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Abstract
Lymphostromal cross-talk in the thymus is essential to allow generation of a diversified repertoire
of T lymphocytes and to prevent autoimmunity by self-reactive T cells. Hypomorphic mutations in
genes that control T cell development have been associated with immunodeficiency and immune
dysregulation both in humans and in mice. We have studied T cell development and thymic
stroma architecture and maturation in two mouse models of leaky severe combined immune
deficiency, carrying hypomorphic mutations in rag1 and lig4 genes. Defective T cell development
was associated with abnormalities of thymic architecture that predominantly affect the thymic
medulla, with reduction of the pool of mature medullary thymic epithelial cells (mTECs). While
the ability of mTECs to express autoimmune regulator (Aire) is preserved in mutant mice, the
frequency of mature mTECs expressing Aire and tissue-specific antigens is severely reduced.
Similarly, the ability of CD4+ T cells to differentiate into Foxp3+ natural regulatory T cells is
preserved in rag1 and lig4 mutant mice, but their number is greatly reduced. These data indicate
that hypomorphic defects in T cell development may cause defective lymphostromal cross-talk
and impinge on thymic stromal cells maturation, and thus favor immune dysregulation.
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INTRODUCTION
The thymus is a highly specialized lymphoid organ whose peculiar microenvironment
supports homing, proliferation, survival, maturation, and migration of immature thymocytes
(Takahama, 2006).

Upon entrance in the thymus, bone marrow-derived committed lymphoid progenitors
undergo multiple rounds of proliferation and a distinct process of cell differentiation that
culminates with the emergence of a diversified pool of mature T cells whose randomly
generated T cell-receptor (TCR) repertoire has been selected for self-major-
histocompatibility-complex (MHC) restriction and purged of self-reactive specificities.

Thymocyte development and selection are supported by the thymic stroma, that includes a
highly organized network of specialized thymic epithelial cells (TECs) and distinct
populations of thymic dendritic cells (DCs). The mature thymus is organized in two major
compartments, the cortex and the medulla, that contain distinct populations of TECs that
exert different functions. In particular, cortical TECs (cTECs) sustain the positive selection
of CD4+ CD8+ double positive (DP) thymocytes that have successfully rearranged their
TCR; in contrast, medullary TECs (mTECs) support selection, maturation, and export of
single positive (SP) thymocytes (Anderson and Jenkinson, 2001; Hogquist et al., 2005; Irla
et al., 2010; Takahama et al., 2010).

Moreover, mTECs display the unique ability of expressing the transcription factor
autoimmune regulator (Aire), that allows mTECs to express a large number of genes that
encode for peripheral tissue-specific antigens (TSAs). These self TSAs are presented to
developing SP T cells either directly by mTECs or indirectly by DCs upon uptake from
mTECs (Derbinski et al., 2005; Kyewski and Klein, 2006). Interaction between self-antigen-
loaded thymic stromal cells and newly generated T cells expressing self-reactive TCR
specificities leads to the induction of central T cell tolerance via clonal deletion of self-
reactive T cells. Alternatively, it has been proposed that mTECs and medullary thymic DCs
may contribute to the establishment of tolerance by facilitating diversion of self-reactive
thymocytes into natural regulatory T (nTreg) cells, that exhibit suppressive properties when
exposed to self-antigens in the periphery (Watanabe et al., 2005; Miyara and Sakaguchi,
2007). These observations indicate that the thymus plays a critical role not only in the
generation of a functional and diversified repertoire of mature T cells that are capable of
recognizing non-self-antigens, but also in preventing the development of autoimmunity.

Primary immunodeficiencies (PIDs) comprise a heterogeneous group of genetic disorders
characterized by impaired development and/or function of the immune system (Fischer,
2007; Notarangelo, 2010). In humans, several genetic defects have been identified that result
in block at early stages of T cell development: in some of these forms, B and/or NK cell
development is also impaired. These disorders are collectively known as severe combined
immune deficiency (SCID), whose clinical phenotype is characterized by early onset
susceptibility to infections and failure to thrive. SCID is inevitably fatal unless immune
reconstitution is achieved by hematopoietic cell transplantation or, in selected cases, by
enzyme replacement therapy or gene therapy (Buckley, 2000; Fischer, 2000).

In humans, up to 20–30% of all cases of SCID are caused by defects of V(D)J
recombination, a lymphoid-restricted process that allows DNA rearrangements at the
immunoglobulin and TCR loci, enabling expression of immunoglobulin and TCR proteins
and development of a diversified repertoire of T and B lymphocytes.

Mutations of the recombination-activating gene (RAG) 1 and RAG2 cause SCID by
interfering with the initial step of V(D)J recombination, i.e., recognition of recombination
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signal sequences that flank the Variable (V), Diversity (D), and Joining (J) coding elements
and introduction of DNA double strand breaks (DSBs; Schwarz et al., 1996). In contrast,
mutations of Artemis, DNA protein kinase catalytic subunit (DNA–PKcs), DNA ligase 4
(LIG4), and Cernunnos/XLF affect the non-homologous end joining (NHEJ) pathway of
DNA repair, that is involved at later stages in V(D)J recombination (Riballo et al., 1999;
Moshous et al., 2001; Buck et al., 2006a; van der Burg et al., 2009).

