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Abstract
The ability to judge whether sensory stimuli match an internally represented pattern is central to
many brain functions. To elucidate the underlying mechanism, we developed a neural circuit
model for match/nonmatch decision making. At the core of this model is a “comparison circuit”
consisting of two distinct neural populations: match enhancement cells show higher firing
response for a match than a nonmatch to the target pattern, and match suppression cells exhibit the
opposite trend. We propose that these two neural pools emerge from inhibition-dominated
recurrent dynamics and heterogeneous top-down excitation from a working memory circuit. A
downstream system learns, through plastic synapses, to extract the necessary information to make
match/nonmatch decisions. The model accounts for key physiological observations from behaving
monkeys in delayed match-to-sample experiments, including tasks that require more than simple
feature-match (e.g. when BB in ABBA sequence must be ignored). A testable prediction is that
magnitudes of match enhancement and suppression neural signals are parametrically tuned to the
similarity between compared patterns. Furthermore, the same neural signals from the comparison
circuit can be used differently in the decision process for different stimulus statistics or tasks;
reward-dependent synaptic plasticity enables decision neurons to flexibly adjust the readout
scheme to task demands, whereby the most informative neural signals have the highest impact on
the decision.
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Introduction
Perception and cognition often require us to evaluate similarity of two sensory events and to
judge whether they are the same or different. “Same vs. different” comparison is a generic
neural computation involved in a wide range of brain functions. For example, searching for
an object in a crowded scene requires us to judge whether a currently viewed object matches
an internal representation of the target object. Furthermore, mismatch between expected and
experienced stimuli is believed to give rise to “prediction error” signals, e.g. in the forward
model for motor learning (Miall and Wolpert, 1996). Match/nonmatch comparison between
the environment and expectation has also been proposed to gate the entry of information into
the long-term memory (Lisman and Grace, 2005, Kumaran and Maguire, 2007).
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Match/nonmatch computation is often thought of as a decision on whether the difference
between two signals is zero (match). However, recent experimental findings in delayed
match-to-sample (DMS) tasks suggest a different view. In a DMS task, subjects are
presented with a sequence of stimuli separated by delays, and a behavioral response is
required if the current test stimulus is the same (match) as a previously shown sample
stimulus. Intriguingly, converging evidence from physiological studies with behaving
monkeys and human brain imaging (Duncan et al., 2009, Turk-Browne et al., 2007) pointed
to two candidate neural mechanisms involved in match vs. nonmatch computation. One is
referred to as repetition suppression, a passive reduction of neural response to any stimulus
repetition regardless of behavioral relevance (Figure 1C). Repetition suppression is the
predominant neural signal observed in standard DMS tasks (Figure 1B) when the matching
test is the only stimulus repetition within a trial (Miller et al., 1991, Miller et al., 1993,
Miller and Desimone, 1994, Constantinidis and Steinmetz, 2001, Steinmetz and
Constantinidis, 1995, Zaksas and Pasternak, 2006). The other is referred to as match
enhancement, an active mechanism that is engaged whenever feature matching is not
sufficient to perform a task, as for example when nonmatch can also be repetitive (e.g.
ABBA) (Figure 1B), and irrelevant repetitions of nonmatch stimuli (BB) should be ignored.
Neurophysiological recordings in the prefrontal (Miller et al., 1996, Freedman et al., 2003),
temporal (Miller and Desimone, 1994) and parietal (Rawley and Constantinidis, 2010)
cortices revealed two populations of neurons whose selectivity for visual stimuli is
modulated by match/nonmatch context in complementary ways: match enhancement (ME)
cells show higher firing response for a match than nonmatch to the sample, whereas match
suppression (MS) cells exhibit the opposite trend (Figure 1D).

These observations raised a number of questions: (1) what are the network mechanisms for
generating match enhancement and suppression neural signals, (2) how does the brain
switch between the active and passive modes of computation, and (3) are enhancement and
suppression neural signals sufficient to make same vs. different decisions, and if so, how?
Here we examine possible answers to these questions by proposing a biophysically based
circuit model that can learn and perform a DMS task in its entirety.

Materials and Methods
For the sake of concreteness, model simulations were carried out with a DMS task in which
the stimulus feature is the direction of motion in a field of moving dots (Figure 1A). Using
the motion direction stimuli has three main advantages. First, the angle separation between
any two motion directions is an analog quantity that objectively measures their similarity.
Parametrical variation of the angle between the sample and test directions allows us to make
quantitative predictions about neural encoding of similarity. Second, in the primates,
processing of motion directions depends on neural activity in the cortical area MT, where
most cells have bell-shaped tuning functions for the direction of motion (Dubner and Zeki,
1971, Britten et al., 1992, Born and Bradley, 2005). The encoding of motion directions by
MT neurons is understood fairly well and can be captured with recurrent neural network
models. Finally, the behavioral consequences of task difficulty for learning and performance
can be studied by varying the fraction of test stimuli that are similar (less discriminable) to
the sample. Though in this paper we focus on motion directions, all presented computational
principles are generic and can be applied to other types of stimulus patterns.

Description of the model
The model consists of three interconnected subsystems: the working memory (WM),
comparison and decision networks. All three are strongly recurrent networks with dynamics
governed by local excitation and feedback inhibition (Compte et al., 2000, Wang, 2002,
Wong and Wang, 2006). In simulations, we used a reduced firing-rate model that has been
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shown to reproduce neural activity of a full spiking neuron network (Wong and Wang,
2006). In this framework, the dynamics of each excitatory neural pool is described by a
single variable s representing the fraction of activated NMDA conductance, and the neural
firing rate is described as a function of the total synaptic current. The variable s is described
by

(1)

with γ = 0.641 and τs = 60 ms. The firing rate r is a function of the total synaptic current I
(Abbott and Chance, 2005, Wong and Wang, 2006):

(2)

with a = 270 Hz/nA, b = 108 Hz, d = 0.154 s. The total synaptic current I consists of three
main contributions: recurrent, sensory and noisy, I = Ir + Is + In. Recurrent input to a neuron
i in the population A originating from the population B reads:

(3)

where  is a synaptic coupling between the neuron j in the population B and the neuron i
in the population A.

Neurons in the WM and comparison networks are spatially organized and labeled by their
preferred direction of motion θi (from 0° to 360°). Each population (WM, ME and MS) was
simulated by 256 discrete units si (i = 1 ... 256) with equally spaced preferred directions
(θi+1 −θi = 360°/256). Within each network, the synaptic couplings gij between neurons with
preferred directions θi and θj have a Gaussian profile

(4)

with σ = 43.2°. Parameters J− and J+ determine the amount of the recurrent inhibition and
excitation in the circuit. The WM network can sustain persistent firing by reverberating
activity due to strong recurrent excitation ( , ). In Figure 6 the
peak location of persistent activity pattern was characterized by a population vector (Compte
et al., 2000).

The comparison network has match enhancement and suppression (ME and MS) neurons
defined by heterogeneous top-down inputs. One subpopulation (ME neurons) receives
excitation from the WM circuit with the Gaussian profile as in Equation 4 and σ = 43.2°,

, . The rest of the comparison network are MS neurons
which do not receive any top-down input . We assume that
excitatory conductances of the ME cells are weakened by a factor α = 0.975 due to a
homeostatic mechanism acting to compensate for the excess of the top-down excitation in
these cells. This homeostatic mechanism is operating on a very slow time scale, so that the
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value of α is held constant in all simulations. The comparison network is strongly dominated
by inhibition with J− = -8 5 nA,  and

.

