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Abstract
Superresolution Optical Fluctuation Imaging (SOFI) as initially demonstrated allows for a
resolution enhancement in imaging by a factor of square-root of two. Here, we demonstrate how to
increase the resolution of SOFI images by re-weighting the Optical Transfer Function (OTF).
Furthermore, we demonstrate how cross-cumulants can be exploited to obtain a fair approximation
of the underlying Point-Spread Function. We show a two-fold increase of resolution (over the
diffraction limit) of near-infrared quantum dot labeled tubulin-network of 3T3 fibroblasts

Introduction
Far-field optical super-resolution microscopy overcomes the diffraction limit as formulated
by Ernst Abbe over a century ago [1]. Since its first inception [2] and demonstration, the
area of (far-field) super-resolution microscopy has experienced a tremendous growth and
has already been thoroughly reviewed [3,4]. Superresolution Optical Fluctuation Imaging
(SOFI) [5] is a recent addition to the toolset of previously introduced super-resolution
methods. In comparison to previously established superresolution techniques, SOFI offers a
convenient alternative. It is conceptually different to e.g. localization based methods such as
PALM [6], STORM [7] and their variants [8,9], or to STED [2]. Even though it still relies
on the ‘on’ and ‘off’ switching properties of the probe, the blinking/photoswitching
requirements are greatly relaxed in comparison to STED or PALM (e.g. one could picture a
SOFI embodiment that is based on stochastic reorientations of non-blinking probes analyzed
by polarization optics). Unique SOFI attributes include compatibility with all microscopic
platforms (no need for hardware modifications), inherent 3D super-resolved z-sectioning,
and inherent background elimination.

SOFI is based on the spatio-temporal evaluation of the optical signal which stems from
independently fluctuating emitters. This is done by taking a movie of the sample and
subsequently calculating the temporal nth order cumulant for each pixel. Plotting the value
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of the nth order cumulant for almost any given set of time lags yields an image featuring a
resolution enhancement of a factor  over the conventional image.

We previously demonstrated SOFI resolution enhancement of a factor of  in imaging
applications. Here we report on an enhancement to the previously published SOFI
algorithm, resulting in a linear scaling of the resolution enhancement with the cumulant
order, i.e. the second-order cumulant results in a two-fold resolution enhancement.
Furthermore, we show how spatio-temporal cross-cumulants can be advantageously used to
find a good approximation of the Point Spread Function (PSF). The use of spatio-temporal
cross-cumulants also leads to an up-sampled SOFI image with an effectively reduced pixel
size. This in turn means that the systems magnification (nm / pixel) on array detectors (such
as CCD-cameras) is not limiting the achievable resolution in SOFI as will be shown in
simulations and experiments. In the following we will briefly summarize the underlying
theory of SOFI. Then, we will develop the formalism which enables us to increase the
apparent resolution of SOFI. Furthermore, we will demonstrate the advantages of spatio-
temporal cumulants.

Theory
Mathematically, image formation using an optical system can be written as:

(1)

where F is the signal observed at position r and time t , and Eq. (1) describes a convolution
of the systems PSF U(r) with the time-dependent emitter fluctuation functions fi(t), where
the index i refers to the ith emitter. The summation index is extending over all N emitters.
Note that fi(t) is not accounting for an emitter's movement but only for the time-dependent
fluctuations of its emission, such as fluorescence intermittency. We assume that the emitters
are immobile during image (movie) acquisition. Any motion (such as drift) during SOFI
acquisition would lead to a blurred image in SOFI and might even result in negative image
values.

Then, fi(t) can be written as

(2)

where the product εi·si(t) factorizes the fluctuations into molecular brightness εi and a
switching function si(t) which takes values between zero and one. The Dirac delta function
δ(r–ri) is accounting for the position and the assumed point-like nature of the emitters.