While null mutations in genes involved in V(D)J recombination typically cause SCID with
virtual absence of T and B lymphocytes (T− B− SCID), hypomorphic mutations in the same
genes in humans have been associated with variable degrees of impairment of T and B cell
development and frequent occurrence of manifestations of immune dysregulation. In
particular, Omenn syndrome (OS) is characterized by oligoclonal expansion of few T cell
clonotypes that infiltrate peripheral organs and cause extensive tissue damage
(erythroderma, gut villous atrophy, hepatosplenomegaly; Villa et al., 2001). Less severe
defects in V(D)J recombination may cause more subtle phenotypes, ranging from leaky
SCID (in which residual development of T cells is not associated with generalized skin rash)
to delayed-onset combined immunodeficiency with granulomatous manifestations (Schuetz
et al., 2008; De Ravin et al., 2010). Furthermore, hypomorphic mutations in genes involved
in NHEJ are associated also with extra immune clinical features (microcephaly, short
stature, increased occurrence of malignancies), reflecting impairment of DNA repair
mechanisms (O’Driscoll et al., 2004; Gennery, 2006; Sobacchi et al., 2006).

We have previously reported severe abnormalities of thymic architecture and impaired
expression of Aire and of TSAs in the thymus of patients with OS (Cavadini et al., 2005;
Poliani et al., 2009). These observations imply that genetic defects that affect T cell
development and prevent generation of a robust and diversified T cell repertoire may also
impinge on the differentiation and/or homeostasis of thymic stromal cells, and hence impair
deletional and non-deletional mechanisms of central tolerance. In order to address this
hypothesis, we have taken advantage of two recently described murine models of leaky
SCID: the lig4R/R mouse, homozygous for the hypomorphic R278H mutation in the lig4
gene (Rucci et al., 2010) and the rag1S/S mouse, carrying the homozygous hypomorphic
S723C substitution in the rag1 gene (Giblin et al., 2009; Walter et al., 2010). In agreement
with the human phenotype, both mutant mice are characterized by severe immunodeficiency
with residual development of oligoclonal and functionally impaired T cells. In addition, a
minority of rag1S/S mice (but not lig4R/R mice) develop features consistent with OS (Giblin
et al., 2009; Walter et al., 2010). Here we show that hypomorphic mutations that affect
V(D)J recombination also compromise architecture and homeostasis of thymic stroma, and
that the severity of thymic abnormalities correlates with the degree of immune dysregulation
that may be observed in these conditions.

MATERIALS AND METHODS
MICE

Mice harboring the rag1 S723C mutation (rag1S/S; Giblin et al., 2009) and the lig4 R278H
mutation (lig4R/R; Rucci et al., 2010) were housed at the Karp Family Research Building
under specific pathogen-free conditions. Animal experiments were carried out after approval
and in accordance with guidelines from the Subcommittee on Research Animal Care of
Children’s Hospital Boston, Harvard Medical School.

SINGLE CELL SUSPENSIONS PREPARATION
Single cell suspensions were prepared from thymuses of lig4R/R, rag1S/S, and wild-type
(WT) mice. Tissues were homogenized on 70 μm cell strainers (BD Falcon, Bedford, MA,
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USA) using FACS buffer: Dulbecco’s Phosphate-Buffered Saline (D-PBS, GIBCO from
Invitrogen, Grand Island, NY, USA) containing 2% of heat inactivated and filtered fetal calf
serum (FCS, from Gemini Bio-Products, West Sacramento, CA, USA). Red blood cell lysis
was performed at room temperature by adding 2 ml of Red Blood Cell Lysing Buffer (Sigma
Aldrich Inc., St Louis, MO, USA) for 10 min before proceeding with the specific stainings.

Thymic stromal cells were isolated as previously published (Gray et al., 2002) by digesting
thymuses from lig4R/R, rag1S/S, and WT mice with 0.125% (w/v) collagenase D with 0.1%
(w/v) DNAse I (both from Roche, Indianapolis, IN, USA) in RPMI 1640 (GIBCO from
Invitrogen, Grand Island, NY, USA).

IMMUNOPHENOTYPIC ANALYSIS
Thymocytes were incubated with the following antibodies: antigen-presenting cells (APC)-
conjugated anti-CD4, biotin-conjugated or PE-conjugated anti-CD8, biotin-conjugated anti-
CD4, biotin-conjugated anti-B220, biotin-conjugated anti-CD11b, biotin-conjugated anti-
Gr1, FITC-conjugated anti-CD44, PE-conjugated anti-CD25, FITC-conjugated anti-CD69,
biotin-conjugated anti-Qa2 (all from BD Biosciences, San Jose, CA, USA). Samples stained
with biotin-conjugated antibodies underwent additional incubation with PerCp-conjugated
streptavidin. Intranuclear staining for Foxp3 was performed using APC-conjugated anti-
mouse/rat Foxp3 staining set (eBioscience, San Diego, CA, USA) following manufacturer’s
instructions. At least 20,000 alive cells (defined by physical parameters) were acquired on a
FACSCalibur system or FACS Canto (BD Biosciences, San Jose, CA, USA) and analyzed
with FLOW-JO software (version 8.3; Treestar Inc.).

Analysis of TECs was performed staining single cell suspensions of stromal cells with
PerCp-conjugated anti-CD45, PE-conjugated anti-Ly51, FITC-conjugated anti-MHC-II (BD
Biosciences, San Jose, CA, USA). Intranuclear staining for Aire was performed after fixing
stromal cells labeled with surface markers, by permeabilization with the BD CytoFix/
CytoPerm Fixation/Permeabilization kit (BD Biosciences, San Jose, CA, USA). Anti-Aire
antibody (5H12) was a kind gift from Dr. H. Scott (Hubert et al., 2008).

Analysis of thymic DCs was performed staining single cell suspensions of stromal cells with
the following antibodies: APC-conjugated anti-CD11c, PE-conjugated anti-CD45RA,
biotin-conjugated anti-CD3, anti-Ter119, anti-Gr1, anti-F4/80, anti-CD19, anti-CD11b, anti-
CD90 (BD Biosciences, San Jose, CA, USA). Analysis was performed after gating out the
biotinylated positive population. At least 100,000 alive cells (defined by physical
parameters) were acquired on a FACS Canto (BD Biosciences, San Jose, CA, USA) and
analyzed with FLOW-JO software (version 8.3; Treestar Inc.).

