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Abstract
Type-2 diabetes represents an increasing health burden. Its prevalence is rising among younger
age groups and differs among racial/ethnic groups. Little is known about its genetic basis,
including whether there is a genetic basis for racial/ethnic disparities. We examine a multiethnic
sample of 253 healthy children to evaluate associations between insulin-related phenotypes and
142 ancestry informative markers (AIMs), while adjusting for sex, age, Tanner stage, genetic
admixture, total body fat, height and socio-economic status. We also evaluate the effect of
measurement errors in estimation of the individual ancestry proportions on the regression results.
We find that European genetic admixture is positively associated with insulin sensitivity (SI), and
negatively associated with acute insulin response to glucose, fasting insulin, and homeostasis
model assessment of insulin resistance. Our analysis reveals associations between individual
AIMs on Chromosomes 2, 8, and 15 and these phenotypes. Most notably, marker rs3287 at
chromosome 2p21 was found to be associated with SI (p=5.8 × 10-5). This marker may be in
admixture linkage disequilibrium with nearby loci (THADA and BCL11A) that have previously
been reported to be associated with diabetes and diabetes-related phenotypes in several genome-
wide association and linkage studies. Our results provide further evidence that variation in the
2p21 region containing THADA and BCL11A is associated with type-2 diabetes. Importantly, we
have implicated this region in the early development of diabetes-related phenotypes, and in the
genetic etiology of population differences in these phenotypes.
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INTRODUCTION
Type-2 diabetes prevalence in the pediatric population is increasing, while age at onset is
decreasing (1;2). Type-2 diabetes also disproportionately affects racial/ethnic minorities in
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the US (3). Twin and familial studies have shown a substantial genetic component to the
disease as well as its related phenotypes (4-10). Although much is known about
environmental contributions to type-2 diabetes, only a very small proportion of the variation
due to genetic factors is currently explainable by identified genetic polymorphisms (11-13).
Similarly, little is known about the specific genetic factors that may contribute to population
differences in diabetes prevalence. Because origins of type-2 diabetes are likely rooted in
childhood, a better understanding of genetic determinants among pediatric populations can
lead to better insight into the etiology of type-2 diabetes and eventually improved prediction
and prevention.

Endo-phenotypes can be useful in closely dissecting the genetic basis of eventual disease
status (14). For type-2 diabetes, several such measurable phenotypes exist, typically
examining measures of glucose and insulin homeostasis. These measures serve as indicators
of insulin response and action that may presage type-2 diabetes (15;16). Further, previous
studies have suggested a genetic basis for racial/ethnic differences in insulin dynamics
(17;18). Examining the genetic basis for these detailed phenotypes therefore allows for a
much better understanding of the link between the genetic and metabolic pathways that
underlie the development of type-2 diabetes.

Since the loci recently identified by genome-wide association studies (GWAS) (19-21) were
identified predominately among individuals of European descent, there is considerable
uncertainty regarding whether these associations translate to other populations. Mexican and
African Americans suffer from higher rates of type-2 diabetes than European Americans
(22;23), and similar differences exist for endo-phenotypes among children, regardless of
disease status (24-28). Admixed populations such as Hispanic, African, and European
Americans can be examined to determine if there is a genetic basis for these population
differences, and to identify specific genetic regions associated with both ancestry and
insulin-related outcomes (29). Previous studies have shown that admixture is a strong
predictor of diabetes and insulin-related traits, but also that this relationship may be
mediated through environmental factors such as income or educational level that are
correlated with genetic admixture (30-33).

Genetic mapping methods such as admixture mapping capitalize on population differences
in a trait and the extended blocks of linkage disequilibrium (LD) created after the admixture
process (34). They are therefore most applicable to recently admixed populations such as
Hispanic and African Americans. To our knowledge, only one previous study has used this
type of method to localize genetic variants associated with type-2 diabetes (35). Given the
large differences in type-2 diabetes and the plausible genetic origin of these differences,
there is a great need for additional studies that attempt to pinpoint population-specific
genetic risk factors. In this study we also capitalize on population differences in a phenotype
and extended LD blocks resulting from admixture in an attempt to identify specific genetic
regions that may be involved in the etiology of population differences in insulin-related
traits.

