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Abstract
Studies utilizing selective pharmacological antagonists or targeted gene deletion have
demonstrated that type 5 metabotropic glutamate receptors (mGluR5) are critical mediators and
potential therapeutic targets for the treatment of numerous disorders of the central nervous system
(CNS), including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome,
Parkinson’s disease, and gastroesophageal reflux disease. However, in recent years, the
development of positive allosteric modulators (PAMs) of the mGluR5 receptor have revealed that
allosteric activation of this receptor may also be of potential therapeutic benefit for the treatment
of other CNS disorders, including schizophrenia, cognitive deficits associated with chronic drug
use, and deficits in extinction learning. Here we summarize the discovery and characterization of
various mGluR5 PAMs, with an emphasis on those that are systemically active. We will also
review animal studies showing that these molecules have potential efficacy as novel antipsychotic
agents. Finally, we will summarize findings that suggest that mGluR5 PAMs have pro-cognitive
effects such as the ability to enhance synaptic plasticity, improve performance in various learning
and memory tasks, including extinction of drug-seeking behavior, and reverse cognitive deficits
produced by chronic drug use.
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1. Glutamateric Neurotransmission
Glutamate is the most prevalent excitatory neurotransmitter within the central nervous
system (CNS) and, upon its release into the synaptic cleft, can bind to one of three different
ligand-gated ionotropic glutamate receptors (iGluRs): the N-methyl-D-aspartate (NMDA)
receptor, the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor, and
the kainic acid (KA) receptor. In addition to activation of iGluRs which mediate fast
excitatory neurotransmission, glutamate can also bind to G-protein coupled metabotropic
glutamate receptors (mGluRs) which mediate slower modulatory neurotransmission.

There are currently eight characterized mGluR subtypes that are subdivided into three
distinct groups based upon their neuroanatomical distribution, pharmacological profile,
sequence homology, and coupling to intracellular signal transduction cascades [1-5]. Group
I mGluRs (mGluR1 and mGluR5) are coupled to Gq/11 G-proteins and are primarily
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localized to postsynaptic elements in the brain, such as the perisynaptic annulus of dendritic
spines. mGluR5 receptors have a broad distribution within the CNS, with moderate to high
expression levels in the cerebral cortex, dorsal and ventral striatum, olfactory bulb and
tubercle, septal area, hippocampus, inferior colliculus, and spinal nucleus of the trigeminal
nerve [6-8]. Activation of Group I mGluRs results in increased calcium release from
intracellular stores resulting in cell depolarization, enhanced cell excitability, and activation
of numerous intracellular signaling molecules such as protein kinase A (PKA), protein
kinase C (PKC), mitogen-activated protein kinase (MAPK), extracellular signal-related
kinase (ERK), and cAMP response element binding protein (CREB) [3-5]. Group II
(mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7, and mGluR8) mGluRs
are Gi/o-coupled receptors that are often localized on presynaptic terminals. Upon activation,
these receptors inhibit the activity of adenylyl cyclase, resulting in a decreased formation of
intracellular cyclic adenosine monophosphate (cAMP). These presynaptic mGluRs can act
as releasing-regulating autoreceptors that provide negative feedback to inhibit glutamate
release. It should be noted that several mGluR subtypes, particularly mGluR3 and mGluR5,
have also been identified on glial cells such as astrocytes [9-11].

2. mGluR5-NMDA Receptor Interactions
mGluR5 receptors are physically coupled to NMDA receptors by various scaffolding
proteins including PSD-95, Shank, and Homer, as well as via a direct interaction [12]. In
addition, mGluR5 receptors are biochemically coupled to NMDA receptor function via PKC
[5]. As a result of these molecular and biochemical interactions, activation of mGluR5
receptors results in enhanced functionality of the NMDA receptor [13-18]. This mGluR5-
NMDA interaction has been observed in numerous brain preparations, whereby activation of
mGluR5 receptors with an orthosteric agonist [such as chlorohydroxyphenylglycine (CHPG)
or dihydroxyphenylglycine (DHPG)] or a positive allosteric modulator (PAM, see below)
potentiates NMDA receptor-mediated responses to exogenously applied glutamate or
NMDA. As will be discussed below, this indirect enhancement of NMDA activity by
mGluR5 receptor activation has become a recent focus for the development of non-
monoaminergic treatments for schizophrenia [5,19-24]. In addition, it appears that indirect
enhancement of NMDA receptor function by allosteric potentiation of mGluR5 receptors
also enhances synaptic plasticity [18,25], performance on certain learning and memory tasks
[25-28], and reverses cognitive and motivational deficits produced by drugs of abuse or
NMDA antagonists [29-31].