IMMUNOHISTOCHEMISTRY AND IMMUNOFLUORESCENCE
Formalin-fixed paraffin embedded tissue sections were stained with hematoxylin and eosin
(H&E) and subjected in parallel to immunohistochemistry. Briefly, sections were
deparaffinized, rehydrated, and endogenous peroxidase activity was blocked in 0.3% H2O2/
methanol solution for 20 min prior to heat induced antigen retrieval (when necessary) using
a thermostatic bath or a microwave-oven in 1.0 mM EDTA (pH 8.00) or 1.0 mM citrate
buffer (pH 6.00) respectively. Sections were then washed in TRIS-base buffer at pH 7.4 and
incubated for 1 h with the following reagents diluted in TRIS/1% bovine serum albumin
(BSA): rabbit anti-CK5 (1:50; Covance, Berkeley, CA, USA), rat anti-CK8 (1:200; clone
TROMA-1; kindly provided by Dr. U.H. von Andrian, Harvard Medical School), rabbit anti-
claudin 4 (1:100; Zymed Laboratories, San Francisco, CA, USA), rabbit anti-murine Aire
(1:3000; kindly provided by Dr. P. Peterson, University of Tartu, Estonia), and biotin-
conjugated Ulex europaeus agglutinin-1 (UEA-1; 1:600; Vector Laboratories, Burlingame,

Rucci et al. Page 4

Front Immunol. Author manuscript; available in PMC 2011 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



CA, USA). After washes, single immunostains were revealed using the ChemMATE
Envision Rabbit/Mouse (DAKO Cytomation, Glostrup, Denmark) or NovoLinkTM Polymer
Detection System (NovocastraTM Laboratories Ltd, Newcastle Upon Tyne, United
Kingdom) followed by diaminobenzidine (DAB) as chromogen and Hematoxylin as
counterstain.

The same procedure was applied to double immunofluorescence stainings prior to the
incubation with a secondary swine anti-rabbit FITC-conjugated antibody (1:30; DAKO
Cytomation, Glostrup, Denmark) for CK5 and a rabbit anti-rat biotinylated antibody (1:200;
Vector Laboratories, Burlingame, CA, USA) followed by Streptavidin–Texas Red (1:100;
Southern Biotechnology Associates, Birmingham, AL, USA) for CK8. Sections were then
counterstained with DAPI.

Images were acquired with an Olympus DP70 digital camera mounted on an Olympus BX60
microscope using CellF imaging software (Soft Imaging System GmbH) and Adobe
Photoshop Version 7.0 for the artwork.

RNA ISOLATION, cDNA PREPARATION, AND REAL-TIME PCR ANALYSIS
RNA isolation was isolated from thymus single cell suspensions using the mirVana miRNA
isolation kit, according to the manufacturer’s protocol (Ambion from Applied Biosystems
Inc., Foster City, CA, USA). Reverse transcription was then performed with qScript cDNA
SuperMix (Quanta BioSciences, Inc., Gaithersburg, MD, USA) following manufacturer’s
instructions.

Real-Time PCR for quantitative expression of Aire and TSAs was performed using TaqMan
Gene expression assay with the following assays on demand (all by Applied Biosystems
Inc., Foster City, CA, USA): Mm00477461_m1 (Aire); Mm00487224_m1 (Cybp1a2);
Mm00433188_m1 (Fabp2); Mm00731595_gH (Ins2); Mm00493214_m1 (EpCAM, used as
internal control). Reactions were performed using 2 μl of cDNA obtained from 1 μg of
thymic RNA in a final volume of 20 μl using TaqMan PCR Master Mix 2x (Applied
Biosystems Inc., Foster City, CA, USA) and specific Gene Expression Assay 20x.
Amplification was performed in duplicates in the 7500 Real-Time PCR System (Applied
Biosystems Inc., Foster City, CA, USA) and results were analyzed with the 7500 Real-Time
PCR Software.

ANALYSIS OF T CELL REPERTOIRE
Analysis of T cell repertoire in the thymus of WT, rag1S/S and lig4R/R mice was performed
as previously described (Rucci et al., 2010).

STATISTICS
At least five to six mice per group were analyzed. Results are indicated as mean ± SE or SD.
p values were determined by unpaired Student’s t -test (p <0.05 = *; p <0.01 = **; p <0.005
= ***; p <0.001 = ****).

RESULTS
Lig4R/R AND rag1S/S MICE EXHIBIT AN INCOMPLETE BLOCK IN T CELL DEVELOPMENT

The lig4R/R and rag1S/S mice carry mutations that impair different steps in the V(D)J
recombination process. In particular, rag1 mutations interfere with the first step of the
process, when DSBs are introduced in the DNA (Fugmann et al., 2000. In contrast, lig4
mutations impair the repair of these breaks (Rooney et al., 2004). Despite these differences,
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both mutations affect V(D)J recombination and cause an early but incomplete block in T cell
development.

Both lig4R/R and rag1S/S mice showed a significant reduction in thymus size and cellularity
(Figure 1A), with a significant decrease in the absolute numbers of thymic CD4+ CD8+ DP
cells as well as of CD4+ CD8− and CD4− CD8+ SP thymocytes as compared to what
observed in WT mice (Figure 1B).