When a motion direction stimulus θs is presented, neurons in the WM and comparison
networks receive sensory currents that depend on the neuron's preferred θ:

(5)

where σs = 43.2°, ,  and . We assume that sensory
signals reach the WM circuit only when attention is directed to store the sample in the WM.
Signals form the test stimuli, as well as from the sample in the passive condition (simulating
the repetition suppression) do not reach the WM circuit. In all simulations, sensory stimuli
were presented for 0.6 s and separated by 1 s delay (except for the results in Figure 6).

Noisy current replicates background synaptic inputs and obeys:
 where η(t) is a white Gaussian noise, ,

, , τn = 2 ms and σn = 0.009 nA. For the results in Figure 6 the noise
variance in the WM circuit was increased to .

The ME and MS neurons have an additional current Ia mimicking the spike-rate adaptation:
I{ME,MS} = Ir + Is + In − Ia, whereby Ia = gasa and ga = 0.003 nA. The dynamics of sa
follows dsa /dt = −sa /τa + r, with τa = 10 s. We used a phenomenological model for the
adaptation current, since our aim was to explore interactions between the passive and active
memory mechanisms rather than to capture the precise biophysical mechanism of
adaptation.

The strength of the top-down connections  and the homeostatic scaling parameter α
were chosen so as to (a) achieve approximately equal responses in the ME cells to the
preferred match and in the MS cells to the preferred nonmatch stimulus, and (b) replicate the
experimentally observed difference in response to the match and nonmatch stimuli in the
MS cells (Figure 1D). The magnitude of the adaptation current ga was adjusted to mimic the
experimental pattern of the passive repetition suppression in the MS cells (Figure 1C). Other
observed firing rate patterns in the comparison network (as discussed in Results) were not
purposely tuned.

The activities of the ME and MS neurons are pooled by the decision circuit with two
competing neural populations selective for choice “Match” and “Nonmatch” (Figure 1E).
When stimulated, activities of the two populations diverge according to winner-take-all
dynamics, and the model's decision is determined by the population with a higher activity.
Across trials, the stochastic choice behavior of the decision circuit is characterized by a
sigmoidal dependence of the probability PM to choose “Match” on the difference ΔI in
synaptic input currents to the match and nonmatch pools (Soltani and Wang, 2006):

(6)

We used β = 200 nA −1.
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Plasticity rule
The synapses connecting comparison neurons with the decision neurons are plastic. Each
pair of pre- and post-synaptic cells is connected by a set of binary synapses which are in
either a potentiated or a depressed state. The fraction  of synapses in the potentiated
state quantifies the strength of synaptic connection. Input currents to the match and

nonmatch populations are expressed through the synaptic strengths as 
where the sum goes through all neurons in the comparison network, ri are their firing rates,
and g = 1 nA/Hz.

At the end of each trial, all synapses onto the chosen population (match or nonmatch) are
updated according to a reward-dependent Hebbian plasticity rule. If the choice of the model
is rewarded, the synapses are potentiated, i.e. the synapses in the depressed state make a
transition to the potentiated state with the rate q0 · q(r) referred to as the learning rate (Fusi,
2002):

(7)

If the choice of the model is not rewarded, the synapses are depressed:

(8)

The maximal learning rate q0 determines the speed of learning. The learning rate gradually
depends on the presynaptic firing rate: q(r) = (1+exp(−(r − r0))−1. We used r0 = 15 Hz and
σq = 4 Hz. For the results in Figure 9 we used q0 = 10−3.

Simulations of the learning dynamics
For modeling the learning process, it is computationally impractical to simulate the actual
neural circuit (operating on the timescale of milliseconds) over thousands of trials. We
devised the following approach to bypass this difficulty while faithfully capturing the
system's behavior. First, for the decision network, only the choice behavior but not the
detailed temporal dynamics is important for learning. Therefore on each trial we evaluated
the difference in the input currents ΔI, computed PM using Equation 6, and then flipped a
biased coin to determine the network choice on a single trial.

Second, we note that responses of the comparison neurons are not affected by learning
which only adjusts the readout scheme from these neurons. Therefore, to efficiently simulate
the learning dynamics, we created a database of neural responses to different combinations
of sample and test stimuli and used the database to investigate the learning process.
Specifically, for each stimulus configuration, 100 trials of the model dynamics were
simulated and stored in the database (except for 500 trials were simulated for the results in
Figure 6). Each trial in the simulations of the learning dynamics consisted of four sequential
steps: (i) generate the sample and test motion directions according to the stimulus statistics;
(ii) choose one trial from the database that corresponds to the current sample and test

directions; (iii) evaluate the input currents to the decision circuit , and
determine the network choice; (iv) update synapses according to the learning rule. This
approach is very efficient, since the database needs to be created only once, and then
learning dynamics can be simulated for different stimulus statistics and different parameters
of the plasticity rule using the same database.
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The synaptic strengths were initialized with random values drawn from the uniform
distribution on [0, 1]. After the learning dynamics reached a steady performance level, the
psychometric function was obtained by averaging the model performance over 106 trials
(with ongoing learning).

Steady-state calculations of the model performance
The synaptic strengths and model performance in the steady-state can be calculated
analytically. Let θs be the sample direction, which is uniformly distributed on [0°, 360°].
Possible directional differences, match θ0= 0° and nonmatch {θi ≠ 0°} (i = 1 ... N), have the
priors p0 and {pi}, respectively. The firing rates of neurons in the comparison network
ri(θ,θs) depend on the neuron's preferred direction θ, sample direction θs, and the directional
difference θi. Hence the learning rate of each neuron on every trial q[ri(θ,θs)] also depends
on θ, θs and θi. Averaging the update rule Equations 7,8 over the sample direction results in

the effective learning rate . The effective learning rate is
different for ME and MS neurons due to difference in their firing rates, but it is the same for
neurons with all preferred directions θ due to rotational symmetry of the ring architecture.

Consequently, two sets of effective learning rates  and  determine the steady-state
of learning (index i refers to the directional difference θi).

Since the effective learning rate does not depend on θ, the steady-state values of synaptic
strengths are also the same for neurons with all preferred directions. Hence, four synaptic

strengths fully characterize the steady-state: , , , . The synaptic strengths of ME
and MS neurons obey the same equations, but they differ because of different effective
learning rates. The analytical expressions for the synaptic strengths are readily obtained:

(9)

(10)

Here  denotes the probability to choose “Match” when the ith directional difference is
presented. The difference in synaptic strengths to the match and nonmatch populations Δc =
cM −cNM determines the difference in the synaptic input currents

, which in turn determines . Hence Equations 9,10
have to be solved self-consistently, and we solve them numerically using the Levenberg-
Marquardt algorithm.

Once the steady-state solution is obtained,  provides us the psychometric function. The
overall performance, i.e. the overall fraction of correct responses is then computed as

. The psychometric functions have sigmoidal shape and can be fitted
with the function f(θ) = c/(1 + exp(b(θ - a))) of three parameters a,b and c. The fitted value
of cb/4 (measured in degrees −1) is called the slope of the psychometric function and
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characterizes its steepness. The parameter c is the value of the psychometric function at 0°
directional difference, i.e. represents the probability to correctly identify match. The
psychometric threshold is defined as the sample-test directional difference at which the
performance is 75% correct responses and is expressed through the fit parameters as a - b
log(4c - 1).

In our model, the steady-state values of the synaptic strengths (Equations 9,10) depend on
the prior probabilities for match p0 and nonmatch stimuli {pi}. In this way the model adjusts
the behavioral output to various stimulus statistics, for example when the match prior p0
changes. Notably, the network model is not explicitly provided with the priors, but learns
them through experience.

