the effect of each type of interaction on the dependence of
the statistics of RTs on the SOA.

Of all the models we analyzed, only the model with two mutually coupled integrators can
account for the behavioral data. The model is sufficiently specific to capture the decrease of
RT correlations with SOA and the increase of mean SRT with SOA but also sufficiently
flexible to account for the differences across subjects. The undershoot in correlations, which
is observed in monkey J for SOA longer than the mean SRT, provides an interesting test of
the model architecture. According to the integrator model, the undershoot arises because, for
SOAs slightly longer than the mean SRT, saccades that are slower than average lead to
delayed peaks of saccade-related activity that speed up the reach. As a result, SRTs and
RRTs are anticorrelated. Importantly, this analysis depends on trials for which SOA is
greater than the mean SRT across trials. When RT correlations are recalculated in terms of
overlap, defined as the time elapsed between the reach cue and the saccadic response, RT
correlations are negligible at negative overlaps, i.e., when the reach cue is delivered after the
SRT. RT correlations vanish at negative overlaps because the time course of activity of the
reach unit, which ultimately determines RRT, is independent of saccade activity that
determined the SRT. Zero RT correlations for negative overlaps are a strong prediction of
the integrator model. This prediction is borne out by the behavioral data in all three
monkeys.

The models proposed here are idealized descriptions of the dynamics of neural populations
and their potential interactions. We chose a minimal description that incorporates the basic
elements of neural processing without attempting to link model parameters to the underlying
neurophysiology. More biologically realistic models, such as a network of spiking neurons
with explicit synaptic and neuronal dynamics, will not necessarily change the behavioral
predictions if the main assumption, that behavioral responses are triggered when neuronal
population activity reaches a threshold, remains the same. Predictions also rely on neuronal
activity smoothly decaying after reaching threshold. Smooth decay is consistent with the
observation that the neuronal activity correlated with RTs decays gradually after reaching its
peak (Hanes and Schall, 1996) and is implemented in our model by turning off the external
inputs, which makes the after-threshold activity decay. Although this particular choice
shapes the dependence of mean RRTs and RT correlations on SOA, we do not expect these
dependences to change dramatically with other reset mechanisms.

Reaction times and eye–hand coordination
SRTs and RRTs are often correlated when the movements are made together, although the
degree and underlying cause of correlations in various eye–hand tasks is unclear. Previous
studies have reported RT correlations ranging from very high (R = 0.8) (Herman and
Maulucci, 1981) to moderate (Prablanc et al., 1979a; Gielen et al., 1984; Fischer and Rogal,
1986) to relatively low (R < 0.5) values (Biguer et al., 1982). Bekkering et al. (1994) found
that eye movements were faster when made separately from a hand movement to the same
target, suggesting interference instead of facilitation. However, the study used very large
stimuli to emphasize speed instead of accuracy and reported that, unlike previous eye–hand
movement studies (Prablanc et al., 1979a,b; Herman and Maulucci, 1981; Gielen et al.,
1984; Fischer and Rogal, 1986; Abrams et al., 1990), the eye did not tend to move before the
hand and RT correlations were small. A saccade and pointing study also found saccades
slowed when combined with pointing, although manual responses were faster when made
with saccades (Mather and Fisk, 1985). Hence, many factors can influence relative eye–hand
RTs.
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Correlations can also result from common sensory processing. In a sensory, perceptual
paradigm, if the sensory cues used to initiate movement are difficult to detect or
discriminate, variations in the duration of sensory processing will result in significant trial-
to-trial variations in RT. When sensory processing drives two movements, the trial-to-trial
variations in sensory processing will influence RT for each movement, giving rise to
stronger RT correlations. The shared signal model we present might describe shared inputs
attributable to sensory processing.

Shared input signals may not only be important during sensory, perceptual paradigms but
may also describe subjects that are uncertain about task contingencies, for example, during
early stages of behavioral training or exposure to a task. Task uncertainty could lead to a
processing stage common to both effectors whose variability drives RT correlations. During
initial training for this task, we observed large RT correlations (R > 0.8) that may be
attributed to lack of practice. Once subjects became familiar with the task, RTs became
faster and RT correlations fell, stabilizing at the values presented here (0.4–0.6).

Our results speak to the question of whether reaches are more strongly influenced by
coordinated saccades or vice versa, that is, whether we look to where we reach or whether
we reach to where we look (Carey, 2000; Horstmann and Hoffmann, 2005). We demonstrate
the best fit when the reach-specific integrator drives the saccade-specific integrator.
Asymmetric coupling suggests that eye movements can be tied to hand movements. Fisk and
Goodale (1985) studied RTs of eye and arm movements to visual targets presented
ipsilaterally or contralaterally to the starting stimulus. Interestingly, SRTs were slower when
made with a contralateral reach, although there was no difference in RTs when saccades
were made without a reach.