In SOFI, the nth-order (auto-) cumulant of the detected signal fluctuations δF(r,t) = F(r,t) –
〈F(r,t)〉t is calculated for each pixel and subsequently the amplitude of the cumulant is
assigned as the SOFI pixel's value. The resulting image is called AC- resp. XC-SOFI image,
depending whether it is derived from the auto- or cross-cumulant. The latter will be
discussed later in this paper. For example, the second-order (auto-) cumulant AC2 is given
by:
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(3)

The second line in Eq. (3) is only true if the emitter fluctuations are independent from each
other, which is a key ingredient to SOFI.

For the nth-order (auto-) cumulant ACn, the following expression holds:

(4)

Where wi (τ1 ,..., τn) is a function composed of single-emitter correlation functions of orders
up to n. The nth-order cumulant will give raise to an SOFI image which is featuring the PSF
of the original imaging system taken to the nth power. Note the importance of an immobile
sample. Assuming a Gaussian shaped PSF this translates into an apparent resolution
enhancement of a factor n1/2. However, using a simple reweighting scheme for the Optical
Transfer function OTF and knowing that the support (supp[Ũ(k)]) of a real OTF is finite, the
resolution enhancement can be further improved to a factor n as shown in the following
scheme:

(5)

Here, Ũ(k) represents the OTF (Fourier-transformed PSF) of the imaging system, O(k) is the
OTF underlying the SOFI image. O′(k) is the Fourier-reweighted OTF which gives raise to
the n-fold resolution enhancement. W(k ) is the reweighting function, and α is a damping
factor to prevent division by close-to-zero numbers. This reweighting is possible because the
support of O(k ) and O′(k ) is identical (this can be deduced by using the Titchmarsh
convolution theorem [10]). The specific shape of the reweighting function is chosen in that
way that the resulting PSF has the same functional form as the PSF U(r) underlying the
original intensity image. Note that even though this approach resembles a deconvolution, it
is not inferring spatial frequencies which are higher than physically possible. The sole
purpose of this reweighting is to transform the SOFI image in a way that the underlying
SOFI PSF has the same functional form as the original PSF, but with smaller width.
However if the Fourier reweighting scheme from Eq. (5) is applied to conventional laser
scanning confocal microscopy it will not yield any resolution enhancement information
(assuming imaging with a perfect PSF; ‘perfect’ refers to a PSF whose OTF carries the
maximum achievable spatial frequencies and the PSF is described by a diffraction limited
airy disk. In this case the full scope of resolution is already displayed).

In essence, Eq. (5) states that the resolution of SOFI images (or any images which are based
on an n-fold product of the PSF with itself, as occurring for example in 2-photon excitation
laser scanning microscopy or tri-exciton imaging [11]) could be increased up to a factor of
n-times. Taking into account that novel deconvolution algorithms for confocal and 2P
microscopy are still being developed we expect that such advances could be applied
beneficially to SOFI images as well due to the mathematical similarity of the problem (For a
general review of deconvolution in microsopy we suggest the excellent review of Sibarita
[12]).
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Using the Fourier reweighting scheme, the SOFI image can be transformed into a high-
resolution SOFI image Cn(r,τ1 ,..., τn):

(6)

Where  and  are the respective Fourier and inverse Fourier transforms. The performance
of the Fourier-reweighting depends strongly on the precise knowledge of the PSF and its
respective OTF.

We first evaluated the Fourier-reweighting scheme on simulated data set. W(k) is calculated
once using (i) the exact theoretical PSF (given by a Bessel function of the first kind divided
by r = |r|) and (ii) an approximated Gaussian-shaped PSF which we estimated using cross-
cumulants (as discussed later).Fig. 1 shows the results for various orders of AC-SOFI
images. As can be seen, the images show better resolution when Fourier-reweighting is
applied. The analysis of the relative FWHM of the PSF shows that the theoretically expected
and actually achieved values are in excellent agreement. The deviation from the theoretical
values for increasing order is due to the diminished amplitudes of higher spatial frequencies
of the OTF O(k). In order to recover the full resolution at higher-orders, one would need to
reduce the damping factor α, risking an unfavorable increase of the noise level and “ringing”
artifacts. The quality of the Fourier-reweighting depends only weakly on the type of PSF
(exact vs. Gaussian) which is used for calculating the weight function W(k ) . Even though
the Gaussian PSF approximation (as shown in Fig. 1) yields slightly lower resolution values,
the resulting images exhibit slightly less ringing as compared to the exact PSF (data not
shown). It should be noted that the shown simulations do not contain any kind of noise or
background.