Ideal Bayesian observer
As a benchmark against which to evaluate the network performance, we consider an ideal
observer that performs the task optimally using Bayesian inference. On each trial, the ideal
observer makes a match vs. nonmatch decision based on observed data x (e.g. the firing rate)
and the knowledge of priors p0,{pi}. Let p(x |θi) denote the likelihood function of x when the
directional difference θi is presented. The posterior distributions for match and nonmatch are
computed using the Bayes’ rule:

(11)

where the denominator is p(x), and p(nonmatch|x) = 1 - p(match|x). These posterior
distributions can be used to make a decision using one of several possible decision rules. For
the strict Bayesian strategy, the alternative with the larger posterior is always selected, hence
the probability to choose match equals

(12)

For a probabilistic Bayesian strategy, the alternatives are chosen with probabilities equal to
their posteriors, hence P(match choice|x) = p(match|x) in this case. The psychometric
function  for the ideal observer is then computed for each directional difference θi by
averaging P(match choice|x) over the probability to observe the data x:

(13)

We assumed that on each trial the observed data value is x = r(θi) + η, where r(θi) is the
mean response when the directional difference θi is presented, and η is a Gaussian noise
with zero mean and standard deviation σ. Hence the likelihood

. We considered two different choices for r(θi):
(i) average firing rate of the ME population (rME (θi), red line in Figure 3C); (ii) difference
in the average firing rates of the ME and MS populations (rME (θi) − rMS (θi), red and blue
lines in Figure 3C). We also considered the case when x is a two-component vector with the
mean {rME (θi),rMS (θi)} and with two independent Gaussian noises. Performance of the
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ideal observer was very similar in all these cases and for both, strict Bayesian and
probabilistic Bayesian, decision strategies.

For the comparison with the network model in Figure 7, we computed performance of the
ideal observer using x as the difference in the average firing rates of the ME and MS
populations and the strict Bayesian strategy. The noise standard deviation σ was adjusted to
approximately match the psychometric threshold and the overall performance for the
network model and the ideal observer for p0 = 0.5.

Alternative model
In the core of our model (two-pool comparison model in Figure 10A) are two neural
populations, ME and MS neurons, that perform the comparison computation and exhibit
complementary tuning to the sample-test similarity (Figure 3C). We have also considered an
alternative model based on simple addition of two signals: sensory input from the test
stimulus and WM input representing a stored sample. The addition computation can be
performed by a single neural population with converging sensory and WM inputs (one-pool
addition model in Figure 10A). We implemented the one-pool addition model similarly to
our two-pool model, however instead of heterogeneous (ME and MS) comparison
population, the one-pool model has a single “addition population” that receives sensory and
WM inputs. All neurons in the addition population receive excitation from the WM circuit
with the Gaussian profile as in Equation 4 and J+ = 1.15 nA and J−= 0 nA. Since the top-
down excitation is homogeneous, there is no heterogeneity in the strengths of recurrent
connections, botomup inputs and background noisy currents within the addition population.
For all cells we set gs = 0.13 nA, I0 = 3.1 nA, and the recurrent connections follow the
Gaussian profile (Equation 4) with J+ = 0.4 nA and J−= -8.5 nA. Other parameters are the
same as in the two-pool model.

In the one-pool model, larger overlap between the top-down and bottom-up inputs leads to
higher overall activity in the addition population. As a result, the average firing rate in the
addition population gradually decreases with directional difference between the sample and
test, resembling similarity tuning of the ME neurons in the two-pool model (solid black lines
in Figures 10B,10C). Match/nonmatch decisions can be readout from the single addition
population by a simple threshold mechanism. Specifically, we assumed that the probability
of the match decision is given by a sigmoidal function:

(14)

where r is the averaged firing rate in the addition population, rth is the firing-rate threshold,
and parameter σr determines precision of the readout system.

To illustrate differences in behavioral performance of the one- and two-pool models, we
asked how robust is the performance of each model to changes in the input strength, e.g. due
to change in the contrast of visual stimuli (Figures 10A,10B). To this end, we simulated
neural activity in both models in response to test stimuli with control (gs= 0.13 nA) and
doubled (gs= 0.26 nA) strength. For fair comparison, with the control stimulus strength, the
parameters rth and σr in Equation 14 for the one-pool model were adjusted such that the
psychometric function matches for the two models. With the doubled stimulus strength, the
performance of both models was tested with the parameters of the readout systems fixed at
the values obtained for the control stimulus strength.
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Results
Computational hypotheses: building blocks of the circuit model

The model comprises three interconnected local circuits that correspond to three basic
operations involved in the DMS task: the WM, comparison and decision neural networks
(Figure 1E, see Materials and Methods for details). Neurons in the WM and comparison
networks are tuned to motion directions and receive directional bottom-up inputs. The top-
down projections from the WM circuit to the comparison network are excitatory and
topographically organized: neurons with similar preferred directions are more strongly
connected. Sample stimulus triggers persistent firing in the WM circuit, which represents a
memory of the sample. This internal representation of the sample is maintained during the
delay through reverberating neural activity (Camperi and Wang, 1998, Compte et al., 2000,
Gutkin et al., 2001, Wang, 2001), and provides a top-down signal to modulate neural
responses to test stimuli in the comparison network.

The core component of the model is the comparison network. Neurons in the comparison
network respond differently to the test stimuli depending on whether they match the sample,
and in this way implement the comparison operation. The match/nonmatch sensitive
modulations of responses arise from three simple biophysical ingredients. First, all cells in
the comparison network are endowed with an adaptation current with a long time constant
(~10 s) (Sanchez-Vives et al., 2000, Wang et al., 2003, Pulver and Griffith, 2010). The
spike-rate adaptation leads to a diminished response to any repeated stimulus and thus
captures passive repetition suppression. Second, the top-down projections from the WM
circuit are topographically organized but naturally heterogeneous: just by chance different
cells within each column receive different amount of top-down excitation. The cells that
receive stronger top-down excitation (red in Figure 1E) show active match enhancement
(ME), and the cells that receive weaker top-down excitation (blue in Figure 1E) show match
suppression (MS) as explained in the following section. Finally, homeostatic regulation of
excitatory synapses (Turrigiano et al., 1998, Renart et al., 2003) acts to maintain the average
firing rate in the network and to keep the overall amount of excitation approximately equal
for all cells. As a result, the recurrent and bottom-up synapses on the ME cells are slightly
weakened to compensate for the excess of the top-down excitation, compared to the MS
cells. As we shall see, the difference in strength of recurrent connections in the ME and MS
cells is crucial to generate enhanced responses to nonmatches in the MS cells. Note that the
homeostatic mechanism is operating on a very slow time scale, hence in all simulations the
difference in strength of recurrent connections in the ME and MS cells is held constant.

It is noteworthy that the model assumes that the ME and MS effects arise naturally from
heterogeneous top-down excitation and inhibition-dominated recurrent dynamics in the
comparison network, and no learning is involved in shaping responses of the ME and MS
neurons. It is possible that different tasks may engage ME and MS cells differently. For
instance, in a task in which working memory might not be necessary, the ME cells might not
receive top-down inputs and therefore would show passive repetition suppression.