Specifically, we examine the association between genetic admixture and four insulin-related
outcomes: insulin sensitivity (SI), acute insulin response to glucose (AIRg), fasting insulin
(FI), and homeostasis model assessment of insulin resistance HOMA-IR). We then examine
the association between 142 ancestry informative markers (AIMs) and each of these traits to
identify genetic regions that potentially account for ethnic/racial differences. We performed
this study among a multi-ethnic sample of children, adjusting for known influential
covariates, including genetic admixture as a control for genetic background, and socio-
economic status. We place our findings in the context of other studies that have found
associations in similar regions.
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METHODS
Study Participants

A total of 253 children between the ages of 7 and 12 (52% male) were recruited as part of a
cross-sectional cohort study examining population differences in metabolic phenotypes
among children with no major illnesses or medical diagnoses. The children were classified
by parental report as African American (AA) (n=87), European American (EA) (n=108),
Hispanic American (HA) (n=52), and Bi-racial (n=6). All children were pubertal stage ≤3 as
assessed by a pediatrician according to the criteria of Marshall and Tanner (36). Written
informed assent and consent were obtained from children and parents respectively, as
approved by the University of Alabama at Birmingham Institutional Review Board. All
measurements were taken between 2004 and 2008 at the University of Alabama at
Birmingham General Clinical Research Center (GCRC) and Department of Nutrition
Sciences.

Anthropometric Measurements
In the first of two sessions completed by participants, pubertal status, anthropometric
measurements, and body composition were assessed. Height was measured without shoes to
the nearest centimeter using a stadiometer (Heightronic 235; Measurement Concepts,
Snoqualmie, WA). Body composition was assessed by dual-energy x-ray absorptiometry
(DXA) using a GE Lunar Prodigy densitometer (GE LUNAR Radiation Corp., Madison,
WI) as previously described (37). Participants were measured while lying flat on their backs
with arms at their sides, wearing light clothing. Analysis of DXA scans was performed using
pediatric software (Encore 2002 version 6.10.029).

Insulin-related measurements
At the second visit (which took place within thirty days of the first visit), participants were
admitted to the GCRC for an overnight visit. Following an overnight fast, blood samples
were obtained to establish the basal levels of glucose and insulin, and a frequently sampled
intravenous glucose tolerance test (FSIGTT) was performed as described elsewhere (38-40).
SI (the increase in fractional glucose disappearance per unit of insulin increase) and AIRg
(the area above baseline insulin concentration during 10 minutes following exposure to
glucose) were estimated from the FSIGTT using minimal modeling (41). HOMA-IR, a
surrogate measure of insulin resistance, derived as: fasting glucose (mg/dl) * fasting insulin
(uU/ml))/405 (42), was also calculated.

Socio-economic status (SES)
SES was measured by using the Hollingshead 4-factor index of social class, which combines
information on the education and occupational prestige of parents (43). Scores range from 8
to 66, with higher scores representing higher status.

Genetic Analysis
DNA from blood was obtained from all study participants and was typed at 142 AIMs by
Prevention Genetics (Marshfield, WI). Each marker (single nucleotide polymorphism) was
genotyped using a fluorescent allele specific PCR (AS-PCR) based assay (44). Reaction
components were assembled on an array tape platform (www.douglasscientific.com) using
nanoliter volumes (500-1000nl). PCRs are carried out in a water bath thermocycler using
standard 3-stage parameter (denature, primer annealing, primer extension). The specific
parameters of each PCR vary depending on the nature of the primers and the SNP being
genotyped. The array tape is scanned post PCR and the ratio of fluorescent signals is used to
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determine the genotype (homozygous for one allele, or heterozygous). A subset of these
AIMs is described elsewhere (45).

These markers were chosen because they exhibit large frequency differences between
ancestral West African, Amerindian and West European populations. Individual West
African, Amerindian, and European genetic admixture estimates were obtained by
maximum likelihood estimation (46), using the genotypes at each AIM and an estimate of
the allele frequencies of these AIMs in the three ancestral parental populations (see
Supplementary Table).

Statistical Analyses
Differences between racial/ethnic groups in mean values for phenotypes were examined
using ANOVA. Multiple linear regression analyses were used to test the association between
European admixture and total fat and the four insulin-related phenotypes, and to examine the
association between each of 142 SNPs and four insulin-related phenotypes. For Si, FI, and
HOMA-IR the model was defined by age, Tanner stage, sex, SES, European admixture,
Amerindian admixture, total fat, and height. By controlling for two of three admixture
estimates, we prevent the introduction of colinearity in the statistical models, since the three
admixture estimates add up to 1. For AIRg, the model was additionally adjusted for SI. To
conform to the assumptions of regression, all models were evaluated for residual normality,
and logarithmic transformation was performed when appropriate. Outliers were removed
based on whether residuals were greater than three standard deviations away from the mean.