3. Discovery and Chemical Properties of mGluR5 Receptor Positive
Allosteric Modulators (PAMs)

Positive allosteric modulators (PAMs) of mGluR5 receptor function were originally
developed with the intent of indirectly increasing NMDA receptor function to alleviate some
of the cognitive deficits associated with schizophrenia, as there is a wealth of evidence
suggesting that NMDA hypofunction contributes to cognitive deficits observed in this
disorder [19-21,32-34]. mGluR5 PAMs were hypothesized to be advantageous over
orthosteric mGluR5 agonists such as CHPG because the latter compounds: (1) offer poor
discrimination between mGluR receptor subtypes due to the high degree of sequence
homology of the glutamate binding site; (2) exhibit poor brain penetrance following
systemic administration, and (3) cause rapid mGluR5 receptor desensitization. In an effort to
circumvent these issues, mGluR5 PAMs were developed to bind to the receptor at a site that
is distinct from the orthosteric glutamate binding site, and increase the functioning of the
receptor in the presence of binding of its endogenous ligand glutamate. The first mGluR5
PAM to be characterized was 3,3′-difluorobenzaldazine (DFB) in 2003 [35], which
exhibited poor potency and solubility in aqueous solutions, and was brain impenetrant
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making it unsuitable for characterization in behavioral assays. A year later, the initial
characterization of N-[5-chloro-2-[(-1,3-dioxoisoindolin-2-yl)methyl]phenyl]-2-
hydroxybenzamide (CPPHA) was described [36], and while this compound exhibited greater
potency than DFB, it was also brain impenetrant and thus also not amenable to behavioral
studies.

A breakthrough in systemically active mGluR5 PAMs that allowed for behavioral
assessment of potential antipsychotic efficacy came with the development of 3-cyano-N-
(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) [37,38]. A few years later, the synthesis
of (S)-(4-fluorophenyl)[3-[3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl]piperidin-1-
yl]methanone (ADX47273) was reported [39] (Figure 1). Both CDPPB and ADX47273
display intrinsic agonist activity at moderate to high concentrations [40,41]. More recently,
several other systemically active mGluR5 PAMs have been described, including N-
methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA) [42], and (4-hydroxy-piperidin-1-yl)
(4-phenylethynyl)phenyl)methanone (VU0092273) [43], the latter of which has been
optimized to give the orally active analog N-cyclobutyl-6-((3-
fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172) [43] that has increased
selectivity for mGluR5 receptors (Figure 1).

As mentioned earlier, mGluR5 PAMs act on a site of the receptor that is distinct from the
orthosteric glutamate binding site. The precise binding site(s) of mGluR5 ligands are
frequently assayed by displacement of radiolabeled ligands such as [3H]-quisqualate, which
binds to the orthosteric glutamate binding site, and [3H]3-methoxy-5-(2-
pyridinylethynyl)pyridine ([3H]-methoxy-PEPy), which binds to an allosteric binding site
that is the same as that for the prototypical mGluR5 receptor antagonist 2-methyl-6-
(phenylethynyl)pyridine (MPEP) as well as the neutral mGluR5 allosteric modulator 5-
methyl-6-(phenylethynyl)-pyridine (5-MPEP) [35,40,44]. With the exception of CPPHA
[45], all the aforementioned mGluR5 PAMs appear to bind to the MPEP binding site on the
receptor. Unlike CDPPB and ADX47273, the mGluR5 PAMs DFB, CPPHA and MPPA are
devoid of any intrinsic agonist activity, and DFB and CPPHA have differential modulatory
effects on the activation and phosphorylation of ERK1/2 [46]. As a result of this seemingly
different molecular site of action, differing patterns of activation of intracellular signaling
cascades, and a relatively shallow structure-activity relationship of CPPHA, recent attempts
have been made to utilize the CPPHA chemical scaffold to develop mGluR5 PAMs that do
not bind to the MPEP site on the receptor. Such ligands include N-(5-chloropyridin-2-yl)-4-
propoxybenzamide (VU0001850), 4-butoxy-N-(2-fluorophenyl)-benzamide (VU0040237)
and 4-butoxy-N-(2,4-difluorophenyl)benzamide (VU0357121). These compounds all exhibit
high potencies for activating mGluR5 receptors, with EC50 concentrations ranging from 33
nM to 1.3 μM [47]. To date, the systemic bioavailability of these compounds as well as their
behavioral profiles has not yet been evaluated.