In both mutant models, this block in T cell development was associated with a relative
enrichment in the proportion of CD4−CD8− double negative (DN)cells, that was particularly
prominent in rag1S/S mice (% DN cells ± SE: WT 1.78 ± 0.13; lig4R/R 25.48 ± 3.5; rag1S/S

90.59 ± 3.27; WT vs. lig4R/R, p <0.0001; WT vs. rag1S/S, p <0.0001). Developmental
progression of DN thymocytes is characterized by an ordered sequence of expression of
CD44 and CD25 markers: CD44+ CD25− (DN1), CD44+ CD25+ (DN2), CD44− CD25+

(DN3), CD44− CD25− (DN4). Analysis of the distribution of DN thymocytes in lig4R/R and
rag1S/S mice revealed a severe, but incomplete arrest of thymocyte development at DN3
stage in both models, consistent with a defect in TCRβ rearrangement due to impaired V(D)J
recombination (Figure 1C).

SKEWED DISTRIBUTION OF SP T CELLS AND RESTRICTED T CELL REPERTOIRE IN THE
THYMUS OF lig4R/R AND rag1S/S MICE

Newly generated CD4+ and CD8+ SP thymocytes undergo sequential stages of maturation in
the medulla. The developmental program of maturing SP thymocytes is associated with
progressive down-regulation of CD69 and up-regulation of the Qa2 markers on the cell
surface (Lucas et al., 1994; Jin et al., 2008). The earliest stages in SP cell development
(SP1–SP2) are characterized by expression of CD69 but lack of Qa2 marker (CD69+ Qa2−
cells). The next step of maturation of SP thymocytes (SP3 stage) is marked by lack of
expression of either marker (CD69− Qa2− cells). Finally, in the last stage of differentiation
(SP4), mature SP thymocytes acquire expression of Qa2, and hence have a CD69− Qa2+

phenotype. Thymocytes that reach this stage are ready to egress from the thymus (Ge and
Chen, 1999; Jin et al., 2008). In control mice, the majority of CD4+ SP thymocytes are in the
SP1–SP2 stages of differentiation; in contrast, both lig4R/R and rag1S/S mice showed a
significant increase in the proportion of CD4+ SP thymocytes with the most mature (SP4)
phenotype (Figure 2). A similar pattern was observed for CD8+ SP thymocytes (data not
shown). This difference in the distribution of SP thymocytes at various stages of
differentiation may reflect several, non-mutually exclusive mechanisms, including
accelerated intrathymic T cell maturation, homeostatic T cell proliferation in a lymphopenic
environment (Datta and Sarvetnick, 2009) and recirculation of mature T lymphocytes that
home back to thymus. In order to distinguish between these possibilities, we have analyzed
the distribution of SP thymocytes at late stages (18 ± 2 days) of fetal development, when
homeostatic proliferation and recirculation of mature lymphocytes should not prevail. As
shown in Figure A1 in Appendix, even at this stage of fetal development, SP thymocytes
from lig4R/R and rag1S/S mice were characterized by a more mature (SP3) phenotype than
SP thymocytes from age-matched WT mice. Overall, these data indicate that intra thymic
maturation of SP thymocytes is accelerated in lig4R/R and rag1S/S mice.

Hypomorphic mutations that affect V(D)J recombination may affect not only the number,
but also the TCR repertoire diversity of newly generated thymocytes. We have previously
demonstrated that hypomorphic RAG mutations in patients with OS are associated with
oligoclonal representation of TCR specificities in the thymus (Signorini et al., 1999).
Similarly, a highly restricted T cell repertoire was demonstrated in the thymus of rag1S/S

mice (Figure 3). In contrast, homozygosity for the R278H lig4 mutation allowed generation
of a broadly polyclonal repertoire of thymocytes (Figure 3). These differences in size and
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diversity of the thymocyte pool prompted us to investigate thymus morphology in lig4R/R

and rag1S/S mice.

ABNORMALITIES OF THYMIC ARCHITECTURE IN lig4R/R AND rag1S/S MICE
Appropriate interaction between elements of the T cell lineage and stromal cells is crucial to
maintain thymic architecture and to support the maturation of both TECs and nascent
thymocytes. Severe and early blocks in T cell development are associated with lack of
thymic cortico-medullary demarcation (Holländer et al., 1995a). Furthermore, inability to
maintain an organized thymic architecture may interfere not only with an orderly maturation
of thymocytes, but may also impede establishment of self-tolerance (Holländer et al., 1995b;
Derbinski and Kyewski, 2005).

Based on this, we investigated in detail the thymic architecture of lig4R/R and rag1S/S mice.
As shown in Figure 4, staining of thymic tissue with H&E revealed severe depletion of
cellularity in both lig4R/R and rag1S/S mice. Cortico-medullary demarcation was preserved
in lig4R/R mice, whereas only a rudimentary attempt to form a medulla was noticed in
rag1S/S mice. Differential expression of cytokeratin 8 (CK8) and cytokeratin 5 (CK5) allows
distinction between CK8+ CK5− cTECs and CK8− CK5+ mTECs (Bennett et al., 2002;
Takahama, 2006). Analysis of CK5 and CK8 expression by immunohistochemistry and
immunofluorescence confirmed significant differences in the degree of thymic architecture
abnormalities in lig4R/R and rag1S/S mice. In particular, only few CK5+ cells were detected
in rag1S/S mice; furthermore, these cells were largely also CK8+, a pattern observed in
immature TEC progenitors (Bennett et al., 2002). In contrast, tiny but well-defined nests of
CK5+ CK8− mTECs were appreciated in lig4R/R mice, consistent with what detected by
H&E staining.