Genotyped SNPs were tested for association with the four insulin-related phenotypes using
linear regression under additive, dominant, recessive and 2-degrees-of-freedom genotypic
models. Considering each phenotype and each genetic model separately, we applied a
Bonferroni multiple correction to the marker association tests; a p-value cutoff of 3.6 × 10-4

keeps the nominal type I error rate at 0.05. To determine the extent to which measurement
error in admixture estimates could skew the results, we applied the method as described by
Divers et al. (47). Basically, we obtained an estimate of the measurement error covariance
and applied the simulation extrapolation (SimEx) algorithm (48) to retest for association
between each marker and phenotype, for each mode of inheritance model. Analyses were
carried out with PLINK (49), SAS 9.1 software (SAS Institute, Cary, NC) and R (50).

RESULTS
Descriptive Characteristics

Table 1 shows the descriptive characteristics of the sample. Differences in total fat, AIRg,
FI, and HOMA-IR were statistically significant between racial/ethnic groups (all at p<0.01).
HA had higher total fat, FI and HOMA-IR than both EA and AA. AA had higher AIRg, and
lower SI than other groups. EA had the highest SI values (p<0.0001).

Association between genetic admixture and insulin-related phenotypes
The associations between European genetic admixture and total fat and all insulin-related
phenotypes were statistically significant (p<0.05; Table 2). Individuals with higher
European admixture had less total fat, higher SI, and lower AIRg, FI, and HOMA-IR. In
these models, there were significant associations of tanner stage and total fat with Si, FI and
HOMA-IR (p<0.01), and total fat was also associated with AIRg (p=0.04). Upon analyzing
these associations within racial/ethnic groups, we found significant associations of European
genetic admixture only among HA for SI, FI, and AIRg (p<0.05). These results suggest that
specific genetic variants may exist contributing to population differences for these
phenotypes.
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Association between single markers and insulin-related phenotypes
Results of single SNP analyses are presented in Table 3. Marker rs3287 located at 2p21 is
significantly associated with SI under the recessive (p=5.8 × 10-5) and genotypic (p=1.9 ×
10-4) models. Allele G at this SNP is associated with decreased SI, and is at a higher
frequency in the West African parental population (0.75) compared to both the European
(0.18) and Amerindian (0.18) parental populations. In our sample, the frequency of the G
allele is 0.58 among AA, 0.25 among EA, and 0.21 among HA. We found no associations
that withstand Bonferroni correction (p<3.6 × 10-4) within each racial/ethnic group.

Marker rs1373302 located at 8q13 is significantly associated with AIRg and DI under the
dominant model (p=9.7 × 10-5, p=8.9 × 10-5, respectively). Allele T at this marker is
associated with increased AIRg, and is at a higher frequency among the West African (0.65)
and European (0.73) parental populations than among the Amerindian parental population
(0.08). We found no significant associations within racial/ethnic groups for this marker after
adjusting for Bonferroni correction. Marker rs2671110 located at 7q32.3 is significantly
associated with AIRg among AA under the recessive model (p=1.4 × 10-4). Allele A at this
marker is associated with increased AIRg and is at a higher frequency among the West
African parental population (0.94) than among the Amerindian (0.0) and European (0.13)
parental populations.

Marker rs12439722 is significantly associated with FI and HOMA-IR under the recessive
and genotypic models (p=2.8 × 10-4, 1.4 × 10-4, respectively). Allele A at this marker is
associated with increased FI, and is at a higher frequency in the West African (1.0) and
European (0.97) parental populations than in the Amerindian (0.17) parental population.

The application of the measurement error correction methods did not yield results that were
significantly different than those we observed with the naïve analyses. For example, we
observed a p-value of 7.68 × 10-5 for the association between rs3287 and SI under the
recessive model after accounting for the measurement error vs. 5.9×10-5 without the
adjustment. This result confirms that individual ancestry proportions are very well
measured. Therefore, with 142 AIMs, we can be confident our results are not driven by
measurement errors in the estimation of individual ancestry.