Coordination is flexible, and eye–hand interactions may be highly task specific. Here, the
instruction to reach after the saccade may have led to asymmetry in the underlying
behavioral mechanism. If so, instructing subjects to reach and then saccade could yield the
reverse pattern of results, effectively switching SRT and RRT in the results above and
implying asymmetric coupling of the saccade to the reach. This would demonstrate dynamic
dynamic functional coupling, but additional experiments are needed to directly test this
alternative.

Dual-task paradigms
Dual-task paradigms have a long history in the study of psychological processes (Pashler,
1998). Sometimes, these tasks interfere with each other as a result of bottlenecks in
sensorimotor processing or central processing. According to the single-channel hypothesis
(Welford, 1952; Broadbent, 1958), there is a delay in the processing of a second signal while
the first signal is being processed. The delay is taken to be a sign of limited capacity central
processing. Evidence for capacity limitations comes from results that show the RT of the
second of two closely spaced signals is slower and inversely proportional to the time
between signals (Smith, 1967). Slowing of the second response is called the psychological
refractory period (Welford, 1952). The increased RRT at short SOA that we observe shares
similarities to the traditional psychological refractory period. Consequently, slowing around
the SRT could be attributable to bottleneck effects in a channel that processes incoming
sensory information. However, unlike classic psychological refractory effects, the longest
RRT occurs around the saccade and is not inversely proportional to the SOA.

Facilitation of the SRT for short SOA is a prominent effect in our behavioral data. However,
facilitation is not necessarily explained by a capacity limit. Dual-task paradigms also depend
on task difficulty, because concurrent performance of easy tasks is speeded compared with
individual performance, whereas concurrent difficult tasks are slowed (Keele, 1968).
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Coordinated eye–hand movements comprise a relatively easy task and could lead to speeded
RTs through mutual excitation. A more complete model of the RT behavior in the SOA task
could integrate the single-channel models for sensory input processing with other
mechanisms that capture facilitation and correlation in RTs.
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Appendix

parameter fitting
The data points in Figure 4, A and C, were fitted with the mutual excitation model described
by Equations 5 and 9, using the p = 5 free independent parameters of the model: τ, α, βr, βs,
and T0, which we denote collectively as θ. To simplify the optimization method, we binned
the raw dataset into N = 6 bins that summarized the experimental data. The parameter values
shown in Table 1 were estimated by minimizing the weighted sum of squared errors

(12)

where  are, respectively, the experimental and simulated mean SRTs

within bin i, whereas  refer, respectively, to the experimental and simulated

correlation coefficients of RTs in bin i. The symbols  denote the half-lengths

of the 95% confidence intervals of the experimental estimates of ,
respectively. The function S(θ) quantifies the differences between the predictions of the
model and experimental data by summing the squared error between measures, weighing
more heavily data points that are measured with higher precision. The estimates for the
mean RTs are more precise than the estimates for the correlation coefficient. From Equation
10, this implies that errors for the mean SRT contribute much more to the cost function than
the errors for the correlation coefficient. To compensate for the overrepresentation of mean
SRT errors to the cost function, we have introduced the coefficient b > 1, whose value is
estimated by requiring the two terms in Equation 10 to have the same order of magnitude.
Because the range of observed SRTs and correlations is ~50 ms and 0.5, respectively, and
the average error for the estimated mean SRT and correlations is ~2 ms and 0.1, the ratio
between relative errors of the mean SRT and of RT correlations is

(13)

This ratio could be used as a value for the compensation factor b. Introducing a
compensation factor comes at the price of biasing the fits toward less precise experimental
measures. We need therefore a compromise between giving correlation errors a decent share
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in the cost function (b ≃ 5) and weighing data points proportionally to their precision (b =
0). In our optimization algorithm, we set b = 1.5.

There are no simple closed-form expressions for  and hence for the cost
function S(θ). For this reason, we minimized S(θ) over the parameters using a direct search
algorithm in parameter space. We used the downhill simplex algorithm by Nelder and Mead
(1965), which does not require the evaluation of derivatives of the cost function and which
is thus appropriate for optimizing stochastic models (Bogacz and Cohen, 2004). In short, the
downhill simplex algorithm evaluates the cost function at p + 1 different vertices of a
simplex in the p-dimensional parameter space and replaces the vertex with highest cost by a
new vertex with lower cost. This new vertex is found by shrinking, expanding, or reflecting
the high-cost vertex of the original simplex. Each evaluation requires computing the values

of , which were estimated from a sample of 104 realizations of the
dual integration process with parameter θ and with SOA durations drawn from a uniform
distribution within the ith bin interval. The algorithm stops when the parameters do not
change from one step to the next for more than a predefined tolerance value. On average, the
algorithm required ~150 iterations before stopping.