The activity of the ME and MS neurons is readout by a downstream decision network,
modeled similarly as in the previous work (Wang, 2002, Wong and Wang, 2006), that
generates categorical match vs. nonmatch decisions. The decision network comprises two
neural populations: “Match” neurons (orange in Figure 1E) and “Nonmatch” neurons
(purple in Figure 1E) fire at higher rate for match and nonmatch decisions, respectively.
Unlike the comparison neurons, which exhibit ME and MS as a modulation of their
selectivity for motion direction, the decision neurons carry a pure decision (response) signal
and are not selective to any stimulus feature. In addition, the decision neurons acquire their
decision (response) preferences through learning. The synapses connecting the comparison
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and decision networks undergo reward-dependent Hebbian plasticity (Soltani and Wang,
2006, Fusi et al., 2007, Soltani and Wang, 2010). We will show that learning ultimately
generates connectivity profiles such that the activity of the ME and MS neurons can be
readout differently by the decision network in a way that allows flexible mapping of
comparison signals onto arbitrary motor response. The model is able to learn different
variants of the DMS task using the same ME and MS signals, and to flexibly adjust the
decision criteria when the stimulus statistics are changed.

In the model, we do not assign the working memory, comparison and decision making
operations to specific brain areas. The local cortical circuits for these three basic operations
may be located within a single brain area, or be distributed across several areas. For
example, sub-populations of neurons in the prefrontal cortex exhibit activities consistent
with all operations involved in the DMS task: sample-selective delay activity, ME/MS
comparison signals, and match/nonmatch decision signals (Miller et al., 1996, Freedman et
al., 2002). However, ME and MS neural signals have also been observed in the parietal areas
7a (Rawley and Constantinidis, 2010), LIP and MIP (Swaminathan et al., 2010), in the
inferior temporal cortex (Miller and Desimone, 1994, Freedman et al., 2003), and in the area
V4 (Kosai et al., 2010). These areas differ in the magnitude, latency and the proportion of
neurons carrying each type of signal. This suggests that they are playing distinct or
complementary roles in the match/nonmatch decision making, but which area is the source
of comparison and decision signals remains to be elucidated in the future.

Active and passive comparison mechanisms
We first consider the dynamics of the comparison network (Figure 2). The top-down input
modulates neural activities without disrupting selectivity for motion direction. Neurons
respond to their preferred test stimuli, but the response is higher in the ME cells than in the
MS cells if the sample was also the preferred stimulus (match), and vise versa if the sample
was the antipreferred stimulus (nonmatch), see Figures 2A-2C. The ME and MS effects are
specific for behavioral matches, i.e. for stimuli that match the sample stored in the WM
circuit, as demonstrated by the responses to repeated nonmatch in Figures 2A,2C. The
model thus reproduces the salient neural activity patterns observed in behaving monkeys
(compare Figures 2C with 1D). Interestingly, the model makes a testable prediction that the
ME cells exhibit sample-selective delay activity (Figures 2A,2B). The delay activity in the
ME neurons is induced solely by the top-down input, since the comparison network is
dominated by recurrent inhibition and cannot sustain persistent firing on its own.

If the sample-tuned modulation from the WM circuit is disrupted (e.g. if the sample stimulus
does not trigger persistent firing or if the top-down connections are absent), the active
mechanism is abolished and the passive repetition suppression prevails in all cells in the
comparison network (Figures 2D-2F, compare with experimental data in Figure 1C). The
passive mechanism does not distinguish behaviorally relevant and irrelevant repetitions,
hence responses to match and repeated nonmatch are equally suppressed.

The circuit mechanism of active enhancement and suppression is illustrated in Figures 3A,
3B. In the nonmatch condition (Figure 3A) the bottom-up and top-down inputs target
different columns in the ME population. The neurons tuned to the test stimulus are
effectively driven by the bottom-up and recurrent inputs only. In this case the ME cells have
lower activity than the MS cells, since the recurrent and bottom-up synapses are weaker in
the ME cells. In the match condition (Figure 3B) the bottom-up and top-down inputs
converge to the neurons within the same column. In this case, the top-down input
compensates for the weaker recurrent excitation in the ME cells as well as for the
adaptation-induced reduction in their responsiveness. Consequently, the ME cells show
higher activity than the MS cells.
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The dynamics in the comparison network have to be strongly dominated by recurrent
feedback inhibition in order to achieve that the response to match stimuli is lower in the MS
cells than in the ME cells. Indeed, in the match condition the total activity of the ME and
MS cells, and hence the recurrent excitation to the MS cells (that have stronger recurrent
synapses), is comparable to that in the nonmatch condition. Nevertheless, in the match
condition the MS cells show lower activity than in the nonmatch condition. This is possible
if the overall feedback inhibition is higher in the match than in the nonmatch condition.
Since the feedback inhibition is roughly proportional to the summed activities of the ME and
MS neurons, a signature of this network mechanism is that the total activity of the ME and
MS cells is slightly higher in the match than in the nonmatch condition. In other words, the
response of the ME cells in the nonmatch condition is lower than the response of the MS
cells in the match condition (Figures 2C and 3C). Our proposed mechanism of enhancement
and suppression hence accounts for some subtle details of the experimental data shown in
Figure 1D. Notably, the overall activity in the comparison network is higher for match than
for nonmatch stimuli despite the passive adaptation acting to reduce firing of the mostly
active cells in the match condition.

When examining firing patterns in the comparison network, for all possible comparisons
across different cell types and sample/match/nonamtch conditions, what matters the most is
the difference in response of the ME and MS cells to the same test stimulus. This difference
in firing of the ME and MS cells is what is used by the readout system to generate a
categorical match vs. nonmatch decision. The dynamical enhancement and suppression
mechanisms in our model underlie this pattern of firing rate differences, which closely
captures experimental data. In contrast, the exact responses to the sample in the ME and MS
cells are not essential. In our model, neural responses to the sample are somewhat higher
than the ME neural response to a nonmatch or MS response to a match test stimulus, which
is due to the transient interplay of the rising activity in the WM circuit and of the building up
adaptation current during the sample stimulus presentation as well as the enhanced global
feedback inhibition afterwards.

Sample-test similarity tuning in the ME and MS populations
So far we considered only nonmatch stimuli that differed by 180° from the sample (i.e. the
opposite direction of motion). It is interesting to see how the comparison network handles
nonmatch stimuli with various degree of similarity to the sample. The directional difference
between the sample and test determines the amount of overlap between the bottom-up and
top-down inputs to the ME population (Figure 3A). The larger this overlap is the higher is
the overall activity in the ME population. Accordingly, the response of the ME population is
the highest in the match condition and gradually decreases with the directional difference,
while the MS population exhibits the opposite pattern (Figure 3C). In this way, neurons in
the comparison network exhibit sigmoidal tuning to similarity between the sample and test,
whereby activity of the ME cells increases and that of the MS cells decreases for more
similar stimuli. Our model makes it explicit that similarity tuning is required to perform a
DMS task, and predicts that match enhancement and suppression effects are tuned to
similarity in complementary ways. This predication can be tested experimentally.

Since a match/nonmatch decision is expected to rely on the differential signals from the ME
and MS neurons, a key property of the network is the value of the directional difference at
which the sample-test similarity tuning curves of the ME and MS cells cross. This value
depends on the width of neural tuning in the WM and comparison networks, which is ~ 30°-
50°, comparable with those observed in cortical neurons (Albright, 1984). Consequently, the
two similarity tuning functions are coarse, and the crossing point is at ~ 70° (dashed vertical
line in Figure 3C). This raises two questions: is the coarseness of the similarity tuning the
main factor limiting the decision accuracy, and how can coarsely tuned neurons carry out
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fine discriminations? These questions are addressed in the following sections, where we
propose a downstream decision circuit that generates match/nonmatch choices based on
activities of the ME and MS neurons.