ANALYSIS OF MATURATION OF mTECs AND OF AIRE AND TSA EXPRESSION IN THE
THYMUS OF lig4R/R AND rag1S/S MICE

The thymic medulla plays an essential role in the tolerance to peripheral antigens. Both
mature mTECs and thymic DCs have been implicated in mediating central tolerance by
presenting nascent thymocytes with a broad repertoire of TSAs whose expression by mTECs
is controlled by the transcription factor Aire (Derbinski et al., 2005; Kyewski and Klein,
2006).

Maturation of mTECs is progressively marked by the expression of claudin-4 (Cld4) and the
ligand for UEA-1. Furthermore, terminally differentiated mTECs express high levels of
MHC-II molecules and a subset of them also express the transcription factor Aire and TSAs
(Hamazaki et al., 2007). Residual presence of Cld4+ and of UEA-1+ mature mTECs was
detected in the thymus of lig4R/R mice; in contrast, there was no expression of these markers
in the thymus from rag1S/S mice, in keeping with our previous observations that they lack a
well-defined thymic medulla (Figure 5). Staining with anti-Aire antibody revealed a relative
abundance of Aire+ cells in the thymic medulla of WT mice. Aire+ cells were detected also
in lig4R/R mice, albeit in low number; in contrast, dramatic depletion of Aire+ cells, that
were confined to focal areas of cortico-medullary demarcation, was demonstrated in rag1S/S

mice (Figure 5).

Next, we used quantitative real-time polymerase chain reaction (qPCR) to analyze the levels
of mRNA specific for Aire and for Aire-dependent TSAs (insulin, cytochrome p450, and
fatty acid binding protein) in the thymus of WT, lig4R/R, and rag1S/S mice. A significant
reduction in the level of these transcripts was observed in the thymus of both mutant mice;
this reduction was particularly pronounced in rag1S/S mice (Figure 6A).
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The observed reduction of Aire and TSA mRNA expression in the thymus of lig4R/R and
rag1S/S mice could reflect either impairment of terminal maturation of mTECs or a general
depletion of the mTEC compartment. To distinguish between these two possibilities, we
used flow cytometry. It has been shown that cTECs and mTECs can be distinguished based
on the expression of MHC-II and Ly-51 markers within the CD45− population of thymic
stromal cells (Hubert et al., 2008). Both cTECs and mTECs express MHC-II, but only
cTECs express Ly51. Furthermore, based on the levels of expression of MHC-II, it is also
possible to discriminate between immature (MHC-IIlow Ly-51−)and mature MHC-IIhi

Ly-51− mTECs. Upon staining of CD45− thymic stromal cells for Ly-51 and MHC-II, we
found that the thymuses of both lig4R/R and rag1S/S mice were significantly depleted of
mature mTECs (% MHC-IIhi mTECs ± SE: WT = 2.87 ± 0.8; lig4R/R = 1.12 ± 0.4; rag1S/S =
0.17 ± 0.04; WT vs. lig4R/R p <0.005; WT vs. rag1S/S, p <0.005). In contrast, both lig4R/R

and rag1S/S mice showed a relative enrichment in thymic cTECs (% cTECs ± SE: WT =
19.49 ± 3.31; lig4R/R = 34.36 ± 2.92; rag1S/S = 33.51 ± 2.23; WT vs. lig4R/R, p <0.005; WT
vs. rag1S/S, p <0.005; Figure 6B). However, this apparent enrichment in cTECs may also
reflect the increased number of immature TECs (as demonstrated by co-expression of CK5
and CK8) and/or an increase in fibroblasts or other stromal CD45− Ly51+ cells, as reported
in other murine models of impaired T cell development (Gray et al., 2002; Rodewald, 2008;
Alves et al., 2009).

As mentioned above, fully mature MHC-IIhi mTECs are enriched for Aire expressing cells.
In spite of the general reduction in the proportion of mature mTECs, we found that the few
CD45− MHC-IIhi Ly51low mTECs from lig4R/R and rag1S/S mice retained the ability to
express Aire (% Aire+ cells ± SE: WT = 43.05 ± 2.45; lig4R/R = 48.12 ± 5.11; rag1S/S =
47.05 ± 5.4; Figure 6B), indicating that the overall impairment of Aire and TSA expression
in these mutant models is due to a reduction of the pool of mature mTECs rather than to
intrinsic defects in their developmental and gene expression program.

ANALYSIS OF THYMIC DCs AND GENERATION OF nTreg CELLS IN lig4R/R AND rag1S/S

MICE
Thymic DCs are the other population of APCs involved in the negative selection of self-
reactive thymocytes. Furthermore, a role for thymic DCs in the induction of nTreg cells has
been suggested both in mice and in humans (Proietto et al., 2008; Doan et al., 2009). Thymic
DCs can be classified into two major subsets: the CD11c+ CD45RA− conventional DCs
(cDCs) and the CD11cint CD45RA+ plasmacytoid DCs (pDCs). The first subgroup is
intrathymically generated from early thymic progenitor cells, whereas pDCs arise
extrathymically from partially differentiated precursors (Proietto et al., 2009).

In order to analyze the distribution of thymic cDCs and pDCs in WT, lig4R/R, and rag1S/S

mice, we stained thymic single cells suspensions with a mixture of monoclonal antibodies
against markers specific for T and B lymphocytes, erythroid cells, granulocytes, and
macrophages (CD3, CD90, CD19, TER119, Gr-1, CD11b, and F4/80). Upon gating on cells
that stained negative for this cocktail of antibodies, we analyzed expression of CD11c and
CD45RA to discriminate between cDCs and pDCs. As shown in Figure 7, in WT mice the
majority of thymic DCs is composed of cDCs. Although cDCs were more abundant than
pDCs also in the thymus of lig4R/R and rag1S/S mice, both mutant strains showed a
significant enrichment for pDCs as compared to WT mice (Figure 7).

