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Abstract

Accurate calibration of sensory estimators is critical for maintaining accurate estimates of the
environment. Classically, it was assumed that sensory calibration occurs by one sense changing to
become consistent with vision; this is visual dominance. Recently, it has been proposed that
changes in estimators occur according to their relative reliabilities; this is the reliability-based
model. We show that if cue combination occurs according to relative reliability, then reliability-
based calibration assures minimum-variance sensory estimates over time. Recent studies are
qualitatively consistent with the reliability-based model, but none have shown that the predictions
are quantitatively accurate. We conducted an experiment in which the model could be assessed
quantitatively. Subjects indicated whether visual, haptic, and visual-haptic planar surfaces
appeared slanted positively or negatively from frontoparallel. In preadaptation, we determined the
visual and haptic slants of perceived frontoparallel, and measured visual and haptic reliabilities.
We varied visual reliability by adjusting the size of the viewable stimulus. Haptic reliability was
fixed. During adaptation, subjects were exposed to visual-haptic surfaces with a discrepancy
between the visual and haptic slants. After adaptation, we remeasured the visual and haptic slants
of perceived frontoparallel. When vision was more reliable, haptics adapted to match vision. When
vision was less reliable, vision adapted to match haptics. Most importantly, the ratio of visual and
haptic adaptation was quantitatively predicted by relative reliability. The amount of adaptation of
one sensory estimator relative to another depends strongly on the relative reliabilities of the two
estimators.

Introduction

Sensory systems must maintain “internal consistency” to ensure that estimates of an
environmental property obtained from different sensors agree with one another. Sensory
systems must also maintain “external accuracy” to ensure that estimates are veridical and
that motor behavior achieves desired goals. Maintaining internal consistency has often been
incorrectly modeled as equivalent to maintaining external accuracy. We ask how human
sensory systems maintain internal consistency among sensor estimates.

Consider two sensors, visual (V) and haptic (H), estimating environmental property S. We
represent this as follows: 5=, (S)and S, =, (S), where fy and fy are the estimators and
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S, and 5, are their estimates. The sensory system is internally consistent when

E (§‘) =E (EH) where E is the expectation of each estimate.

Several investigators claim that vision determines the combined estimate. In such “visual
capture,” what is seen determines what is felt or heard (Rock and Victor, 1964; Hay et al.,
1965; Warren and Rossano, 1991). Others claim that the combined estimate is a statistically

optimal, minimum-variance, weighted average. Given two Gaussian-distributed estimates '§V
and 5, the combined estimate is as follows:

Svn=w, S, +w, S, (1)
ry, r
Wy=———w,=
rytry, ryt+r, (2)
el
ri=1/o7, €)

where wy and wy are the combination weights and ry and ry are the reliabilities of the
estimates, where reliability is defined as the inverse of the measurement variance, o2 (Yuille
and Bulthoff, 1996; Jacobs, 1999). Combining information this way provides a better
empirical account of sensory combination than does visual capture (Ernst and Banks, 2002;
Gepshtein and Banks, 2003; Alais and Burr, 2004).

If estimators in the optimal combination model (Egs. 1-3) are not calibrated, problems arise.
Consider presenting a surface with a slant of 0° to the eye and hand. Suppose that vision and
touch are equally reliable, but that distorting spectacles have biased vision by 20° (Adams et
al., 2001). When the stimulus is seen and felt, the bias causes an inaccurate combined
estimate of 10° (Eq. 1), undercutting a potential benefit of cue combination: increased
accuracy. Thus, the combination model that is optimal for unbiased estimators generally
yields suboptimal estimates when the estimators are biased. Internal inconsistency
introduces another problem: If the stimulus is seen but not felt, its perceived slant will be
20°. If it is felt but not seen, it will be 0°. An achievement of perception is undermined:
perception of an environmental property as constant despite changes in the proximal stimuli
used to estimate the property.

These problems show why cue calibration is essential for cue combination. The classic
studies on cue calibration examined how vision and another sense respond to miscalibration.
The data often suggest that nonvisual estimators, like touch, calibrate to match vision in
spatial tasks, a behavior called “visual dominance” (Rock and Victor, 1964; Hay and Pick,
1966; Knudsen and Brainard, 1991; Knudsen, 2002). In contrast, some recent studies show
that visual recalibration occurs (Lewald, 2002; van Beers et al., 2002; Atkins et al., 2003).
Perhaps a reliability-based model of cue calibration (Ghahramani et al., 1997) accounts for
human behavior better than visual dominance does, just as a reliability-based model of cue
combination is superior to visual capture. This model is given by the following:

Af, (S)=np, (5:1 - 3‘})
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and

Afy ($)=np, (S, - 5,) @)

Pv=WuiPp=Wy, (5)

where Afy and Afy are additive changes in the visual and haptic estimators, py and py are
the proportions of visual and haptic calibration, and n is a small positive constant
determining adaptation rate. Note that the proportion of visual adaptation equals the haptic
weight, not the visual weight; therefore, if the haptic weight is high, vision should adapt
more and vice versa. Assuming that estimators do not drift, this model maximizes the
reliability of the combined estimate and minimizes the change in bias after discrepancy is
introduced.