Learning to compute the match/nonmatch decision
The decision circuit comprises two competing neural populations selective for the choices
(e.g. match and nonmatch, Figure 1E) and exhibits winner-take-all dynamics. Across trials,
the stochastic choice behavior in the decision circuit is characterized by a sigmoidal
function, which represents how the probability of making a choice depends on the difference
in synaptic input currents to the two competing neural populations (Soltani and Wang, 2006)
(Figure 4B). Since the ME and MS neurons are entangled within the comparison network
and have the same cellular properties, it is reasonable to assume that the ME and MS
neurons are all connected to both selective populations in the decision circuit. Specific
connectivity profiles that differentially weight activities of the ME and MS neurons should
emerge from experience-dependent learning (Figure 4A).

We used a reward-dependent Hebbian learning rule similar to that in the previous work
(Soltani and Wang, 2006, Fusi et al., 2007, Soltani and Wang, 2010) (see Materials and
Methods), but with the additional assumption that the synaptic potentiation/depression rate
q0 · q(r) is an increasing function of the presynaptic firing rate r (Figure 4C). Since neurons
in the decision circuit have binary (high or low) activities, for simplicity we reduce the
dependence on the postsynaptic firing to a binary rule: only synapses onto the population
with the high activity (i.e. for the winner that determines the choice) are updated. Synapses
are potentiated in reward trials, and depressed in error trials.

Gradual dependence of q(r) on the presynaptic firing is the key to learning the task.
Consider a ME cell and a MS cell preferring the test stimulus, and consider their four

connections to the match and nonmatch populations , , ,  (Figure 4A). If the test
stimulus is a match, then the firing rate and hence the amount of potentiation/depression is
slightly higher for the ME cell (Figure 4C). The “Match” choice is rewarded in this
condition and induces potentiation in both cells, but synapses from the ME cell are

potentiated more than those from the MS cell (Figure 4C), leading to . The
“Nonmatch” choice is not rewarded in this condition, and synapses from the ME cell are

depressed more than the synapses from the MS cell, leading to . The similar
argument applies to the case of a nonmatching test. In this way, learning eventually gives
rise to a synaptic connectivity profile such that the ME and MS neurons preferentially target
the match and nonmatch populations, respectively (Figures 4A,4D).

If learning is performed with randomized direction of the sample stimulus, all motion
directions are presented equally often during the test. As a consequence, the steady-state
synaptic strength for each comparison neuron is independent of its preferred motion

direction. That is, four values , , ,  fully characterize the steady-state of the
learning process (Figure 4D). The steady-state values of synaptic strengths can be calculated
analytically (see Materials and Methods), which in turn allow us to calculate the network's
psychometric function (Figures 4E,4F). The steady-state prediction is the upper bound on
the behavioral performance. Ongoing learning in the network produces time-varying
fluctuations of synaptic strengths around their steady-state values, which results in slightly
lowered performance. The magnitude of these fluctuations increases with the maximal
learning rate q0. There is therefore a tradeoff between faster learning and higher accuracy
(Figures 4E,4F). For sufficiently low q0 the performance approaches the steady-state level.
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What determines the behavioral performance
Behavioral performance in our model is jointly determined by three factors: firing rates of
neurons in the comparison circuit, sensitivity of the decision circuit, and the profile of
synaptic connections between the comparison and decision networks. To discern
contributions from each of these three factors, we computed the model's performance
allowing one of them to vary while holding the remaining two factors fixed (Figure 5). It is
instructive to perform this analysis using linear similarity tuning in the ME and MS
populations as well as linear dependence of the learning rate q(r) on the firing rate, as we
have assumed for the results in Figure 5. Linear similarity tuning allows us to determine and
parametrically vary the sharpness of tuning through just a single parameter, the tuning slope
α. Moreover, the slope α is the same for all directional differences and the accuracy at small
directional differences is not constrained by the nonlinear saturation as it is the case for
sigmoidal tuning.

First, consider how the model's performance depends on the synaptic connectivity profile,
with the parameters of the comparison and decision networks fixed. In Figure 5B we plot the
model's overall performance (% correct responses) as a function of differences in synaptic

strengths  and . The synaptic strengths in Figure 5B are not
adjusted by learning, we rather ask how well does the model perform for given values of
synaptic strengths. Note that −1 ≤ Δc ≤ 1, since the synapses are bounded 0 ≤ c ≤ 1.

Probability of choices in the decision circuit depends on the difference in input currents to
the match and nonmatch selective populations ΔI = g[ΔcMErME + ΔcMSrMS]. If both ΔcME
and ΔcMS have the same sign, which means that both ME and MS cells are more strongly
connected to the same pool in the decision circuit, then ΔI has the same sign for all
directional differences. In this case the model always generates the same response and the
performance is at chance level (green area in Figure 5B). If ΔcME < 0 and ΔcMS > 0, then the
match response is more probable when the activity in the MS population is higher (i.e. for
large directional differences) and less probable when the activity in the ME population is
higher (i.e. for small directional differences). In this case the performance is worse than
chance (blue area in Figure 5B). Finally, the region where ΔcME > 0 and ΔcMS < 0
corresponds to the ME and MS cells being more strongly connected to the match and
nonmatch populations, respectively. Here the match response is more (less) probable for
small (large) directional differences and the performance is higher than chance (yellow-to-
red area in Figure 5B).

Let us now see how within this region, where ΔcME > 0 and ΔcMS < 0, the model's
performance and the psychometric threshold depend on the relative magnitudes of synaptic
strengths, λ =| ΔcMS /ΔcME |. In this region the difference in synaptic currents can be
rewritten as ΔI =| ΔIME | − | ΔIMS |, where | ΔIME |= g | ΔcME | rME and | ΔIMS |= g | ΔcMS |
rMS . The dependence of these two contributions on the directional difference is obtained
just by multiplying the similarity tuning curves of the ME and MS neurons by their
respective | Δc | values (Figure 5C). The directional difference at which | ΔIME | (θi) and |
ΔIMS | (θi) curves cross corresponds to ΔI = 0, i.e. to P(Match) = P(Nonmatch) = 0.5 and is
referred to as the point of subjective indifference (PSI). Let us see how PSI, and
consequently the psychometric threshold, depend on the parameter λ. For λ = 1 (i.e. | ΔcMS |
=| ΔcME |) the two curves, | ΔIME | (θi) and | ΔIMS | (θi), cross exactly at the same directional
difference where rME (θi) and rMS (θi) curves cross (orange lines in Figure 5C). Since the
similarity tuning in the ME and MS neurons is coarse, the PSI and the psychometric
threshold are large (~ 90°) in this case. For λ <1 (i.e. | ΔcMS |<| ΔcME |) the crossing point of |
ΔIME | (θi) and | ΔIMS | (θi) shifts to even larger directional differences (blue line in Figure
5C). Hence the PSI and the psychometric threshold increase, which is reflected in lower
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overall performance (yellow off-diagonal area in Figure 5B). In contrast, for λ >1 (i.e. | ΔcMS
|>| ΔcME |), the crossing point of | ΔIME | (θi) and | ΔIMS | (θi) shifts to smaller directional
differences (green line in Figure 5C). The PSI and the psychometric threshold decrease and
the overall performance increases (dark-red off-diagonal area in Figure 5B) until the
imbalance between | ΔcME | and | ΔcMS | reaches the value where | ΔIME |<| ΔIMS | for all θi
and the performance quickly drops to the chance level (the drop-off happens within the
range of ΔIs where the choices in the decision network are stochastic, see right panel in
Figure 5B). The performance drops off sharply because of the discontinuity in the correct
response: 0° is the match, but any nonzero directional difference is a nonmatch. As long as
the curves | ΔIME | (θi) and | ΔIMS | (θi) cross just between 0° and the smallest nonmatch
directional difference Ψ1 (which is 5° in Figure 5), the performance is the best possible, but
a small change in the synaptic strengths resulting in | ΔIME | (0°) <| ΔIMS | (0°) will cause the
network to respond “Nonmatch” to 0° directional difference and hence the chance level
performance. Note that the reward-dependent learning naturally adjusts synaptic strengths
(white star in Figure 5B) and drives the network as close as possible to the best performance,
but far enough from the drop-off boundary so that fluctuations of synaptic strengths do not
result in the chance-level performance.