To investigate whether the profound abnormalities of thymic stroma observed in lig4R/R and
rag1S/S mice could also affect generation of nTreg cells, we analyzed expression of CD25
and Foxp3 within CD4+ SP thymocytes. As shown in Figure 8, both lig4R/R and rag1S/S

mice showed preserved ability to express Foxp3 within CD4+ SP thymocytes, and the
proportion of Foxp3+ cells was actually increased in lig4R/R mice (% Foxp3+ cells ± SD:
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WT = 4.72 ± 1.3; lig4R/R = 24.2 ± 3.5; rag1S/S = 6.25 ± 3.3; WT vs. lig4R/R p <0.0001; WT
vs. rag1S/S p <0.0001; Figure 8). However, it should be noted that both mutant strains
display a severe depletion of thymic cellularity, and of CD4+ SP T cells in particular (Figure
1). This has obvious implications also on the absolute number of nTreg cells, in particular in
lig4R/R mice. By using immunohistochemistry, we found that a residual number of Foxp3+

cells at the cortico-medullary junction were present in lig4R/R mice, whereas such cells were
severely depleted in rag1S/S mice (data not shown).

DISCUSSION
There is growing evidence that defects of V(D)J recombination in humans are associated
with a variety of clinical and immunological phenotypes. Null mutations in the RAG genes
cause T− B− NK+ SCID (Schwarz et al., 1996). In contrast, hypomorphic mutations in RAG
have been associated with OS (Villa et al., 1998), atypical/leaky SCID (Villa et al., 2001),
combined immunodeficiency with expansion of TCRγδ+ T cells (Ehl et al., 2005), and
delayed-onset combined immunodeficiency with granuloma formation (Schuetz et al., 2008;
De Ravin et al., 2010). Extreme phenotypic variability has been observed also among
patients with LIG4 syndrome, ranging from mild or moderate immunodeficiency to SCID
(O’Driscoll et al., 2001; Buck et al., 2006b; Enders et al., 2006; van der Burg et al., 2006).
However, only one patient with OS due to LIG4 mutations has been reported (Grunebaum et
al., 2008).

The clinical phenotype of patients carrying hypomorphic mutations that affect V(D)J
recombination is often characterized by prominent signs of immune dysregulation, as
exemplified by infiltration of target organs by activated and oligoclonal T lymphocytes in
patients with OS (Signorini et al., 1999) and by the frequent occurrence of autoantibodies in
patients with OS or leaky SCID (Walter et al., 2010). Characterization of the molecular and
cellular mechanisms that are responsible for the unique association of severe
immunodeficiency and autoimmunity has been hampered by lack of adequate animal
models.

We have previously shown that lig4R/R and rag1S/S mice represent mouse models of leaky
SCID, with profound immunodeficiency and increased risk of autoimmunity (Rucci et al.,
2010; Walter et al., 2010). We have also reported that a proportion of rag1S/S, but not of
lig4R/R mice, show more prominent features of severe immune dysregulation, resembling
OS (Giblin et al., 2009; Rucci et al., 2010; Walter et al., 2010). We now show that
hypomorphic mutations in rag1 and lig4 genes in mice affect both normal development of T
lymphocytes and organization and maturation of thymic stroma, and compromise key
mechanisms involved in central tolerance.

Studies in mice had indicated that signals delivered by thymocytes are crucial to induce
maturation of cTECs and mTECs from a common precursor and to support maintenance of
thymic architecture (Holländer et al., 1995a; van Ewijk et al., 2000; Akiyama et al., 2008;
Hikosaka et al., 2008; Irla et al., 2008). On the other hand, cTECs and mTECs play a critical
role in generating and shaping the mature T cell repertoire. In particular, cTECs allow
positive selection of thymocytes through a mechanism that involves cTEC-specific
expression of thymoproteasome components, allowing expression of a unique repertoire of
MHC-bound self-peptides (Murata et al., 2007; Gommeaux et al., 2009). Positively selected
thymocytes are then screened for the ability to recognize self-peptide/MHC complexes in
the thymic medulla. Expression of Aire by terminally differentiated mTECs allows
stochastic expression of TSAs. Newly generated T cells that recognize MHC–self TSAs on
the surface of mTECs or of thymic DCs are clonally deleted or diverted to become Foxp3+

nTreg cells (Anderson et al., 2002; Bonasio et al., 2006; Aschenbrenner et al., 2007).
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Generation of Aire+ mTECs depends on RANK- and CD40-mediated signaling, and is
driven by cross-talk of mTEC progenitors with lymphoid tissue inducer cells and CD4+

thymocytes, that express RANK ligand (RANKL) and CD40 ligand (CD40L), respectively
(Rossi et al., 2007; Akiyama et al., 2008; Irla et al., 2008). While expression of Aire by
mTECs is not strictly dependent on completion of thymocyte development, recent
observations indicate that in post-natal life the size of the pool of mature mTECs (and hence
the number of Aire+ cells) is regulated by signals delivered by positively selected
thymocytes, in particular through activation of the lymphotoxin (LT)α-LTβ R axis (White et
al., 2010). Consistent with this, Aire+ mTECs are present, but in low number, in Zap70−/−

mice (White et al., 2010), in CD40lg−/− mice (Akiyama et al., 2008), and the size of thymic
medulla is significantly decreased in IAa−/− mice (Irla et al., 2008), in which lack of
expression of MHC-II impairs positive selection of CD4+ thymocytes. Altogether, these data
indicate a critical role of positively selected thymocytes, and especially CD4+ SP cells, in
supporting maturation of mTECs and hence maintenance of efficient mechanisms of
negative selection of self-reactive T cells.