Materials and Methods

Overview

A strong test of the reliability-based model of sensory calibration should have three features.
(1) The experimental design should include measurements of the reliability of each
estimator so that the quantitative predictions of the reliability-based model can be computed.
(2) The relative reliabilities of the estimators should be manipulated across a reasonable
range so that different reliability-based outcomes can be generated. (3) A purely perceptual
response should be used so that one can distinguish sensory from motor recalibration.

Our experimental design incorporates all three features. With respect to the first issue, we
measured the reliabilities of the visual and haptic estimators separately before adaptation
began. With respect to the second issue, we manipulated the relative reliabilities of vision
and haptics and examined adaptation for different relative reliabilities. In one condition,
vision was more reliable, so the reliability-based model predicted more haptic adaptation. In
another condition, haptics was more reliable, so more visual adaptation was predicted. With
respect to the third issue, subjects compared their slant percepts to an internal standard: they
indicated whether visual and haptic surfaces were slanted right-side back (positive slant) or
left-side back (negative) from frontoparallel. Thus, changes in either the visual or haptic
estimator could be detected and measured. Three previous studies contained some of these
design features (Ghahramani et al., 1997; Lewald, 2002; van Beers et al., 2002), but to our
knowledge, none contained all three. We expand on this point in the Discussion.

The experiment consisted of two distinct but closely related studies: a cue-combination
study and a cue-calibration study. The combination study measured estimator reliabilities.
Those reliabilities were used to construct the conditions in the calibration study. The
calibration study examined whether visual dominance or the reliability-based model
provides a better description of human cue calibration. Visual dominance predicts that all
adaptation will be haptic for all relative reliabilities. In other words, it predicts that the
haptic estimator will change during adaptation and that the visual estimator will not, even
when the reliability of the haptic estimator is greater than that of the visual estimator. The
reliability-based model predicts that the less reliable estimator will adapt more, and by an
amount predicted by the reliability ratio (Egs. 4,5).
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Ten subjects, 22-33 years of age, participated. All were naive to the experimental purpose,
were right handed, and had normal stereopsis and normal or corrected-to-normal visual
acuity.

The stimulus was a 110 x 110 mm? plane that was slanted about the vertical axis (tilt = 0°).
Slant ranged from —10 to 10° with an average of 0°. To estimate slant, subjects viewed the
plane binocularly and/or touched it with the index finger and thumb.

The haptic stimulus was generated by two PHANToM (SensAble Technologies) force-
feedback devices, one each for the index finger and thumb. Finger and thumb movements
had all six degrees of freedom in the 20 cm3 workspace. The three-dimensional (3D)
positions of the tips of the finger and thumb were monitored, and appropriate forces were
applied when they reached the positions of the simulated haptic object. The PHANToMs
provided a compelling simulation of the orientation, size, and stiffness of the stimulus plane.

The visual stimulus was a random-dot stereogram simulating a slanted plane. The dots
subtended 8 arcmin at the 49 cm viewing distance. Dot density was ~3 dots/deg2. New dots
were displayed with each presentation. Finger and thumb positions were tracked by the
PHANToOMSs and indicated by small 3D markers that were visible between trials and
invisible during trials. A rectangular aperture was positioned 3 + 0.5 cm in front of the
slanted plane's center. The aperture was 92 mm high and ranged from 12 to 60 mm in width.
With a narrower aperture, fewer dots were visible, and visual reliability decreased (verified
by measuring slant-discrimination thresholds).

The apparatus was calibrated to align the visual and haptic stimuli spatially. Trials were
initiated by the subject placing the finger and thumb within a visible sphere, 4 cm in
diameter, that was 5 + 1 cm in front of the center of the slanted plane. In the vision-alone
trials, stimulus presentation began 400 ms after the fingers reached the starting location. In
haptic-alone trials, stimulus presentation began when the thumb and finger contacted the
plane, which for most subjects was ~400 ms after their digits entered the starting sphere.
Visual- haptic trials were initiated in the same way as haptic-alone trials. In all cases,
stimulus duration was 1 s.