When applying the same strategy to noise-afflicted data sets, it turns out that the Fourier-
reweighing is fairly robust (see Fig. 2). Obviously the Fourier-reweighting scheme breaks
down first for the higher-order SOFI images if noise becomes too strong ord the signal to
background ratio is too low. The second-order SOFI images however can be recovered
conveniently with full resolution even at relatively low signal to noise levels and relatively
short simulation times (1000 frames).

The Fourier reweighting scheme described above therefore allows one to obtain SOFI
superresolution that scales linearly with the cumulant order n (rather than square-root
scaling).

Cross-Cumulants: PSF estimation and higher image sampling-frequency
When an image sequence (movie) is acquired by a CCD-camera (or any other array
detector), circumjacent pixels carry information which can be exploited for SOFI using a
temporal cross-cumulant approach. For the sake of simplicity, let us first consider a second-
order SOFI image. By temporally cross-correlating two pixels and assuming a Gaussian-
shaped PSF the following expression can be found [analogous to Eq. (3)]:

(7)

where XC2 is the second-order cross-cumulant. We can gain two insights from Eq. (7).
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1. The location of the resulting “cross-correlation pixel” lies in the geometric center of

r1 and 

2. This cross-correlation pixel is weighted by a PSF-shaped weight factor, which

depends on the distance of r1 and , and therefore in the following is
referred to as distance factor.

The distance factor can be understood in the following sense. The signal contribution of an
emitter to adjacent pixels at r1 and r2 persists with a characteristic length of the PSF's
FWHM (as magnified onto the camera). The distance factor states that the magnitude of the
cross-correlation is decaying along this length, i.e. the further the cross-correlated pixels are
apart from each other the smaller the distance factor. Thus, for the cross-correlation to yield
significant values, a slight oversampling of the PSF has to be maintained. Note that the
special case of an auto-correlation can be recovered by setting r1 = r2.

Applying the cross-correlation approach to directly neighboring pixels, virtual “cross-
correlation” pixels which interpolate between neighboring pixels on the CCD can be
generated (see (1.)). Thus, a fourfold higher density of pixels (2 × 2) compared to the pure
auto-correlation approach can be achieved by cross-correlating vertically, horizontally and
diagonally neighboring pixels of the movie sequence (see Fig. 3). These cross-correlation
pixels carry true information (in contrast to pixels generated by a simple interpolation of the
auto-correlation (AC-) SOFI image). Note that not only directly neighboring pixels can be
used to generate interleaving pixels, but also next-to-neighbor pixels and so on, as long as
the size of the PSF is not exceeded. Note further, that it is even possible to generate an up-
sampled (XC-) SOFI image while completely omitting auto-correlations (e.g. by cross-
correlating pixels which are one pixel apart from each other. See Fig. 3). The latter can be
useful if one wants to generate SOFI images for the zero-time lag, which would be affected
by shot-noise and camera read-out noise if one uses an autocorrelation approach.

One feature of the pixels which are generated by cross-correlation is that they exhibit an
intensity which is weighted by the above mentioned distance factor. This leads to systematic
intensity differences in the XC-SOFI image (see Fig. 4). In order to compensate these
intensity differences one has to counter-balance the distance factor for the cross-correlation
pixels by multiplying these pixels with the inverse of the distance factor. In the following we
propose a way to estimate the distance factor using the already acquired data set.