Direct search methods, such as the downhill simplex algorithm, can find an area with a local
minimum relatively fast but cannot determine accurately the precise location of the
minimum. This lack of convergence is worsened by the fact that the cost function includes
sample estimates, which are inherently stochastic. More importantly, these algorithms may
converge to a local, rather than a global, minimum. To minimize these problems, we ran the
downhill simplex algorithm 100 times with different noise realizations. The p + 1 lowest
minima resulting from the 100 simulated trials were then selected as the vertices of a new
simplex, which was used as the initial simplex in a new algorithm execution. For this last
execution, we increased the sample size to 105 realizations per parameter setting to get more
accurate estimates. The optimization method is computationally expensive: each evaluation
of the cost function at one particular vertex of the simplex lasts a few seconds, which
implies a total process time of several days per subject. These times were reduced to a few
tens of hours using the New York University cluster facilities.
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Figure 1.
Correlations in RT and SOA task. A, Scatter plot of RRT against SRT for a simple look–
reach task. Each dot shows the RTs for one trial.B, Each trial starts with the subject fixating
and touching a central target. The appearance of the peripheral target (yellow) and
simultaneous disappearance of the central fixation target (red) cues the subject to make a
saccade to the peripheral stimulus. After a random interval, an auditory cue instructs the
subject to make a reach movement to the peripheral target. C, Distribution of SOA
durations. In 70%of reach-and-saccade trials, the SOA was 0, whereas in the remaining 30%
of reach-and-saccade trials, SOA was a random duration drawn from a uniform distribution
between 0 and 620 ms. To prevent the subject from anticipating reaches, in 20% of the total
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number of trials, subjects had to respond to the saccade cue only and keep touching the
central target (delayed saccade and touch trials).
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Figure 2.
Dual integrator model. A, Diagram of the integrator model for a dual reaction time task.
Each filled circle corresponds to an integrator, each of which receives specific external input
Ei (i = s,r stands for saccades and reaches, respectively). Self-directed arrows represent the
recurrent inputs within a unit. B, Schematic of the integrate-to-threshold process for the
initiation of saccades and reaches. When the go cue signal for the saccade appears at time t =
Tonset s, the input to the saccade unit is switched on and the unit starts integrating the input.
Similarly, the reach unit starts integrating after the onset of the go cue signal for reaches, at
time t = Tonset r = Tonset s + SOA. According to the model, the initiation of saccades and
reaches is given by the times of threshold crossing Tcross s and Tcross r, respectively. The

Dean et al. Page 26

J Neurosci. Author manuscript; available in PMC 2011 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



bottom panel shows the time course of the external inputs Es(t) and Er(t), which consist of a
step current perturbed by additive noise. Each current is switched off when the associated
integrator variable hits threshold.
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Figure 3.
Predictions of models with effector nonspecific interactions. A, Schematics of the models.
B, Mean RTs versus SOA, for different values of the relevant parameters of each model (see
Materials and Methods for interaction between integrators). For the model with common
gain modulation (left), each curve corresponds to different values of variance of the intertrial

gain variance, ; for the common noise model (middle), curves correspond to different
fractions c of shared fluctuations (Eq. 7), whereas for the shared signal model (right), curves
are parameterized by the fraction f of the external input that originates from the signal of the
counterparts (Eq. 8). In all these models, mean SRT and RRT are equal. C, RT correlation
versus SOA. Color codes as in B. The parameters of the integrator units are τ = 100 ms, α =
1, c = 0, f = 0, and σg = 0, unless stated otherwise in the subpanels.
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Figure 4.
Means and correlations of SRTs and RRTs as a function of SOA for the three subjects. A,
Mean SRT versus SOA. B, Mean RRT versus SOA. C, RT correlation versus SOA. Dashed
line shows zero RT correlation. Error bars are 95% confidence intervals.
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Figure 5.
Means and correlations of SRTs and RRTs as a function of overlap for the three subjects. A,
Mean SRT versus overlap. Data are separated at overlap = 125 ms for fast (solid line) and
slow (dashed line) SRTs for all three panels (see Results). B, Mean RRT versus overlap. C,
RT correlation versus overlap. Thin dotted line shows zero RT correlation. Error bars are
95% confidence intervals.
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Figure 6.
Predictions of the model of two mutually coupled integrators with symmetric (left column)
and asymmetric (right column) coupling. A, Model schematic. Both integrators are coupled
by excitatory connections. The parameter β controls the strength of the influence of the
activity of the reach unit on the activity of the saccade unit. The strength of the connection
from the saccade to the reach unit is zero. Parameters α, σ, and τ as in Figure 3. B, SRT as a
function of SOA duration for different levels of β. C, RRT as a function of SOA duration for
different levels of β. D, RT correlation as a function of SOA. E, RT correlation as a function
of overlap.
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Figure 7.
Model fits to behavioral data. A, Dependence of RT correlations on SOA for behavioral and
simulated data. B, Dependence of mean SRT on SOA, for behavioral and simulated data.
Black error bars indicate 95% confidence intervals of the experimental estimates (as in Fig.
4 but using N = 6 bins). Black curves, Model estimates, obtained from simulations, using
best-fit parameters (see Results for details and Table 1 for the parameter values); red shaded
area, 95% confidence region of the model estimates.
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