Perceived slant was measured using a one-interval, two-alternative forced-choice procedure.
In each interval, a plane was presented (visual-alone, haptic-alone, or visual- haptic). At the
end of the presentation, the subject indicated whether he/she perceived the plane to be
slanted positively or negatively from frontoparallel. No feedback was provided. Slant was
varied from trial to trial according to the method of constant stimuli. Using a maximum-
likelihood criterion (Wichmann and Hill, 2001), we found the cumulative Gaussian function
that best fit the psychometric data. Those data were the proportion of trials in which the
subject indicated that the plane was positively slanted as a function of its physical slant. The
mean of the best-fitting function was our estimate of the slant that looked frontoparallel and
the SD of the function was our estimate of the just-noticeable difference (JND).

In each block of the cue-combination study, visual-alone, haptic-alone, and visual- haptic
trials were randomly interleaved. Two hundred trials were presented in each of the three
conditions at each of five aperture widths. Each block consisted of 300 trials (100 per
condition). Two blocks were run at each aperture width for a total of 10 blocks.
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In the cue-calibration study, two aperture widths were chosen for each subject based on their
results in the cue-combination study. We used the two widths that made the visual- haptic
reliability ratio (ry:ry) equal to 3:1 and 1:3. By using these ratios, we could readily
determine whether changes during adaptation were reliability based or not. Each
experimental session lasted ~60 min and consisted of three phases: preadaptation,
adaptation, and postadaptation. Each subject went through four such sessions, one for each
pairing of two aperture widths (reliability ratio = 3:1 and 1:3) and two visual- haptic
discrepancies during adaptation (—9 and +9°), where discrepancy is defined as Sy — Sp.
Sessions were always separated by at least 24 h to minimize possible carryover from
previous sessions.

In the preadaptation phase, the visual-alone, haptic-alone, and visual— haptic stimuli were
each presented 100 times for a total of 300 trials. We used this phase to determine the
visual-alone, haptic-alone, and visual- haptic surface slants that were perceived as
frontoparallel before adaptation began.

Only visual- haptic stimuli were presented in the adaptation phase. The discrepancy
between the visually and haptically specified slants was increased by 1.5° every 96 trials
until it reached a maximum of £9.0°. By gradually increasing the discrepancy, we made it
less apparent to the subjects and achieved more complete adaptation (Kagerer et al., 1997).
One hundred twenty trials were run at the largest discrepancy, so there were 600 trials in the
adaptation phase. The slants of the visual- haptic stimuli (i.e., the average of the visually
and haptically specified slants) ranged from —10 to 10°, but the average of those slants
across the adaptation phase was 0°. The adaptation phase lasted ~30-45 min.

The postadaptation phase was identical to the preadaptation phase except that the visual—
haptic trials retained the largest discrepancy presented in the adaptation phase (—9.0 or 9.0°).
By presenting the visual- haptic discrepant stimuli, we assured that adaptation was
maintained and therefore that subjects did not regress to their preadaptation calibration. We
assessed visual adaptation by comparing preadaptation and postadaptation responses to the
visual-alone stimuli and haptic adaptation by comparing preadaptation and postadaptation
responses to the haptic-alone stimuli.

The subjects were questioned at the end of the four experimental sessions. None noticed the
visual- haptic discrepancy during the adaptation and postadaptation phases.

Recalibration experiment

Figure 1 shows psychometric data for one representative subject for the visual-alone (upper
row), haptic-alone (middle row), and visual- haptic (lower row) stimuli in the cue-
combination study. The proportion of trials in which the subject indicated the stimulus was
slanted positively is plotted as a function of stimulus slant. The slopes of the visual-alone
functions were lower for narrow apertures than for wide ones. Thus, the visual slant
estimates were, as we hoped, less reliable with narrow apertures. The slopes of haptic-alone
data were unaffected by the width of the aperture.

Figure 2 provides summary data for the same subject. Figure 2A plots JNDs as a function of
aperture width for visual-alone, haptic-alone, and visual- haptic stimuli. The visual- haptic
JNDs were well predicted by the optimal cue-combination model (Egs. 1-3). Figure 2B plots
the slants that were perceived as frontoparallel as a function of aperture width. The subject
had small biases of opposite signs in the visual and haptic estimates of slant. As predicted by
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the optimal combination model, visual- haptic estimates were similar to the reliability-based
averages of the visual and haptic estimates (Egs. 1-3).