In an XC-SOFI image we know that certain pixels carry the same distance factor. For
example, every second pixel along x will be a cross-correlation pixel which has been
generated by using e.g. the left and right neighboring pixels, whose distances are always the
same throughout the image. The same applies to every second pixel along y, along the
diagonal and to the autocorrelation pixels (where the distance is zero and thus the distance
factor is one). Thus, we know that there are only four different values for the distance factor
within the second-order XC-SOFI image and these values have to be applied to particular
pixels only. By varying the intensity of these particular pixels with the same inverse distance
factor we look for the XC-SOFI image which appears most “smooth”. This is done by
minimizing the relative variance of the resulting image by varying a parameterized
description of the Gaussian PSF [i.e. the distance factor, see (2.)] (see Fig. 4). Since this fit
involves only three fit parameters (width ωx, ωy and orientation ϕ of the 2D Gauss) which
are determined from a pool of Mx × My pixels (where M is the number of pixels along each
axis of the up-sampled image) it can be considered very restrictive and accurate.

Dertinger et al. Page 5

Opt Express. Author manuscript; available in PMC 2011 April 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The described approach holds true also for higher-order XC-SOFI images (Fig. 3). The
general formula is then given by:

(8)

For each cumulant order more pixels can be generated. The order of the cumulant
determines how many pixels can be correlated. The nth-order will theoretically yield an n ×
n-fold up-sampled XC-SOFI image, i.e. an n-fold higher magnification per pixel.

We demonstrate this on a simulation up to the fourth-order cross-cumulant. The pixels of a
simulated data set (movie) were pooled in bigger pixels (1×1, 2×2, 3×3, and 4×4 pixels).
The nth-order XC-SOFI image was created from the n × n-times binned movie using the
cross-cumulant approach as described above (i.e. the second-order XC-SOFI image was
derived from the 2 × 2 binned data set, which yields 2 × 2 times more pixels). The resulting
XC-SOFI image was than compared to the AC-SOFI image calculated from the original
(not-binned) data set (1 × 1). Both SOFI images have therefore the same number of pixels,
feature the same magnification (nm / pixel) and are almost identical. Differences arise from
the Gaussian approximation of the PSF.

As can be seen in Fig. 5, the differences between the normalized AC-SOFI images and the
XC-images are not exceeding 0.4% for the second-order. Similar results were obtained for
the third- and fourth-order SOFI images, though the mismatch was slightly larger (1.4%
resp. 9%). The recovered FWHM of the approximated PSFs deviated less than 2% from the
original PSFs’ FWHM for all cumulant-orders.

The decreased accuracy of the reconstruction can be assigned to the decreased oversampling
of the PSF, but mainly to the order of the cumulant to be reconstructed. The latter refers to
the fact that the statistics for higher-order cumulants have to stem from an increasingly
longer data set in order to fully recover a SOFI image. When binning pixels, information
gets pooled and therefore the data set has to provide longer time traces in order to recover
this information. This can be seen from Fig. 5 where the fourth-order cumulant differences
are biggest in regions of high emitter density and therefore the fluctuations of many emitters
are pooled in a single pixel. This leads to an incomplete resolved fourth-order image (due to
limited measurement time). Therefore the assumption for the cross-cumulant approach that
the underlying SOFI image is fully resolved is violated and ill-compensated in these regions.

In the following simulation we explicitly show that the cross-correlation pixels indeed do
carry information on the resolution. For this reason a different data set was analyzed, where
the resolution enhancement could not be realized since the magnification / spatial
oversampling was intentionally chosen to be too low (the effective pixel size of 160 nm was
exceeding the obtainable resolution ~220 nm (second-order AC-SOFI)). Using the cross-
correlation approach the effective pixel size can be reduced (80 nm/pixel) so it becomes
sufficiently small to resolve all emitters. Figure 6 shows the result for the XC-approach
versus the AC-approach. The emitter positions are marked to demonstrate that indeed the
recovered pixels are carrying the higher resolution information.