DISCUSSION
We sought to examine the potential genetic basis for population differences in insulin-
related phenotypes in a racially/ethnically diverse sample of children. We found that
European genetic admixture is associated with insulin related phenotypes. Next, we
determined whether any of the individual 142 AIMs scattered throughout the genome were
associated with any of the insulin-related phenotypes. We find a strong association between
SI and an AIM at chromosome 2p21 (rs3287), explaining 4.14% of the variance of the trait.
Although this effect size may appear large compared to other genetic association studies, our
use of refined phenotypes, the inclusion of many covariates, and the use of admixed
individuals likely increased our ability to detect an effect size of this magnitude. We also
found weaker, but statistically significant associations between AIRg and an AIM at
chromosome 8q13 (rs1373302) located in the TRPA1 gene, and between FI and HOMA-IR
and an AIM at chromosome 15q22 (rs12439722) in the HERC1 gene. It should be noted that
although we have used a multiple correction for the 142 markers tested, we have not
corrected for each of the genetic models tested. If we were to use a Bonferroni correction for
all markers and models tested, the p-value threshold would be 8.8 × 10-5. In this case, only
the association between rs3287 and SI (p=5.8 × 10-5) would be considered statistically
significant. However, the four genetic models are likely to be correlated, thus making such a
correction overly conservative.
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Our finding that insulin-related phenotypes are associated with European admixture is in
agreement with previous findings (51). European admixture is positively associated with
favorable insulin-related phenotypes (higher SI, and lower AIRg, FI, and HOMA-IR). When
we examine the association of European admixture within racial/ethnic groups, they are only
statistically significant among HA. However, it is difficult to interpret these results because
of the different sample sizes and different admixture proportion distributions by racial/ethnic
group. Among the other covariates examined, we find that total body fat and Tanner stage
are the strongest risk factors associated with these insulin-related traits. This result is
consistent with those of other studies that show that adiposity is a major risk factor for these
traits (52;53). Insulin-related traits have also previously been found to be associated with
pubertal stage (54;55).

The 2p21 chromosomal region has been previously identified as being associated with
type-2 diabetes and related traits via both linkage scans and GWAS. Marker rs3287 is
located at 2p21, between two loci, THADA (thyroid adenoma associated) and BCL11A (B-
cell CLL/lymphoma 11A). These loci have been previously identified in two recent GWAS
meta-analyses of type-2 diabetes (56;57). This region was also identified in linkage scans for
insulin- and diabetes- related traits (58;59). It is plausible that through their effects on cell
apoptosis (60) and/or nutrient transport (61), these loci may be associated with the
progression of type-2 diabetes and/or that different pathways may be involved across
populations. Given that the rs3287 risk allele is higher in the West African parental
population compared to the European and Amerindian parental populations, and that AA
tend to have lower SI, this or another nearby variant that is in admixture linkage
disequilibrium may explain part of the observed differences in type-2 diabetes susceptibility
between African and European Americans. The markers that we have found to be associated
with FI and HOMA-IR are in a region on chromosome 15 that has previously been found in
a linkage scan to be associated with insulin-related traits (62).

Unlike other association studies, we have identified these associations relatively early in the
lifespan. It could be that the children with unfavorable insulin-related phenotypes are
already on the path towards developing type-2 diabetes. In the long-term, these markers
could inform prediction and treatment strategies for early-onset type-2 diabetes and explain
population differences. The fact that none of the AIMs showed any significant association
with any of the insulin related phenotypes when performing analyses within racial/ethnic
groups may be related to the reduced power due to a smaller sample size. Furthermore, our
ability to find significant associations by race is strongly influenced by the frequency of the
variants, and the fact that AIM alleles tend to have a low frequency in one group and a high
frequency in another group. By using a multiethnic approach we have the advantage of
having more intermediate allele frequencies represented, thus increasing the power to detect
associations.

This study has several strengths. First, the use of several endo-phenotypes that are likely to
be proximal to the development of type-2 diabetes may more effectively pinpoint the
genetics factors that eventually lead to disease phenotypes. Second, the inclusion of
individuals from different racial/ethnic backgrounds, and the use of markers that differ in
frequency between populations can lead to a better understanding of the genetic basis for
population differences in insulin-related phenotypes and the prevalence of diabetes. Third,
the inclusion of environmental and phenotypic measurements enhances the ability to
pinpoint the genetic regions that directly influence the disease causing phenotype.

The study also has some limitations. There was a relatively small number of genetic markers
used, reducing our ability to provide a high level of resolution with regards to the precise
location of potential risk variants. The main weakness of the study lies in the small sample
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size, which raises concerns about the statistical power of the study. Of all the reported
associations, the one between marker rs3287 and SI will require the greatest level of
statistical power in order to reject the null hypothesis. A power calculation for this
association model reveals that at a p-value of 6 × 10-5, our data provides 67% power to
estimate the R-squared effect of 0.45 that we obtained for the full model, with a semi-partial
R-squared for the marker of 0.04. Although this level of power might not seem sufficient,
the concerns of this association being a type-1 error are dissipated by the fact that it
represents a form of replication of several previously reported findings at chromosome 2p21.
Evidently, this level of detection with a small sample size was aided by the use of precise
phenotyping, the consideration of physiological parameters and the inclusion of admixture
estimates, as previously discussed.