Figure 3 plots the data from all the subjects. Observed JNDs (Fig. 3A) and visual— haptic
slants perceived as frontoparallel (Fig. 3B) are plotted as a function of the values predicted
by the optimal combination model. The cue-combination model, which weights each cue
according to its reliability, provided an excellent account of the data (but see Rosas et al,
2005).

From the cue-combination data, we found the aperture widths that would produce reliability
ratios of 3:1 and 1:3 for each subject. These ratios allowed us to most readily distinguish the
predictions of the visual-dominance and reliability-based models. If visual dominance
occurs, the haptic estimator should exhibit a significant change and the visual estimator
should not change at all, regardless of the reliability ratio. If reliability-based recalibration
occurs, vision should change by one-third as much as haptics when the reliability ratio is 3:1
(ry:ry) and by three times as much as the haptics when the ratio is 1:3.

Figure 4 shows the cue-calibration data. Figure 4A plots the change in the visual estimator
between the preadaptation and postadaptation phases on the abscissa and the change in the
haptic estimator on the ordinate. The visual-dominance prediction is the vertical dotted line
(no change in vision). The reliability-based predictions are the magenta and purple dashed
lines for the 3:1 and 1:3 reliability ratios, respectively. The magenta circles are the data
when the reliability ratio was 3:1, and the purple squares are the data when the ratio was 1:3.
The data are much more consistent with the reliability-based model than with visual
dominance. Figure 4B shows the predictions and observations in another format. The
proportion of change between preadaptation and postadaptation is plotted as a function of
the reliability ratio (ry:ry). Again the reliability-based model provides a much more accurate
account of the data than visual dominance.

Modeling of recalibration

An observed discrepancy between two sensory estimates of the same environmental
property could be due to random measurement error to which the system should not
recalibrate, or due to systematic error to which the system should recalibrate. The problem
of determining whether two sensory estimators are internally consistent is equivalent to the
statistical problem of determining whether two random variables have the same means
(Burge et al., 2008). How should the nervous system adapt to minimize systematic error,
thereby maintaining internal consistency over time? That is, what is the optimal strategy? In
the absence of external feedback, one cannot determine which of two estimators is
inaccurate. We therefore investigated the strategy that minimized the change in bias and
variance of the combined estimate.

We simulated recalibrating systems under two conditions. In the first simulation, we
assumed that individual estimators do not randomly drift. In the second simulation, we
considered the effects of drifting estimators. In both simulations, the reliability ratio of the
two estimators (ry:ry) was set to 1:3 and a discrepancy of fixed size was introduced between
the visual and haptic estimators at time 0. We simulated the effects of the introduced
discrepancy under all possible permutations of visual combination weights, wy, and
proportions of visual change, py. Under the present assumptions of the model, and in the
absence of additional information about the probability of an external disturbance, there is
no principled prediction for the adaptation rate. We therefore set the adaptation rate n to an
arbitrary but plausible value: 0.05. Other adaptation rates yielded the same qualitative
results. We then tracked the changes to the two estimators and the combined estimate as the
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estimators adapted over time. We repeated this procedure 1000 times each for a range of
combination weights and calibration proportions.

The simulation results for the optimal calibration rule and a suboptimal rule are in Figure 5.
The optimal calibration rule minimizes the variance and change in bias of the combined
estimates as the visual and haptic estimators change to restore internal consistency. Given
that the reliability ratio (ry:ry) was set to 1:3, the optimal combination weights (wy, and wy;
Eq. 2) are 0.25 and 0.75. The upper row shows the results when the calibration rule and
combination rule were matched (“optimal calibration rule,” i.e., py = 1 —wy), the visual
weight (wy) was 0.25, and the proportion of visual change (py) was 0.75. The middle row
shows the results for a suboptimal rule in which the combination and calibration rules were
not matched. When the calibration and combination rules match, the combined estimate
remains constant over time. When the rules do not match, the combined estimate's bias
changes as the system adapts over time. The amount of change of the combined estimate
depends strongly on the size of the initial discrepancy.

The lower row of Figure 5 summarizes the results for all possible combination weights and
calibration proportions. When the calibration and combination rules match (optimal rule;
i.e., py = 1 —wy), the variance of the combined estimator over time is minimized. When the
rules do not match (suboptimal rule), the variance is higher. When the discrepancy
introduced between the visual and haptic estimators is large, the combined estimator
variance is critically dependent on matching the rules. When the discrepancy is small, rule
matching is not nearly as consequential.