4. Antipsychotic and Pro-Cognitive Effects of Systemically Active mGluR5
PAMs

Behavioral studies have shown that CDPPB, ADX47273, MPPA, and VU0360172 have
putative antipsychotic-like properties as measured by attenuation of: (1) hyperlocomotion
induced by the psychotomimetic compounds ketamine, phencyclidine, and amphetamine
[18,37-39,43,48], (2) deficits in prepulse inhibition produced by amphetamine [38], and (3)
conditioned avoidance responding [39]. In addition, CDPPB has been shown to reverse
deficits in cognitive and behavioral flexibility [29,31], negative learning [49], sucrose
preference [30], and alterations cortical neuronal activity [50-52] produced by the non-
competitive NMDA receptor antagonist MK-801. These findings provide evidence for
potential antipsychotic efficacy of mGluR5 PAMs, while simultaneously providing
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additional evidence for glutamatergic mechanisms (i.e., NMDA receptor hypofunction) that
underlie some of the symptoms of schizophrenia.

With regards to drug addiction, another neuropsychiatric disorder characterized by deficits
in cognition, many studies have shown that pharmacological antagonism of mGluR5
receptors reduces drug reward, reinforcement, and reinstatement of drug-seeking behavior
[53,54]. However, recent studies have shown that mGluR5 PAMs may be beneficial in other
aspects of drug addiction such as facilitation of the extinction of drug-seeking behavior and
reversing drug-induced cognitive deficits. For example, it has been demonstrated that
CDPPB facilitates the extinction of a cocaine-associated contextual memory [55] and
reduces extinction responding following cocaine self-administration [28,54]. It has also
recently been demonstrated that CDPPB reverses deficits in novel object recognition
produced by extended access to methamphetamine [56]. Thus, mGluR5 PAMs may be of
potential utility as pharmacological adjuncts to cue exposure therapy in the treatment of drug
addiction, and may potentially reverse certain cognitive deficits associated with heavy drug
use.

Since mGluR5 PAMs indirectly potentiate the function of NMDA receptors, which are
critically involved in cellular processes that are believed to underlie learning and memory
such as long-term potentiation (LTP) and long-term depression (LTD) of synaptic
transmission, one could predict that mGluR5 PAMs might enhance certain forms of synaptic
plasticity and learning and memory. Indeed, it has been shown that VU-29 [25] and
ADX47273 [18] potentiate LTP and/or LTD in hippocampal slices in vitro. Along these
lines, behavioral studies have shown that CDPPB and ADX47273 improve the performance
of unimpaired mice in the Morris water maze [25], a hippocampus-dependent learning task.
Other evidence of potential pro-cognitive effects of mGluR5 PAMs include findings that
intracerebroventricular infusion of DFB in rats improved performance in a spatial alternation
task [26], while both CDPPB and ADX47273 improved performance in a novel object
recognition task [27,39] and the five-choice serial reaction time test [39].

5. Summary and Conclusions
While the development of potent, brain penetrant mGluR5 PAMs with favorable selectivity,
side effect profiles, and physiochemical properties is still in its relative infancy, preclinical
studies thus far suggest that these compounds may represent a novel class of non-
monoaminergic antipsychotic medications. In addition, other preclinical studies suggest that
mGluR5 PAMs may improve cognitive deficits caused by heavy drug use as well as
facilitate the extinction of drug cue reactivity and drug-seeking behavior. Additional studies
are needed to determine if mGluR5 PAMs reverse cognitive deficits associated with other
neuropsychiatric disorders such as Alzheimer’s disease and other dementias.

Finally, while there is evidence for pro-cognitive effects of mGluR5 PAMs, all such studies
to date have been performed in animals in which learning and memory are demonstrated
through behavioral changes. Assuming that mGluR5 PAMs will eventually enter clinical
trials in human subjects, it remains to be seen whether these compounds have pro-cognitive
effects with regards to cognitive functions such as declarative memory, language
acquisition, long-term memory recall, etc. It also remains to be determined whether the pro-
cognitive effects of mGluR5 PAMs are more pronounced in the diseased brain versus that of
healthy unimpaired subjects.
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Figure 1.
Structure of systemically active mGluR5 PAMs.
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