In conclusion, we have shown that regions on chromosome 2, 8 and 15 are associated with
insulin-related traits in this sample. These results suggest that these regions may harbor
causal variants that may also explain population differences in the insulin-related
phenotypes and ultimately type-2 diabetes prevalence, since the markers tested exhibit large
frequency differences between groups. Future studies must combine detailed phenotypic,
environmental and genetic measures on similarly diverse, but larger sample sizes. The
inclusion of different populations is of paramount importance if we are to understand the
genetic basis for population differences and fairly implement effective prevention,
intervention, and treatment strategies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank the participants of the AMERICO study and their families, and Nicholas Pajewski for help with statistical
analyses.

Funded by: NIH R01-DK067426 and NIH T32HL007457 from the National Heart, Lung, and Blood Institute,
Clinical Nutrition Research Center Grant P30-DK56336, UAB Diabetes Research and Training Center Grant
P60DK079626, and by General Clinical Research Center Grant M01RR00032.

Reference List
1. Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and

adolescents. J Pediatr. 2005 May; 146(5):693–700. [PubMed: 15870677]
2. Alberti G, Zimmet P, Shaw J, Bloomgarden Z, Kaufman F, Silink M. Type 2 diabetes in the young:

the evolving epidemic: the international diabetes federation consensus workshop. Diabetes Care.
2004 Jul; 27(7):1798–811. [PubMed: 15220270]

3. Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes
mellitus in the United States. JAMA. 2003 Oct 8; 290(14):1884–90. [PubMed: 14532317]

4. Austin MA, Edwards KL, McNeely MJ, Chandler WL, Leonetti DL, Talmud PJ, et al. Heritability
of multivariate factors of the metabolic syndrome in nondiabetic Japanese americans. Diabetes.
2004 Apr; 53(4):1166–9. [PubMed: 15047637]

5. Beck-Nielsen H, Vaag A, Poulsen P, Gaster M. Metabolic and genetic influence on glucose
metabolism in type 2 diabetic subjects--experiences from relatives and twin studies. Best Pract Res
Clin Endocrinol Metab. 2003 Sep; 17(3):445–67. [PubMed: 12962696]

6. Hanson RL, Imperatore G, Narayan KM, Roumain J, Fagot-Campagna A, Pettitt DJ, et al. Family
and genetic studies of indices of insulin sensitivity and insulin secretion in Pima Indians. Diabetes
Metab Res Rev. 2001 Jul; 17(4):296–303. [PubMed: 11544614]

Klimentidis et al. Page 7

Hum Genomics. Author manuscript; available in PMC 2011 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Henkin L, Bergman RN, Bowden DW, Ellsworth DL, Haffner SM, Langefeld CD, et al. Genetic
epidemiology of insulin resistance and visceral adiposity. The IRAS Family Study design and
methods. Ann Epidemiol. 2003 Apr; 13(4):211–7. [PubMed: 12684185]

8. Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J, et al. Concordance for
type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-
based cohort of twins in Finland. Diabetologia. 1992 Nov; 35(11):1060–7. [PubMed: 1473616]

9. Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2
(non-insulin-dependent) diabetes mellitus in male twins. Diabetologia. 1987 Oct; 30(10):763–8.
[PubMed: 3428496]

10. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent)
diabetes mellitus and abnormal glucose tolerance--a population-based twin study. Diabetologia.
1999 Feb; 42(2):139–45. [PubMed: 10064092]

11. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, et al. Clinical risk factors,
DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008 Nov 20; 359(21):
2220–32. [PubMed: 19020324]

12. van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, Oostra BA, et al.
Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a
population-based study. Diabetes. 2008 Nov; 57(11):3122–8. [PubMed: 18694974]

13. Lillioja S, Wilton A. Agreement among type 2 diabetes linkage studies but a poor correlation with
results from genome-wide association studies. Diabetologia. 2009 Jun; 52(6):1061–74. [PubMed:
19296077]

14. Gregersen PK. Closing the gap between genotype and phenotype. Nat Genet. 2009 Sep; 41(9):958–
9. [PubMed: 19710714]

15. Goran MI, Lane C, Toledo-Corral C, Weigensberg MJ. Persistence of pre-diabetes in overweight
and obese Hispanic children: association with progressive insulin resistance, poor beta-cell
function, and increasing visceral fat. Diabetes. 2008 Nov; 57(11):3007–12. [PubMed: 18678615]

16. Ventura EE, Lane CJ, Weigensberg MJ, Toledo-Corral CM, Davis JN, Goran MI. Persistence of
the Metabolic Syndrome Over 3 Annual Visits in Overweight Hispanic Children: Association with
Progressive Risk for Type 2 Diabetes. J Pediatr. 2009 Jun 23.