The simulation shows that matching the calibration and combination rules minimizes the
variance of the combined estimates as the visual and haptic estimators change to restore
internal consistency. Previous work has shown that the combination weights in sensory cue-
combination are essentially optimal (Ernst and Banks, 2002; Alais and Burr, 2004). Thus,
our simulation shows that reliability-based cue calibration is needed to minimize variance
over time (assuming that the estimators do not drift). Why is it advantageous to minimize
the variance of the combined estimate over time? To maintain external accuracy, the
adapting system has to compute error signals: the difference between the system's current
estimates and external feedback. Clearly, the variance of the error signal depends on the
variance of the current estimate. It is easier to detect systematic changes in low-variance
signals than in high-variance signals. Thus, by minimizing the variance of the combined
estimate, even during adaptation, the system becomes better able to detect the need to
recalibrate when external feedback becomes available (Burge et al., 2008). We conclude that
the reliability-based model of cue calibration is optimal in that it yields the lowest variance
combined estimate and makes the system most able to detect systematic changes between
sensory estimators.

The analysis thus far has assumed that estimators are generally stable and that significant
recalibration occurs only in the face of external disturbances. It is perhaps more likely that
individual estimators drift randomly from trial to trial (Baddeley et al., 2003), so we now
examine the consequences of such drift.

In a second simulation, we added random drift, d, to each estimator after the visual and
haptic changes (Afy and Afy) had been calculated. After each slant estimate on trial t, the
visual estimator was changed by Afy, + dy, and the haptic estimator by Afy, +dy,. We varied
the total amount of drift (dy + dy) and the ratio of the drift magnitudes (dy:dy) and observed
the effects by repeating the simulation in Figure 5 with one additional wrinkle: The
adaptation rate was set according to the Kalman-filter update rule, the optimal adaptation
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rule for dynamic linear systems with Gaussian-distributed noise (Kalman, 1960;Maybeck,
1979). The results are plotted in Figure 6. We observed two effects of interest:

1.  When the drift was small, the minimum variance was predicted by the estimator
reliability ratio (ry:ry). When the drift was large, it was predicted by the drift ratio
(dy:dy). Specifically, the visual and haptic calibration proportions were predicted
by the following:

_dy d,
d,+d, P

Py - d,+d,’ (6)

2. The estimator reliability ratio was a better predictor of the minimum-variance point
when the introduced discrepancy was large. The drift ratio was a better predictor
when the introduced discrepancy was small.

In summary, the reliability-based model accurately predicts the adaptation proportions that
yield the minimum-variance combined estimate when two conditions are present: (1) the
amount of random drift is small relative to the measurement variance (Eg. 3), and (2) the
discrepancy is large relative to the drift. If these two conditions do not hold, the adaptation
proportions yielding the minimum-variance estimate are better predicted by the relative
drifts defined in Equation 6. This result makes sense. If the drift is large relative to the
measurement variances (i.e., the inverse reliabilities), the measurement variance will have
very little effect. If, on the other hand, the drift is small relative to the measurement
variances, the measurement variance will have more effect, so the reliability-based model
provides a more accurate account. These simulation results are consistent with many years
of research on Kalman filter behavior.

Our main empirical result is that the reliability-based model provides an excellent account of
visual- haptic adaptation (Figs. 2—4). Our simulations show that the reliability-based
prediction is observed when the drift of the estimators is small relative to the measurement
noise associated with the estimators. From these two findings, we infer that the estimator
drift in the human experiment must have been small relative to the measurement noise,
under the assumption that the model is correct. We also found that the amount of visual
adaptation was slightly less than predicted by the reliability-based model and that haptic
adaptation was slightly more than predicted (these trends were not statistically significant).
From the simulation results, we see that this behavior is consistent with a visual estimator
that is more stable (less susceptible to drift) than the haptic estimator.

Discussion

Previous work and reliability-based calibration

Several investigators have proposed that the relative reliability of sensory estimators
determines the amount by which the estimators change during adaptation (e.g., Witten and
Knudsen, 2005). Three sets of investigators have tested this proposition (Ghahramani et al.,
1997; Lewald, 2002; van Beers et al., 2002). Ghahramani et al. (1997) examined visual—
auditory adaptation in a localization task. They measured the relative reliabilities of the
visual and auditory estimators. The visual reliability was much higher than the auditory, so
visual dominance and the reliability-based model made essentially the same predictions.
They observed that essentially all of the measurable adaptation occurred in the auditory
estimator, which is consistent with both the visual-dominance and reliability-based models.
Lewald (2002) also looked at visual-auditory adaptation. He found statistically significant
evidence for visual adaptation, which is inconsistent with visual dominance. He did not,
however, measure relative reliability, so one cannot tell whether his data were quantitatively
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consistent with the reliability-based model. van Beers et al. (2002) measured visual—
proprioceptive adaptation. They also observed significant visual adaptation, which is again
inconsistent with visual dominance. They also tested different conditions that were likely to
change relative reliabilities of the two estimators and observed sensible changes in the
amounts of visual and proprioceptive adaptation. They did not, however, measure estimator
reliabilities, so again one cannot determine whether the data were quantitatively consistent
with the reliability-based model.