Another overall trend is that the performance slightly improves for larger values of | Δc |.
This is because larger Δc result in larger absolute values of ΔI, for which the choices of the
decision network are less stochastic (see Figure 4B). For the parameters as in Figure 5B, the
performance of ~100% correct can be achieved with large enough | Δc |. How well does our
learning rule perform compared to what is optimally possible? The steady-state values of Δc
resulting from the learning rule (white star in Figure 5B) correspond to 95% correct
performance, which is slightly less then optimally possible. This is because the absolute
values of learned Δc are small. These values reflect the difference in the average firing rate
of a cell on rewarded match and nonmatch trials, and since the similarity tuning is smooth,
the steady-state Δc are small.

The dependence of the model's behavioral performance on sharpness of the similarity tuning
(parameter α ) and on sensitivity of the decision circuit (parameter β ) is presented in Figures
5D and 5E, respectively. Here synaptic strengths are adjusted through learning using linear
ME and MS tuning curves (Figure 5A). Shallower similarity tuning as well more stochastic
decision circuit have similar effect on the behavior, producing decrease in the overall
performance, increase in the psychometric threshold and decrease in the slope of the
psychometric function.

Degradation of performance with memory delay
In working-memory tasks, performance accuracy is known to decay with the duration of the
memory delay (Pasternak and Greenlee, 2005). We propose that the main cause of worsened
performance is degradation of the sample memory due to fluctuating neural dynamics in the
WM circuit. After the sample stimulus is withdrawn, the WM circuit maintains its memory
by reverberating activity. However random fluctuations in the WM circuit can move
elevated activity from one group of neurons to another, causing random drifts of the
remembered sample (Figure 6B). The variance of the sample memory grows linearly with
time, consistent with a diffusion process (Camperi and Wang, 1998, Compte et al., 2000,
Chow and Coombes, 2006, Carter and Wang, 2007) (Figure 6A). Although a persistent
activity pattern can be maintained for many seconds, the correlation between its peak
(remembered sample) and the actual sample direction decays with time. Test stimuli are
therefore compared with a corrupted memory of the sample, which leads to poorer
performance (Figures 6C,6D). The model predicts that the psychometric threshold increases
with the delay, in part due to a decrease in the slope of the psychometric function (i.e.
decrease in sensitivity). The decay of relative discrimination with the memory delay (Figure
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6D) provides an explanation for several similar experimental observations (Pasternak and
Greenlee, 2005).

Combining sensory evidence with priors by plastic synapses
In our model, synaptic modifications depend on the firing rates of neurons and the reward
signal. Different statistics of stimuli used in the learning process entail a change in the
statistics of firing rates. The ensuing plasticity could lead to synaptic strengths that adapt to
the sensory environment and so optimize the network performance. Note, that adapting to
different stimulus statistics and task/reward rules does not require any change in the model
architecture or in the response properties of the ME and MS neurons. The same ME and MS
neural signals can be used differently by the decision network due to flexible readout
adjusted by reward-dependent plasticity.

Consider the impact of varying the prior probability p0 that a test stimulus is match (Figure
7). Evidently, changing the prior does not affect performance for easily discernible
nonmatches with large directional differences (Figure 7B). However, if the sample and test
are very similar, then a nonmatch is difficult to be discriminated from the match. Indeed, the
test-sample similarity (as well as the activity in the ME and MS pools, Figure 3C) changes
smoothly with their directional difference, whereas the correct response exhibits a
discontinuity: 0° is the match, but any nonzero (within given tolerance) directional
difference is a nonmatch. Hence there is a tradeoff: higher probability to correctly identify
the match implies more errors on the nonmatches similar to the sample. To optimize
performance, the behavior should be biased towards correct responses on the conditions
(match or nonmatch) that are encountered more frequently.

Our plasticity rule naturally implements this tradeoff (Figure 7B). This is because synaptic
modifications for a given stimulus contribute to the cumulative synaptic strength across
trials in proportion to the frequency of its occurrence (Soltani and Wang, 2010). In this way
synaptic strengths encode priors (see Materials and Methods), which biases the behavior
towards higher performance on stimuli that are more frequently encountered (Figure 7B).
The model makes a testable behavioral prediction that the psychometric threshold increases
with the prior probability of the matching test (Figure 7D), which is consistent with human
psychophysics data (Vickers, 1979).

To compare with our neural circuit model, we computed performance of an ideal Bayesian
observer (Figure 7C, see Materials and Methods). The network model and the ideal observer
exhibit similar trends in how the psychometric function depends on the prior. The
psychometric threshold (Figures 7D), the probability to correctly identify match (Figures
7F) and the slope of the psychometric function (Figures 7E) increase for larger match prior
p0. Though changes in the psychometric function of the network model differ quantitatively
from the ideal observer, their overall performance is virtually the same (Figures 7G). For a
low match prior p0 this is because of the aforementioned tradeoff: the ideal observer
identifies match stimuli more accurately than the network model, but at the same time it
produces more errors on nonmatch stimuli that are similar to the sample. For a high match
prior p0, the ideal observer performs better than the network model on nonmatch stimuli
with intermediate directional differences ~ 30°- 50°. However, because these stimuli occur
very rarely when p0 is high, there is no improvement in the overall performance. Therefore,
we conclude that our biologically plausible mechanism achieves the same performance level
as an ideal Bayesian observer.
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Range of sample-test similarities affects performance
Variations of the range of sample-test similarities affects behavioral performance by
implicitly changing priors for nonmatch stimuli that are similar to the sample. Consider a
situation when the prior for a matching test is fixed at 0.5, but nonmatch similarity is varied
by changing the range of directional differences used in the training (Figure 8A).
Nonmatches similar to the sample (5°- 20°) appear less frequently when the distribution of
directional differences is broader (grey bars in Figure 8C). Since the synapses compute
priors for all stimuli, the behavior again reflects the tradeoff involved in discrimination of
the match from very similar nonmatches (Figures 8B,8C). For a narrower range of
directional differences, the accuracy of correctly identifying match is sacrificed for better
performance on very similar nonmatches reflecting the increase in the prior probability for
the latter (Figure 8C). However, narrowing the range of directional differences also makes
the task more difficult. The model predicts that the overall performance deteriorates with a
decreased range of directional differences and eventually becomes just slightly above the
chance level (Figure 8D).