17. Gower BA, Fernandez JR, Beasley TM, Shriver MD, Goran MI. Using genetic admixture to
explain racial differences in insulin-related phenotypes. Diabetes. 2003 Apr; 52(4):1047–51.
[PubMed: 12663479]

18. Hyatt TC, Phadke RP, Hunter GR, Bush NC, Munoz AJ, Gower BA. Insulin sensitivity in African-
American and white women: association with inflammation. Obesity (Silver Spring). 2009 Feb;
17(2):276–82. [PubMed: 19039315]

19. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide
association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007 Jun 1;
316(5829):1331–6. [PubMed: 17463246]

20. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study
identifies novel risk loci for type 2 diabetes. Nature. 2007 Feb 22; 445(7130):881–5. [PubMed:
17293876]

21. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of
genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science.
2007 Jun 1; 316(5829):1336–41. [PubMed: 17463249]

22. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, et al. Prevalence of
diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third
National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care. 1998 Apr; 21(4):
518–24. [PubMed: 9571335]

23. Permutt MA, Wasson J, Cox N. Genetic epidemiology of diabetes. J Clin Invest. 2005 Jun; 115(6):
1431–9. [PubMed: 15931378]

24. Haffner SM, D’Agostino R, Saad MF, Rewers M, Mykkanen L, Selby J, et al. Increased insulin
resistance and insulin secretion in nondiabetic African-Americans and Hispanics compared with
non-Hispanic whites. The Insulin Resistance Atherosclerosis Study. Diabetes. 1996 Jun; 45(6):
742–8. [PubMed: 8635647]

Klimentidis et al. Page 8

Hum Genomics. Author manuscript; available in PMC 2011 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



25. Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, et al. Prediabetes
in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered
myocellular and abdominal fat partitioning. Lancet. 2003 Sep 20; 362(9388):951–7. [PubMed:
14511928]

26. Svec F, Nastasi K, Hilton C, Bao W, Srinivasan SR, Berenson GS. Black-white contrasts in insulin
levels during pubertal development. The Bogalusa Heart Study. Diabetes. 1992 Mar; 41(3):313–7.
[PubMed: 1551490]

27. Arslanian S, Suprasongsin C, Janosky JE. Insulin secretion and sensitivity in black versus white
prepubertal healthy children. J Clin Endocrinol Metab. 1997 Jun; 82(6):1923–7. [PubMed:
9177407]

28. Gower BA, Granger WM, Franklin F, Shewchuk RM, Goran MI. Contribution of insulin secretion
and clearance to glucose-induced insulin concentration in african-american and caucasian children.
J Clin Endocrinol Metab. 2002 May; 87(5):2218–24. [PubMed: 11994367]

29. Halder I, Shriver MD. Measuring and using admixture to study the genetics of complex diseases.
Hum Genomics. 2003 Nov; 1(1):52–62. [PubMed: 15601533]

30. Williams RC, Long JC, Hanson RL, Sievers ML, Knowler WC. Individual estimates of European
genetic admixture associated with lower body-mass index, plasma glucose, and prevalence of type
2 diabetes in Pima Indians. Am J Hum Genet. 2000 Feb; 66(2):527–38. [PubMed: 10677313]

31. Parra EJ, Hoggart CJ, Bonilla C, Dios S, Norris JM, Marshall JA, et al. Relation of type 2 diabetes
to individual admixture and candidate gene polymorphisms in the Hispanic American population
of San Luis Valley, Colorado. J Med Genet. 2004 Nov.41(11):e116. [PubMed: 15520398]

32. Gower BA, Fernandez JR, Beasley TM, Shriver MD, Goran MI. Using genetic admixture to
explain racial differences in insulin-related phenotypes. Diabetes. 2003 Apr; 52(4):1047–51.
[PubMed: 12663479]

33. Florez JC, Price AL, Campbell D, Riba L, Parra MV, Yu F, et al. Strong association of
socioeconomic status with genetic ancestry in Latinos: implications for admixture studies of type 2
diabetes. Diabetologia. 2009 Aug; 52(8):1528–36. [PubMed: 19526211]

34. McKeigue PM. Prospects for admixture mapping of complex traits. Am J Hum Genet. 2005 Jan;
76(1):1–7. [PubMed: 15540159]

35. Elbein SC, Das SK, Hallman DM, Hanis CL, Hasstedt SJ. Genome-wide linkage and admixture
mapping of type 2 diabetes in African American families from the American Diabetes Association
GENNID (Genetics of NIDDM) Study Cohort. Diabetes. 2009 Jan; 58(1):268–74. [PubMed:
18840782]

36. Marshall WA, Tanner JM. Growth and physiological development during adolescence. Annu Rev
Med. 1968; 19:283–300. [PubMed: 4297619]