Ghahramani et al. (1997), Lewald (2002), and van Beers et al. (2002) all assessed adaptation
with a pointing task. When motor responses are used, one generally cannot distinguish
sensory from motor recalibration. Consider, for example, the prism-adaptation study (von
Helmbholtz, 1867). A prism is placed in front of the eye and the accuracy of pointing to a
visual target is measured. When the prism is first introduced, pointing is displaced in the
direction of prism displacement. After a few trials, accuracy is restored, which shows that
adaptation has occurred. One cannot easily determine whether the adaptation reflects a
change in the visual estimate of direction, in the motor commands to point, or in the motor
system's response to a given command [but see Lewald (2002), Zwiers et al. (2003), and
Hernandez et al. (2008) for indirect methods that resolve this issue]. In the Ghahramani et al.
(1997), Lewald (2002), and van Beers et al. (2002) studies, some combination of sensory
and motor adaptation could have produced the adaptation effects they observed. Thus, by
using a pointing response, they were unable to determine how much of the adaptation they
observed was sensory.

In the work reported here, we assessed whether the reliability-based model of cue calibration
accounts quantitatively for human behavior. We measured the relative reliability of the
visual and haptic estimators, manipulated their relative reliabilities, and chose relative
reliabilities that allowed the predictions of visual dominance and reliability-based models to
differ sufficiently. We also used a purely perceptual task, so we could be confident that the
observed adaptation was all sensory. Our experiment was thus able to demonstrate
convincingly that the visual-dominance model does not account for cue calibration and,
more importantly, that the reliability-based model provides a quantitatively accurate account
of sensory cue calibration.

External accuracy

Perceptual and motor systems must maintain calibration for effective interaction with the
environment. The literature on recalibration has therefore focused primarily on how to
achieve and maintain the external accuracy of sensory and sensorimotor systems. However,
external accuracy cannot be maintained without external feedback, and because external
feedback is not always available, it is important to understand how the system performs
without it. We focused here on calibration in the absence of feedback: i.e., on the
maintenance of internal consistency.

To illustrate the importance of both internal consistency and external accuracy, it is useful to
examine a situation in which reasonable models of each make different predictions. This
occurs when a very reliable estimator becomes externally inaccurate. Adams et al. (2001)
created such a situation by placing a horizontal magnifier in front of one eye for every
waking hour for 1 week. Due to the magnifier, frontoparallel surfaces created binocular
disparities at the retinas that are normally associated with slanted surfaces. The magnifier
did not alter any other visual or nonvisual estimator. The predicted behaviors for internally
consistent and externally accurate models are quite different. Reliability-based recalibration,
which maintains internal consistency, predicts that the disparity cue should not adapt
because disparity was more reliable than other depth cues. In contrast, a model of external
accuracy predicts that disparity should adapt because it was the only cue made inaccurate by
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the magnifier. Adams et al. (2001) observed the second outcome: all of the change occurred
in the disparity estimator. Thus, calibration did not follow the reliability-based scheme of
Equations 4 and 5.

The Adams et al. (2001) result does not conflict with our analysis or results. During the
week in which the subjects adapted, they received feedback from everyday interactions with
the environment. The feedback was sufficient for the system to figure out that the disparity
estimator had become miscalibrated and therefore to adapt that estimator to achieve external
accuracy. What would have happened if subjects had been unable to interact with the
environment (e.g., they sat in one place without the ability to make movements to visible
objects) and disparity and texture were the only available slant estimators? Without
feedback about the accuracy of their percepts, the subjects could hope only to perceive
surface slants as constant and unchanging, regardless of which slant estimators were used.
Before internal consistency was achieved, disparity would yield a different estimate than
texture, and both would be different from the combined estimate. If the texture estimator
adapted to match disparity, the subject would have a stable, minimum-variance slant
estimate, but it would be externally inaccurate.

When more than two estimators are available (e.g., disparity, texture, motion parallax), it
would be rational to adjust the outlier (disparity). While adjusting the outlier may appear
rational, it does not guarantee external accuracy. There still must be a method for
incorporating external feedback to achieve external accuracy.