We have previously shown impaired maturation of mTECs and reduced expression of Aire
in a variety of human immunodeficiencies that affect T cell development; importantly,
similar defects were present also in thymuses from patients carrying hypomorphic mutations
that were partially permissive for T cell development. We now confirm that also in mice
hypomorphic rag1 and lig4 mutations that cause a severe, but incomplete defect in T cell
development, are associated with profound abnormalities of thymic stroma architecture and
mTECs maturation. In both models, generation of more mature MHC-IIhi mTECs was
severely compromised, without affecting the intrinsic ability of mTECs to express Aire.
Abnormalities of thymic architecture, with impaired formation of a well-defined thymic
medulla, were more prominent in rag1S/S than in lig4R/R mice, consistent with a more severe
block in T cell development in the former, with decreased ability to generate DP thymocytes
and a severely restricted thymic TCR repertoire. It is likely that the reduced number of
mature mTECs expressing Aire and TSAs may contribute to the increased frequency of
manifestations of immune dysregulation in mice and humans with hypomorphic mutations
that severely affect T cell development (Cavadini et al., 2005; Marrella et al., 2007; Poliani
et al., 2009). We have also shown that SP T cells from rag1S/S and lig4R/R mice are skewed
toward a more mature phenotype.

Little is know about the thymic DC compartment in humans and mice with severe defects in
T cell development. Mouse studies showed that approximately 27% of thymic cDCs and
35% of thymic pDCs contain IgH gene D–J rearrangements, and express mRNA for CD3
and pre-Tα chains (Corcoran et al., 2003), indicating that a fraction of thymic DCs share
early steps of development with the lymphoid lineages. Furthermore, it is known that the
earliest thymic progenitors (ETPs) in mice also possess myeloid potential (Bell and
Bhandoola, 2008). Hale et al. (2004) reported that the number of CD83+ mature DCs is
significantly reduced in the thymus from patients with X-linked SCID, possibly reflecting
the failure of a common progenitor for T lymphocytes and DCs, to differentiate in response
to γc-dependent signals. We have recently reported that depletion of thymic DCs is not
restricted to patients with X-linked SCID, but is common to other genetic conditions with
impaired T lymphocyte development (Poliani et al., 2009). In apparent contrast to these
human data, we found that both cDCs and pDCs can be detected in the thymus from lig4R/R

and rag1S/S. Further studies are needed to define the location and the origin (intrathymic vs.
peripheral) of DCs within the thymus of the mutant mice. This is particularly important
since peripheral immature DCs that home to the thymic medulla and to the cortico-
medullary junction have been shown to mediate self-antigen presentation and intrathymic
deletion of autoreactive T cell clones (Bonasio et al., 2006).
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Finally, a role for cDCs (in particular for the CD8lo Sirp-α+ fraction) in the induction of
murine nTreg cells in the thymic medulla has been demonstrated (Proietto et al., 2008). We
have shown that cDCs are present in the thymus of lig4R/R and rag1S/S mice; furthermore,
our preliminary data suggest that the proportion of CD8lo Sirp-α+ within thymic cDCs of
lig4R/R mice is preserved (data not shown). Consistent with these findings, CD4+ Foxp3+

cells were detected in the thymus of lig4R/R and rag1S/S mice. Somech et al. (2009) have
reported a normal proportion of Foxp3+ regulatory T cells in the periphery of patients with
OS. However, others have shown that perturbed Treg function may contribute to immune
dysregulation in these patients (Cassani et al., 2010). Although our data indicate that
generation of nTreg cells is preserved in lig4R/R and rag1S/S mice, the severe defect in T cell
development also accounts for the paucity of thymic Foxp3+ T cells in both models.

CONCLUSION
In summary, we have shown that hypomorphic defects in V(D)J recombination in mice are
associated with abnormalities of lymphoid development and thymic architecture. These
defects are more prominent and severe in rag1S/S than in lig4R/R mice. This may reflect a
different degree of impairment in V(D)J recombination activity associated with rag1 S723C
and lig4 R278H mutations, as also suggested by a higher fraction of DP thymocytes in
lig4R/R mice. Homozygosity for null mutations in the lig4 gene is associated with embryonic
lethality in mice, and patients with LIG4 mutations identified so far carry a hypomorphic
mutation on at least one allele. This may explain why clinical manifestations of immune
dysregulation have been more frequently reported among patients with RAG than with LIG4
mutations. Alternatively, it is also possible that the different severity of phenotype may
reflect the specific role played by RAG and LIG4 genes. The study of new patients and the
development of additional animal models with mutations in these genes may help address
this issue.
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Appendix