To show that the above mentioned approaches (Fourier-reweighting and cross-cumulant
calculation) work well for a real imaging application, we performed an experiment on fixed
3T3 fibroblasts whose tubulin network was labeled with infrared emitting quantum dots
(QD800, life technologies, USA). The camera magnification was chosen to be 167 nm

Dertinger et al. Page 6

Opt Express. Author manuscript; available in PMC 2011 April 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which on the one hand allows large field-of-view imaging, and on the other hand requires
the cross-cumulant approach to realize the full resolution gain of a factor two by applying
the Fourier-reweighting approach.

From the data set we estimated the shape of the PSF using the above described cross-
cumulant approach, showing a slight ellipticity of 1.06 and a mean FWHM of 462 nm. This
PSF was used in the subsequent Fourier-reweighting of the XC-SOFI image. The result can
be seen in Fig. 7. Cross-sections (taken as indicated by the white lines in the original image)
are shown on the lower panel. It can be seen that the resolution of the Fourier-reweighted
XC-SOFI image is increased as compared to the original image and also as compared to the
conventional (unweighted) XC-SOFI image. Using infrared emission we could increase the
resolution from ~400 nm as defined by the Rayleigh limit down to at least 220 nm.

Conclusion
We demonstrated a resolution enhancement of SOFI using a Fourier-reweighting scheme
with a linear dependence of resolution vs. cumulant order. We also demonstrated that the
use of spatio-temporal cross-cumulants holds many advantages over the auto- cumulant
approach. The most obvious is the accurate description of the underlying PSF of the imaging
system. The use of cross-cumulants enables the straight forward calculation of zero-time lag
XC-SOFI images, eliminating shot-noise and camera read-out noise. Since most
fluorescence intermittency phenomena occur on short time-scales and decay rapidly, the use
of zero-time lag XC-SOFI images might prove beneficial in terms of higher signal to noise
ratio.