In summary, reliability-based adaptation yields the minimum-variance combined estimate
(assuming random estimator drift is small or nonexistent from trial to trial), and internally
consistent estimators ensure rigid percepts of the world. However, strict adherence to
reliability-based recalibration can lead to internally consistent, but externally inaccurate,
estimators. More research is needed on how sensory cue calibration, as distinct from
sensorimotor calibration, should incorporate external feedback to guide the relative
adaptation of different sensory estimators.

Neural mechanisms of sensory cue calibration

The neural mechanisms underlying sensory cue calibration are not well understood. It has
perhaps been worked out the best in the barn owl (Knudsen and Knudsen, 1989a,b; Knudsen
and Brainard, 1991). In these animals, vision and audition are both used to direct flight
toward prey. In analogy to the Helmholtz prism experiments, displacing prisms were
attached to the owls' heads and their flight paths were measured. Paths were initially
deviated in the visually specified direction and end-point accuracy decreased. After
prolonged adaptation, flight paths and endpoint accuracy became similar to baseline
behavior, which means that the owls had recalibrated their sensorimotor behavior (Knudsen
and Knudsen, 1989a,b). In the owl brain, two adjacent spatial maps seem to be involved in
estimating location: the inferior colliculus, fed primarily by auditory signals, and the optic
tectum, fed primarily by visual signals. The connections between these areas were examined
after adaptation and compared to the connections in normal animals. The topographic map
in the inferior colliculus reorganized after adaptation to match the map in the optic tectum
(Knudsen and Brainard, 1991). If this reorganization underlies the maintenance of internal
consistency, it appears that adaptation was implemented by changes in the auditory
estimator alone. In humans, audition is generally a less reliable indicator of location than
vision is (Alais and Burr, 2004). If vision is more reliable in barn owls too, the results of
Knudsen and Knudsen (1989a,b) are consistent with both visual dominance and reliability-
based adaptation. To distinguish the two models, one needs to decrease the relative
reliability of the visual estimator, which could be done by degrading the visual input. In this
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case, the reliability-based model would predict shifts in the optic tectum rather than the
inferior colliculus.
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Figure 1.

Cue-combination data from one representative subject. Visual-alone, haptic-alone, and
visual- haptic psychometric data are shown as a function of aperture width. The proportion
of trials in which the slanted plane was perceived as right-side back from frontoparallel is
plotted against the slant of the plane for visual-alone (top row), haptic-alone (middle row),
and visual- haptic (bottom row) trials. The icons at the bottom depict how the variation of
the width of the aperture through which the slanted planes were seen. Arrows indicate the
slant that is perceived as frontoparallel. The JND is one SD from perceived frontoparallel;
shallower slopes indicate larger JNDs.
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Figure 2.
Cue-combination results for one representative subject. A, Visual-alone slant discrimination

thresholds (blue circles) decreased systematically as aperture width increased. As expected,
haptic-alone discrimination thresholds (red squares) remained constant with aperture
changes. The blue line is an exponential fit to the visual thresholds. The red line is a
horizontal line fit to haptic JNDs. The black arrows mark aperture widths for which the
ratios of visual and haptic reliabilities are 3:1 and 1:3 (for this subject: 20.5 and 12.6 mm,
respectively). The visual— haptic thresholds (green triangles) and the reliability-based
prediction for combined thresholds are also shown (green dashed line). The error bars are
95% confidence intervals. B, Visual-alone, haptic-alone, and visual- haptic slants of
perceived frontoparallel. The green line is the zero-free-parameter reliability-based
prediction of the visual- haptic slants of perceived frontoparallel based on the unimodal
thresholds and unimodal slants of perceived frontoparallel. Across subjects, the visual bias
was not significantly different from zero (t test, tg) =—1.43, p = 0.19). The haptic bias was
significantly different from zero (t test, t(g), 3.1372, p < 0.012, mean = 2.1°, Cl = 0.58-3.59),
although the change in bias with aperture size was not significant (ANOVA, F( g) = 1.66, p
= 0.18). The haptic bias is presumably due to slight differences between the position tracked
by the force-feedback device and the actual surface of the finger.
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Figure 3.

Observed versus predicted data for the cue-combination study for all subjects. A, Observed
JNDs plotted against predicted JNDs (R2 = 0.603). The solid black line is a linear regression
to the data (y = 0.85x + 0.57). B, Slants that were perceived as frontoparallel plotted against
the predictions. Subjects performed in a manner consistent with the predictions (RZ = 0.605).
The solid black line is a linear regression to the data (y = 0.99x + 0.95). The positive shift of
the predicted slants of perceived frontoparallel reflects the slight haptic bias.
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Figure 4.