Adjusting the readout scheme to the task demands
The psychometric thresholds in Figures 7,8 are ~ 30°- 60°, which agrees with the thresholds
reported in monkey DMS paradigms (Zaksas and Pasternak, 2006), but is substantially
larger than the thresholds of ~ 1°- 2° reported in human and monkey fine discrimination
paradigms (Hol and Treue, 2001, Purushothaman and Bradley, 2005). In fine motion
discrimination, the sample typically has a fixed reference direction (e.g. upward), and the
task is to judge whether a subtle deviation in the test direction is clockwise or
counterclockwise relative to this reference (Purushothaman and Bradley, 2005). It has been
proposed that not all neurons equally contribute to such fine discrimination decisions, but
that the neurons most sensitive to small changes in the relevant feature have the highest
impact (Law and Gold, 2009, Hol and Treue, 2001, Jazayeri and Movshon, 2007,
Purushothaman and Bradley, 2005). For fine motion discrimination, the most sensitive are
neurons tuned 40°- 70° away from the reference direction, so that the reference direction is
on the “flank” of the tuning curve, where its slope and hence the neuron's sensitivity is the
highest. Psychophysical (Hol and Treue, 2001, Jazayeri and Movshon, 2007) and
neurophysiological (Purushothaman and Bradley, 2005) evidence supports the idea that the
activity of these “flanking” neurons is weighted more strongly in fine perceptual decisions,
however the underlying biophysical mechanism is unknown.

Such a mechanism naturally emerges in our model through plasticity of synapses onto the
decision circuit. Using our model we simulated a fine discrimination task in which the
sample direction (reference) is fixed (e.g. upward), and the two decision neuronal
populations now read out “clockwise” (CW) vs. “counterclockwise” (CCW) choices (Figure
9). Since neurons tuned to the reference direction fire at similar rates for clockwise and
counterclockwise stimuli, their connections to the CW and CCW populations have similar
strengths after learning ( Δc ≈ 0, Figure 9). Hence these neurons have little impact on the
decision despite their high firing rate. In contrast, neurons tuned 40°- 70° away from the
reference, exhibit the largest difference between responses to clockwise and
counterclockwise stimuli. As a result, their connections are stronger to the population
encoding the choice (CW or CCW) associated with the higher firing rate, and weaker to the
other population (Figure 9). These neurons have larger Δc and hence higher impact on the
decision. The model's fine discrimination performance agrees well with experiments and
reproduces a psychometric threshold of ~ 1°- 2° (Figure 9B). The key is learning with a
fixed reference direction, which generates a synaptic profile that selectively emphasizes
activity of neurons tuned 40°- 70° away relative to this fixed reference. This is consistent
with observations that fine discrimination learning often does not transfer between motion
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directions (Ball and Sekuler, 1987). In contrast, synaptic strengths are independent of
neuronal tuning if the sample direction is randomized (Figures 7,8). Therefore, the same
model can be used to perform different tasks, owing to synaptic plasticity that implements
switching between different readout schemes according to task demands.

In a motion fine-discrimination task, different schemes of decoding neural responses in the
area MT were evaluated for their ability to produce the observed psychophysical
performance (Purushothaman and Bradley, 2005). Predictions of our model agree with the
conclusion of this analysis: fine-discrimination thresholds of a few degrees can only be
achieved by the readout schemes that assign higher weights to neurons tuned away from the
reference direction, but not by broad equal-weight schemes (Purushothaman and Bradley,
2005). Moreover, our model demonstrates a simple and realistic neural circuit for such a
readout.

Comparison with a one-pool model
The match/nonmatch decisions in our model are based on the differential activity of ME and
MS populations tuned to similarity in complementary ways (two-pool comparison model in
Figure 10A). These two complementary populations have been observed in
neurophysiological studies of behaving monkeys. However, one may wonder whether ME
and MS neurons are redundant, and whether only one of these two populations might be
sufficient to perform the match vs. nonmatch computation. Indeed, in an alternative scenario
(Carpenter and Grossberg, 1987, Carpenter and Grossberg, 2003), a single neural population
performs a simple addition of a sensory test input and an input representing the sample
stimulus, and a “Match” or “Nonmatch” decision is determined by whether the converging
inputs exceed a threshold (one-pool addition model in Figure 10A). We compared our two-
pool model with an implementation of the one-pool addition model. The latter is similar to
the former, except that the intermediate layer consists of a single class of neurons, which are
all driven by sensory and WM inputs (see Alternative model in Material and Methods).
Larger overlap between the WM and sensory signals results in higher overall activity in the
addition population. Hence the activity of the addition population in the one-pool model
monotonically decreases with directional difference between the sample and test, resembling
similarity tuning curve of the ME neurons in the two-pool model (solid black lines in
Figures 10B,10C). A downstream system can then readout match/nonmatch decisions by
detecting whether the overall activation in this single population exceeds a threshold value
(see Material and Methods).

The performance of the one-pool model is not robust against fluctuations in the strength of
sensory inputs. Consider a situation when the strength of the sensory input increases on a
trial, for example due to change in the contrast of visual stimulus. Neurons in both models
respond with higher firing rates to stronger stimuli (Figures 10B,10C). Since the decision
readout in the one-pool model relies on the absolute value of the firing rate in a single neural
population, stronger sensory input will produce a drop in behavioral performance and
increase in the psychometric threshold (Figure 10D). In the two-pool model, however, the
readout is based on differential activity of the ME and MS populations and not on the
absolute value of their firing rates. Firing rates of both ME and MS populations equally
increase in response to stronger inputs, but the behavioral performance of the two-pool
model remains almost unaffected by changes in the strength of sensory input (Figure 10D).
In the same vein, noise in the sensory input equally affects firing of the ME and MS neurons
and hence does not strongly impact behavioral performance in the two-pool model, whereas
performance of the one-pool model is sensitive to input noise.

It is worth noting that the architecture of the one-pool addition model is not substantially
simpler than the two-pool comparison model: it also requires a WM module to store the
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sample stimulus, an intermediate neural layer and a readout system for match/nonmatch
decisions. Importantly, we found that the one-pool model is vulnerable to variations of the
strength of sensory stimuli, whereas the performance of the two-pool model is very robust
suggesting functional advantages of the two-pool comparison mechanism. Furthermore, the
readout system in the two-pool model allows for flexible mapping between the network's
decision and motor response. Behavioral tasks may require to respond for match only, for
nonmatch only, or to indicate match and nonmatch by different responses. In the two-pool
comparison model, match and nonmatch decisions are encoded in activity of two
complementary neural populations. This activity is sufficient to drive an arbitrary motor
response. By contrast, in the one-pool addition model the readout unit is only activated for
match decisions, and nonmatch decisions are represented by the lack of activity. If response
for nonmatch is required by the task, there is no neural activity to drive such a motor
response, and it is problematic to justify how it can be generated without additional model
assumptions.

Discussion
In this paper we proposed a recurrent neural circuit model for match vs. nonmatch pattern
comparison, that is capable of performing all the key computations for DMS tasks.
Similarity between the sample and test stimuli is encoded by the magnitude of response
modulations (ME and MS) in two sub-populations of neurons within the comparison
network. The test-sample similarity tuning in these cells arises from interactions of bottom-
up and top-down inputs and strong local feedback inhibition. Similarity signals are then
pooled through plastic synapses by a downstream decision circuit that generates categorical
match or nonmatch decisions. Using the same ME and MS neural signals, learning enables
the network to generate decisions flexibly depending on stimulus statistics and task/reward
rules in different behavioral tasks.