37. Goran MI, Driscoll P, Johnson R, Nagy TR, Hunter G. Cross-calibration of body-composition
techniques against dual-energy X-ray absorptiometry in young children. Am J Clin Nutr. 1996
Mar; 63(3):299–305. [PubMed: 8602584]

38. Matthews DR, Edge JA, Dunger DB. An unbiased glucose clamp method using a variable insulin
infusion: its application in diabetic adolescents. Diabet Med. 1990 Mar; 7(3):246–51. [PubMed:
2139397]

39. Pacini G, Bergman RN. MINMOD: a computer program to calculate insulin sensitivity and
pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput
Methods Programs Biomed. 1986 Oct; 23(2):113–22. [PubMed: 3640682]

40. Casazza K, Phadke RP, Fernandez JR, Watanabe RM, Goran MI, Gower BA. Obesity Attenuates
the Contribution of African Admixture to the Insulin Secretory Profile in Peripubertal Children: A
Longitudinal Analysis. Obesity (Silver Spring). 2009 Feb 5.

41. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J
Physiol. 1979 Jun; 236(6):E667–E677. [PubMed: 443421]

42. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model
assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin
concentrations in man. Diabetologia. 1985 Jul; 28(7):412–9. [PubMed: 3899825]

43. Hollingshead, AB. Four factor index of social class. New Haven, Connecticut: Department of
Sociology, Yale University; 1975.

Klimentidis et al. Page 9

Hum Genomics. Author manuscript; available in PMC 2011 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



44. Hawkins JR, Khripin Y, Valdes AM, Weaver TA. Miniaturized sealed-tube allele-specific PCR.
Hum Mutat. 2002 May; 19(5):543–53. [PubMed: 11968087]

45. Halder I, Shriver M, Thomas M, Fernandez JR, Frudakis T. A panel of ancestry informative
markers for estimating individual biogeographical ancestry and admixture from four continents:
utility and applications. Hum Mutat. 2008 May; 29(5):648–58. [PubMed: 18286470]

46. Hanis CL, Chakraborty R, Ferrell RE, Schull WJ. Individual admixture estimates: disease
associations and individual risk of diabetes and gallbladder disease among Mexican-Americans in
Starr County, Texas. Am J Phys Anthropol. 1986 Aug; 70(4):433–41. [PubMed: 3766713]

47. Divers J, Vaughan LK, Padilla MA, Fernandez JR, Allison DB, Redden DT. Correcting for
measurement error in individual ancestry estimates in structured association tests. Genetics. 2007
Jul; 176(3):1823–33. [PubMed: 17507670]

48. Carroll, RJ.; Rupper, D.; Stefanski, LA.; Crainiceanu, CM. Measurement error in nonlinear models
a modern perspective. Second. Boca Raton, FL: Chapman & Hall/CRC; 2006.

49. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for
whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007 Sep;
81(3):559–75. [PubMed: 17701901]

50. R Foundation for Statistical Computing. R: A Language and Environment for Statistical
Computing. Vienna, Austrian: 2009.

51. Gower BA, Fernandez JR, Beasley TM, Shriver MD, Goran MI. Using genetic admixture to
explain racial differences in insulin-related phenotypes. Diabetes. 2003 Apr; 52(4):1047–51.
[PubMed: 12663479]

52. Shaibi GQ, Goran MI. Examining metabolic syndrome definitions in overweight Hispanic youth: a
focus on insulin resistance. J Pediatr. 2008 Feb; 152(2):171–6. [PubMed: 18206684]

53. Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, et al. Insulin
Resistance in Children: Consensus, Perspective, and Future Directions. J Clin Endocrinol Metab.
2010 Sep 8.

54. Moran A, Jacobs DR Jr, Steinberger J, Hong CP, Prineas R, Luepker R, et al. Insulin resistance
during puberty: results from clamp studies in 357 children. Diabetes. 1999 Oct; 48(10):2039–44.
[PubMed: 10512371]

55. Ball GD, Huang TT, Gower BA, Cruz ML, Shaibi GQ, Weigensberg MJ, et al. Longitudinal
changes in insulin sensitivity, insulin secretion, and beta-cell function during puberty. J Pediatr.
2006 Jan; 148(1):16–22. [PubMed: 16423592]

56. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of
genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science.
2007 Jun 1; 316(5829):1336–41. [PubMed: 17463249]

57. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2
diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010 Jul;
42(7):579–89. [PubMed: 20581827]

58. Diego VP, Goring HH, Cole SA, Almasy L, Dyer TD, Blangero J, et al. Fasting insulin and
obesity-related phenotypes are linked to chromosome 2p: the Strong Heart Family Study.
Diabetes. 2006 Jun; 55(6):1874–8. [PubMed: 16731856]