Adaptation predictions and data.A, Adaptation of each estimator in the conditions with high
(magenta circles) and low visual reliability (purple squares). Each symbol represents the
adaptation observed for one subject in one condition. The adaptation of each estimator was
quantified as the difference between the preadaptation and postadaptation slants of perceived
frontoparallel (PSEypost — PSEvpres PSEHpost — PSEHpre)- Error bars on the data points
represent + 1 SD of this difference. The visual-dominance model predicts that all the data
would lie on the vertical dotted line. The reliability-based model (Eg. 5) predicts that the
data from the two reliability conditions will fall on the dashed purple (3 times more visual
than haptic adaptation) and dashed magenta (1/3 times more visual than haptic adaptation)
lines. The solid lines represent the best fits to the data that passed through zero. The shaded
areas around the solid lines represent 95% confidence intervals for the best-fit lines from
1000 bootstrapped datasets. B, Group-average predictions and results. The average
proportion of visual and haptic adaptation is plotted in the two reliability conditions: high
and low visual reliability (ry:ry = 3:1 and ry:ry = 1:3, respectively). The horizontal dotted
blue and red lines represent the visual dominance predictions for visual and haptic changes,
respectively, as a function of reliability ratio. All of the change is predicted to be haptic,
regardless of reliability ratio. The diagonal dashed blue and red lines show the predictions of
the reliability-based model for visual and haptic changes as a function of reliability ratio.
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The blue squares and red circles represent the visual and haptic data. Error bars represent
95% confidence intervals computed from 1000 bootstrapped datasets.
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Figure 5.

Simulation results for estimators with the reliability ratio (ry:ry) set to 1:3 and an adaptation
rate of 0.05. Different adaptation rates did not change the qualitative effects. For different
combination weights and calibration proportions, we calculated the variance of the
combined estimate over time for 1000 simulated trials following an initial discrepancy. The
left, center, and right columns represent the results when the visual- haptic discrepancy

introduced at time 0 was large (5o2), medium (o), and small (o2/5), respectively. The
estimators did not drift randomly. The panels in the upper two rows plot the visual, haptic,
and combined estimates over time (blue, red, and green, respectively). The upper row shows
adaptation when the visual calibration proportion (py) was appropriate for reliability-based
adaptation (py = 1 — wy). The middle row shows adaptation when the visual calibration
proportion was inappropriate for reliability-based adaptation (py = wy). The bottom row
summarizes adaptation for a wide variety of parameters. The abscissa is the visual
calibration proportion (py). The ordinate is the visual combination weight (wy). Color
represents the variance of the combined estimate over time, dark red representing the
smallest variance. The white circles indicate the position of minimum variance in each
figure. The white-lettered labels A—F indicate the parts of those surfaces that are shown in
the panels of the upper two rows. The dashed yellow circles indicate the optimal calibration
rule given that ry:ry equaled 1:3: the visual calibration proportion and visual combination
weight that should yield minimum variance according to the reliability-based model.
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Figure 6.

Simulation results showing the variance of the combined estimate when the estimates
undergo a random walk. The abscissa in each panel is the visual calibration proportion (py)
and the ordinate is the visual combination weight (wy). Color represents the variance of the
combined estimate over time, dark red representing the smallest variance. The visual and
haptic estimates were characterized by random walks with drifts of dy, and dy. The
recalibration rate was set with a Kalman filter. The estimator reliability ratio (ry:ry) was 1:3,
as in the simulation in Figure 5. The top, middle, and bottom rows show the results when the

drift magnitude, dy + dy, was large (c>+0~), medium [0 +0, x 107%], and small
[o2+07 x 107, respectively. The two columns on the left show the results when the
discrepancy introduced between the visual and haptic estimates was Iarge(Sof,),and the two

columns on the right show the results when the introduced discrepancy was small (1 /50-3).
The first and third columns display the results when the drift ratio (dy:dy) was 3:1 and the
second and fourth columns the results when the ratio was 1:3. The dashed yellow circles
mark the predictions if minimum variance were determined by the reliability-based model
(i.e., by the ratio of estimator reliabilities ry:ry); they are always at (0.75, 0.25) because the
reliability ratio was always 1:3. The dashed blue circles represent the predictions if the
minimum variance were determined only by the drift ratio dy:dy. The white circles indicate
the calibration proportions and combination weights that yielded the combined estimate with
the lowest variance.
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