The increased pixel number and information content afforded by XC-SOFI eliminates the
need to change magnification (as long as slight oversampling of the PSF is guaranteed in the
original image). No additional magnification in turns means that the fluorescent signal of a
single emitter is not “diluted” on too many pixels, yielding a better signal-to-noise ratio. The
magnification of commercial high NA microscopes is often designed to be in the 150-170
nm / pixel range. This magnification is sufficient to generate SOFI images with the
resolution obtainable by any cumulant order while preserving the same field of view.
Furthermore, relatively short acquisition times in SOFI (as compared to localization-based
superresolution techniques) relax platform dependent issues such as sample drift during the
measurement.
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Fig. 1.
The effect of Fourier-reweighting on AC-SOFI images generated from a simulated data set.
Upper panel: Conventional AC-SOFI approach for orders 2, 3 and 4 resp. Lower panel:
Fourier-reweighted (using the Gaussian approximation of the PSF) AC-SOFI images
featuring an increased resolution as compared to their untreated counterparts in the top
panel. The ACSOFI images shown have been generated using a Gaussian approximation for
the PSF as derived from cross-cumulants as will be described later in this paper. Inset:
Relative FWHM of the original image PSF versus the recovered SOFI PSF as a function of
the cumulant order. Lines represent the theoretical value, circles represent the values
obtained by a 2D-Gauss fit of the emitter indicated by the white arrow in the original image.
Blue: Values obtained from the untreated AC-SOFI images from the upper panel generated
using solely Eq. (4). Red: Values for Fourier-reweighted SOFI images following Eq. (5) and
(6) by using the exact PSF (i.e. certain Bessel function of the first kind). Black: Values
obtained by using a Gaussian approximation of the PSF as mentioned above in this caption.
Scalebar: 1 μm.
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Fig. 2.
The effect of noise on Fourier reweighted SOFI images. The simulation was done with a
signal to background ratio of 3 and a signal intensity of 18 counts per time bin (‘Signal’
denotes the maximum intensity of the PSF). Using these relatively weak imaging parameters
it was still possible to generate SOFI images and apply Fourier reweighting to them. In the
upper panel we show how the quality of the Fourier reweighted second-order AC SOFI
image improves when more frames are acquired. The same holds true for the third-order
SOFI image (lower panel). However, we found that the fourth-order SOFI image could not
satisfactorily be generated using these imaging parameters (due to high noise content
already appearing in the fourth order AC SOFI image).
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Fig. 3.
Schematic of various possibilities cross-cumulants can be used for. The squares represent
pixels of the CCD-camera. (A) Second-order cross-correlation. By cross-correlating
(indicated by arrows) two directly neighboring pixels (light blue squares) virtual, “cross-
correlation” (red squares) pixels can be obtained. These pixels lie in between the physical
camera pixels. (B). The same holds true for higher-order cross-cumulants. As shown on the
example of the fourth order cross-cumulant. Using different combinations of the light blue
pixels 16-times more virtual pixels can be generated. (C) Second-order correlation. The
value for the red target pixel can be obtained by correlating various different pairs of pixels
(as indicated by black and gray arrows). This way auto-correlations can be omitted
completely.
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Fig 4.
Comparison between distance factor corrected and uncorrected XC-SOFI images. (A)
second-order XC-SOFI image not corrected for distance factor contributions. (B) Distance
factor corrected second-order XC-SOFI image using relative variance minimization.
Scalebar: 0.5 um.
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Fig. 5.
Estimation of the pixel recovery ability of XC-SOFI images. Upper panel: second order
SOFI images. Lower panel: Fourth-order SOFI images. (A) resp. E): AC-SOFI image as
obtained by a 2 × 2 resp. 4 × 4 binned data set. (B) resp. F): AC-SOFI image from the
notbinned data set. (C) resp. G): XC-SOFI images obtained from the 2 × 2 rep. 4 × 4 binned
data set using the cross-cumulant approach. (D) resp. H): Difference between B) resp. F)
and C) resp. D). The simulation consists of 100,000 frames. Scalebar: 1 um.
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Fig. 6.
Comparison of the AC-SOFI image and XC-SOFI image. Simulation of 7 emitters (emitting
at: 800 nm) placed 260 nm apart and imaged (Numerical aperture NA 1.2) on a grid which
has a magnification of (160 nm/pixel). Blue line: second-order AC-SOFI image. Red line:
second-order XC-SOFI image. Gray line: SOFI image as would be it obtained for a infinite
spatial sampling (i.e. pixel size → 0 nm). As can be seen the XC-SOFI image carries high
resolution information, which would not have been revealed in the AC-SOFI image due to
the too coarse grid of the imaging system. Vertical gray lines indicate the emitter positions.
Stars represent values which have been generated by cross-correlation.
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Fig. 7.
Tubulin network of a 3T3 fibroblast immuno-labeled with QD800 quantum dots. Top panel:
A) original image taken from the average of 2000 frames of a wide-field microscope setup.
White lines indicate locations where cross-section were taken for all images in the upper
panel. B) XC-SOFI image featuring twice more pixels than the original image and a
resolution enhancement of a factor of . C) Fourier-reweighted XC-SOFI image generated
by using the PSF as obtained by the cross-cumulant approach. Also note that also this image
has four times more pixels than the original image. Scalebar: 10 um. Lower panel: Cross-
sections as taken from the upper panel. Black: interpolated original image, Blue: XC-SOFI
image. Red: Fourier reweighted XC-SOFI image. a) PSF shrinks as the order increases.
Lines indicating a Gauss fit and circles describe the data. The FWHM reflects the increased
resolution enhancement: 1, 1.39 ( ) and 1.98 (~2) respectively b) A structure being
resolved only in the Fourier-reweighted XC-SOFI image. The distance between the peaks is
220 nm (as indicated by the dashed black lines), which is approximatley 2x smaller than the
Rayleigh limit for 800 nm emitting QDs and a NA 1.2 objective. c) “zoomed-out” cross-
section giving a general impression of the improvement afforded by Fourier-reweighting.
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