FIGURE A1. Altered maturation of CD4+ SP medullary thymocytes in the fetal thymus of
lig4R/R and rag1S/S mice
Upper panels: Representative FACS plots of CD4+ SP medullary thymocytes at various
stages of maturation according to the expression of CD69 and Qa2 surface markers. Lower
panels: Distribution of the different populations of SP1–SP4 cells. lig4R/R and rag1S/S mice
have a significant accumulation of SP3 thymocytes. Mean values ± SE are shown. At least
three to five mice per group were analyzed.
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FIGURE 1. Thymic lymphopenia and impaired T cell development in lig4R/R and rag1S/S mice
(A) Total thymic cellularity from 4 to 5-weeks-old mice shows severe lymphopenia in
lig4R/R and rag1S/S mice as compared to WT littermate controls. (B) Thymuses from 4 to 5-
weeks-old mice were stained with anti-CD4 and anti-CD8 antibodies and the absolute
numbers of live thymocytes at different stages of differentiation are shown in the bar charts
(DN, double negative; DP, double positive). (C) Distribution of CD4−CD8− DN thymocytes
at various stages of differentiation (DN1–DN4). Mean values ± SE are shown. At least six
mice per group were analyzed.
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FIGURE 2. Altered maturation of CD4+ SP medullary thymocytes in the lig4R/R and rag1S/S
mice
Upper panels: Representative FACS plots of CD4+ SP medullary thymocytes at various
stages of maturation according to the expression of CD69 and Qa2 surface markers. Lower
panels: Distribution of the different populations of SP1–SP4 cells. lig4R/R and rag1S/S mice
have a significant accumulation of SP4 thymocytes. Mean values ± SE are shown. At least
six mice per group were analyzed.
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FIGURE 3. Immunoscope analysis of TCR repertoire in the thymus of rag1S/S and lig4R/R mice
Representative immunoscope profiles of TCRVβ repertoire in the thymus of one WT, three
rag1S/S and three lig4R/R mice. Profiles are shown for 7 of the 24 distinct TCR Vβ-Cβ
amplification products analyzed. The x axis represents CDR3 length, and arbitrary
fluorescence intensity of the run off products is shown on the y axis. ND: not done.
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FIGURE 4. Thymic architecture in wild-type, lig4R/R, and rag1S/S mice
Analysis of thymic architecture and cytokeratin (CK) expression in WT, lig4R/R, and rag1S/S

mice. Thymic architecture with identification of cortex (c) and medulla (m) is shown in the
first column on the left by hematoxylin and eosin (H&E) staining. The second and third
columns show distribution of CK5+ and CK8+ epithelial cells, respectively. Panels in the
right column represent dual immunofluorescence (IF) analysis for CK8+ (in red) and CK5+

(in green) cells. Yellow staining identifies cells co-expressing CK5 and CK8. Nuclei are
counterstained with DAPI. H&E staining shows normal cortico-medullary demarcation
(CMD) in both WT and lig4R/R mutant mice, whereas only focal areas of medullary
differentiation (asterisk) are appreciated in rag1S/S mice. A normal distribution of both
CK5+ cells, that represent the vast majority of mTECs, and CK8+ cells, that design a fine
meshwork of cTECs (upper middle panels, CK5, and CK8 staining), with clear separation
between them, is present in WT mice, as shown by IF (upper right panel). Thymuses from
lig4R/R mutant mice show CMD with normal distribution of the CK5+ and CK8+ cells,
although the CK8+ cTECs show a coarse distribution with a globular morphology (middle
panels). A well-defined, but tiny thymic medulla is visualized by IF in lig4R/R mice (right
panel). In contrast, thymuses from rag1S/S mice show impaired CMD (H&E, left panel);
staining for CKs shows diffuse expression of CK8, and focal expression of CK5 (middle
panels). IF shows increased presence of CK5+ CK8+ double positive immature TECs in
rag1S/S mice (right panel). All panels are from 20× original magnification. One
representative example of 5 mice analyzed per each strain.
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FIGURE 5. Maturation of mTEC cells in wild-type, lig4R/R, and rag1S/S mice
Mature mTECs from WT mice express claudin-4 (Cld4), Ulex europaeus agglutinin 1
(UEA-1) and Aire (upper panels). Insets highlight fully mature mTECs showing
immunoreactivity (IR) for Cld4 and the characteristic granular dot-like Aire positivity in the
nuclei. Thymuses from lig4R/R mice show residual presence of mTECs that reach full
maturation with positivity for UEA-1, Cld4, and Aire expression (middle panels). Loss of
CMD with impaired maturation of mTECs was observed in the thymuses from the rag1S/S

mice in which only rare UEA-1 IR cells but no mature Cld4+ and Aire+ cells were found
(lower panels). IR staining: brown. All panels are from 20× original magnification; insets
are from 40× original magnification. One representative example of five mice analyzed per
each strain.
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FIGURE 6. Reduced expression of Aire and of tissue-specific antigens (TSAs) in the thymus of
lig4R/R and rag1S/S mice
(A) Reduced expression of Aire and TSAs (fatty acid binding protein, Fabp2; cytochrome
p450, Cyp1a2; insulin 2, Ins2) in the thymus of lig4R/R and rag1S/S mice. Real time PCR
results were normalized to the pan-epithelial marker EpCAM1. Mean values ± SD are
shown. Seven mice per group were analyzed; AU, arbitrary units. (B) Representative
example of flow cytometry analysis of cortical and medullary compartments shows that in
the thymus of lig4R/R and rag1S/S mice the mature medullary compartment (MHC-IIhi) is
poorly represented. The percentage of Aire+ cells among mature mTECs is largely preserved
in both mutant mice. At least five mice per group were analyzed.
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FIGURE 7. Altered distribution of thymic DCs populations in lig4R/R and rag1S/S thymuses
Top panels: FACS dot plot analysis of the distribution of CD11c+ CD45RA− cDCs and
CD11cint CD45RAhi pDCs in the thymus of WT, lig4R/R, and rag1S/S mice after gating on a
population of stromal cells positive for CD11c expression but negative for a cocktail of
biotinylated markers specific for markers of T and B lymphocytes, erythroid, granulocyte,
and macrophage lineages. Lower panels: Proportion of thymic cDCs and pDCs in WT,
lig4R/R, and rag1S/S mice. Mean values ± SE are shown. At least six mice per group were
analyzed.
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FIGURE 8. Generation of nTregs in the thymus of lig4R/R and rag1S/S mice
Representative example of flow cytometry analysis of thymocytes stained with anti-CD4,
anti-CD8, anti-CD25, and anti-Foxp3 antibodies revealed that generation of nTregs is
preserved in the thymus of 4 to 5-weeks-old lig4R/R and rag1S/S mice as compared to what
observed in WT age-matched littermates. At least six mice per group were analyzed.
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