59. An P, Teran-Garcia M, Rice T, Rankinen T, Weisnagel SJ, Bergman RN, et al. Genome-wide
linkage scans for prediabetes phenotypes in response to 20 weeks of endurance exercise training in
non-diabetic whites and blacks: the HERITAGE Family Study. Diabetologia. 2005 Jun; 48(6):
1142–9. [PubMed: 15868134]

60. Drieschner N, Kerschling S, Soller JT, Rippe V, Belge G, Bullerdiek J, et al. A domain of the
thyroid adenoma associated gene (THADA) conserved in vertebrates becomes destroyed by
chromosomal rearrangements observed in thyroid adenomas. Gene. 2007 Nov 15; 403(1-2):110–7.
[PubMed: 17889454]

61. Lettre G, Sankaran VG, Bezerra MA, Araujo AS, Uda M, Sanna S, et al. DNA polymorphisms at
the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain
crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008 Aug 19; 105(33):11869–74.
[PubMed: 18667698]

Klimentidis et al. Page 10

Hum Genomics. Author manuscript; available in PMC 2011 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



62. Hsueh WC, Silver KD, Pollin TI, Bell CJ, O’Connell JR, Mitchell BD, et al. A genome-wide
linkage scan of insulin level derived traits: the Amish Family Diabetes Study. Diabetes. 2007 Oct;
56(10):2643–8. [PubMed: 17646211]

Klimentidis et al. Page 11

Hum Genomics. Author manuscript; available in PMC 2011 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Klimentidis et al. Page 12

Ta
bl

e 
1

Po
pu

la
tio

nc
ha

ra
ct

er
is

tic
s f

or
 to

ta
l s

am
pl

e 
an

d 
fo

r e
ac

h 
ra

ci
al

/e
th

ni
c 

gr
ou

p 
(m

ea
n 

± 
s.d

.)

T
ot

al
 S

am
pl

e
E

A
A

A
H

A
O

th
er

Fe
m

al
e/

M
al

e 
(n

)
12

2/
13

1
51

/5
7

40
/4

7
28

/2
4

3/
3

To
ta

l F
at

8.
76

 ±
 5

.4
9

8.
35

 ±
5.

11
8.

13
 ±

6.
02

10
.7

7 
± 

5.
13

7.
22

 ±
 4

.5
2

A
IR

g
90

3.
9 

± 
70

8.
4

61
9.

1 
± 

42
5.

4
12

35
.4

 ±
 8

27
.5

94
0.

8 
±7

48
.6

76
8.

0 
± 

32
8.

8

S I
5.

65
 ±

 3
.0

5
6.

69
 ±

 2
.5

5
4.

59
 ±

 2
.6

1
5.

32
 ±

 3
.8

8
6.

07
 ±

 3
.2

4

FI
12

.5
1 

± 
5.

89
10

.9
1 

± 
4.

14
13

.2
7 

± 
5.

74
14

.5
8 

±7
.9

2
10

.5
 ±

 5
.1

3

H
O

M
A

-I
R

3.
02

 ±
 1

.5
1

2.
64

 ±
 1

.0
6

3.
12

 ±
 1

.4
1

3.
64

 ±
 2

.1
1

2.
47

 ±
 1

.2
5

U
ni

ts
: T

ot
al

 fa
t (

kg
), 

A
IR

g 
(μ

IU
/m

l ×
 1

0 
m

in
), 

S I
 (×

 1
0-

4 /
m

in
/(μ

IU
/m

l))
, F

I (
μI

U
/m

l)

Hum Genomics. Author manuscript; available in PMC 2011 July 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Klimentidis et al. Page 13

Table 2

Association between European admixture and phenotypes (Standardized parameter estimate and p-value
shown, respectively)

Entire Sample Hispanic Americans African Americans European Americans

Total Fat 0.13 (p=0.037*) -0.12 (p=0.40) 0.17 (p=0.090) 0.02 (p=0.80)

Si 0.34 (p<0.0001*) 0.25 (p=0.031*) -0.01 (p=0.93) 0.13 (p=0.18)

AIRg -0.28 (p<0.0001*) -0.23 (p=0.038*) -0.13 (p=0.19) -0.09 (p=0.37)

FI -0.20 (p=0.0013*) -0.27 (p=0.045*) -0.07 (p=0.45) -0.02 (p=0.79)

HOMA-IR -0.16 (p=0.0095*) -0.26 (p=0.064) -0.11 (p=0.25) -0.005 (p=0.96)

Covariates: age, sex, Tanner stage, SES, total fat, height (for AIR, we also controlled for SI)

*
denotes p<0.05.
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