Alternative models for match vs. nonmatch computation
For the DMS task, the one-pool “addition model” (Figure 10A, right panel) (Carpenter and
Grossberg, 1987, Carpenter and Grossberg, 2003) is intuitively plausible, but physiological
data from behaving animals suggest a different scenario involving two (ME and MS) neural
populations (Miller et al., 1996, Freedman et al., 2003, Rawley and Constantinidis, 2010).
Our results indicate that the two-populations architecture provides a more robust and
flexible way to compute match vs. nonmatch decisions than the one-pool architecture. Other
models for the DMS task have previously been proposed, which rely on comparison
mechanisms other than similarity tuning of two complementary populations. One model
(Sugase-Miyamoto et al., 2008) ascribes the comparison computation to neurons acting as
matched filters: on each trial they rapidly adjust the strengths of input synapses to match the
magnitude of individual inputs from the sample stimulus. Inputs from the test stimuli are
then multiplied by those synaptic strengths, thereby computing a measure of the similarity
between the sample and test. The biophysical mechanism underlying such one-shot learning
is unclear. Moreover a hypothetical “learn” command has to be introduced to trigger
plasticity for the sample but not for the test stimuli. In another model (Tagamets and
Horwitz, 1998), match response is triggered whenever a coactivation of two units is
detected: one transiently responding to all sensory stimuli and another showing rising
activity during the delay period but silent during the sample period. This model fails on the
ABBA-type of task (it responds equally to match and repeated nonmatch) and predicts poor
performance for brief delays such that the rising population has not reached high activity
yet. This is in contrast with predictions of our model and with experimental data (Miller and
Desimone, 1994, Pasternak and Greenlee, 2005).
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Neural circuit models have also been proposed for the smaller vs. larger comparison of two
analog quantities (Machens et al., 2005, Miller and Wang, 2006), however neither of these
models can be adapted for the match vs. nonmatch comparison. Match/nonmatch
computation can be performed with arbitrary stimuli, for example with visual objects, which
requires comparison of patterns rather than analog quantities. The circuit mechanism in our
model realizes comparison of two activity patterns, elicited by the sample and test stimuli,
and may be generalized to other types of stimuli and encoding schemes.

Active and passive memory mechanisms
The active match enhancement mechanism in our model has several signatures that can be
tested experimentally. First, the magnitude of enhancement and suppression encodes
similarity between the sample and test. Second, neurons that show match enhancement also
show sample-selective persistent activity during a mnemonic delay. This is consistent with
the experimental observation that delay activity and match/nonmatch selectivity are present
in largely overlapping groups of neurons (Miller et al., 1996, Freedman et al., 2003), but
needs to be verified more rigorously. Finally, the total neural activity (excitation and
inhibition) is higher in the match than in the nonmatch condition. This suggests an
explanation for the observations that fMRI signals in the relevant brain regions are larger for
behavioral matches (Duncan et al., 2009), whereas neurophysiological data indicate that
approximately equal proportions of cells show match enhancement and match suppression
(Miller et al., 1996).

The passive repetition suppression is implemented in our model as the spike-rate adaptation
mediated by a long-lasting hyperpolarizing current. In single neurons, afterhyperpolarization
effects lasting for multiple seconds can be mediated through a Na + -activated K + current
(Sanchez-Vives et al., 2000, Wang et al., 2003, Pulver and Griffith, 2010). An alternative or
complementary mechanism may be synaptic depression (Chance et al., 1998). Long-term
depression is involved in visual recognition memory (Griffiths et al., 2008) producing
suppressed responses to repeated stimuli. However, the biophysical mechanism underlying
repetition suppression and recognition memory is still a matter of debate (Brown and Xiang,
1998).

In neurophysiological data as well as in our model, comparison neurons exhibit mixed
selectivity, i.e. they are activated by a conjunction of the stimulus and match/nonmatch
context. The mixed selectivity is essential for the match/nonmatch computation, which is an
“exclusive or” (XOR) operation and belongs to the class of linearly nonseparable problems
(Rigotti et al., 2010).

The active match enhancement in our model depends on the top-down modulation from the
WM circuit. If this modulation is disrupted, passive repetition suppression prevails. We
simulated this as a condition when the sample does not trigger persistent firing in the WM
circuit, presumably due to the lack of attention. In neurophysiological data, repetition
suppression dominates neural activity in animals trained on a simple feature matching task
(Miller et al., 1991, Constantinidis and Steinmetz, 2001). When tested on a more
complicated task, these animals initially respond to all perceptual matches regardless of their
behavioral relevance (Miller and Desimone, 1994) (e.g. repeated nonmatch BB in the ABBA
sequence). Extensive retraining is required to perform the task correctly, after which neural
activity exhibits match enhancement (Miller and Desimone, 1994). Since persistent activity
is present in the PFC even during the standard DMS tasks, the retraining may be required to
instruct the subjects about the rules of the new (ABBA) task, or/and involve rewiring of
neural circuits, such as potentiation of top-down projections from the WM circuit. In the
latter case, depending on the degree of this potentiation, repetition suppression can be still
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prevalent in cells showing persistent activity, or be supplemented by match enhancement
when it is behaviorally required.

Computing decisions through plastic synapses
In our model the comparison operation and match/nonmatch decision making are performed
by separate neural networks that are connected through plastic synapses. This architecture
allows the network to use the same ME and MS neural signals to perform different tasks,
and flexibly adjust decision criteria so as to optimize performance.

A learning rule similar to ours (see e.g. Soltani and Wang, 2010) was shown to be a linear
approximation to a “Bayesian-Hebb learning rule” (Pfeiffer et al., 2010), which was
designed specifically so that each synaptic weight converges to the log-odds of receiving a
reward when its pre- and postsynaptic neurons are active. This plasticity rule has been
shown to successfully capture behaviors in probabilistic inference (Soltani and Wang, 2010),
foraging (Soltani and Wang, 2006) and associative learning tasks (Fusi et al., 2007). In these
previous works, the decision network was modeled in the same way as ours, but the Hebbian
plasticity was implemented simply with a binary (all or none) dependence on the firing rate.
By contrast, we propose that the learning rate is a graded increasing function of the
presynaptic firing, which is critical for harnessing small differences in the neural signals of
ME and MS neurons in the learning process. The activity-based weighting of neural
responses enables the network to flexibly reconfigure the readout scheme according to task
demands, for example so that activities of the flanking neurons are emphasized in a fine
discrimination task.

It has been proposed that different readout schemes can be realized in a system where
neurons are tuned to the likelihoods of sensory stimuli (Jazayeri and Movshon, 2006). A
discrimination decision can be made by comparing activities in a pair of neurons that encode
the likelihoods of two directions to be discriminated. In such a model, different pairs of
neurons are used for the coarse (e.g. 0° vs. 180°) and fine (e.g. 0° vs. 12°) motion
discrimination, but the mechanism for selection of a particular pair from the likelihood-
tuned population is unspecified. In contrast, different readout schemes in our model emerge
just from stimulus statistics without any additional assumptions.

In conclusion, our model has identified simple biophysical mechanisms that, working
together, are sufficient to carry out comparison between top-down expectation and bottom-
up sensory stimulus pattern, leading to flexible match vs. nonmatch decisions. Working
memory, comparison and categorical choice computations are basic “building blocks” of
cognition, therefore we expect that the general computational principles presented in this
paper can be extended to other types of match/nonmatch processes in the brain.
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Figure 1.
Delayed macth-to-sample task, neural encoding of match/nonmatch and schematic of the
circuit model. (A) Left: random dot stimulus. Right: the DMS task. The sample stimulus is
followed by a sequence of test stimuli separated by delays. A behavioral response is required
if the test matches the sample. (B) Example trials in two versions of the DMS task. In the
standard task all intervening nonmatches are different, and the match is the only perceptual
stimulus repetition within a trial. In the ABBA task, irrelevant repetitions of nonmatches
should be ignored. (C) Repetition suppression in inferior temporal cortex neurons in the
standard DMS task (data from Miller et al., 1993). Average responses across cells to the
same set of stimuli appearing as a sample, match and nonmatch. (D) Match enhancement
and match suppression in two complementary populations of prefrontal cortex neurons in
the ABBA task (data from Miller et al., 1996). Average responses across cells to the same
set of stimuli appearing as a sample, match, nonmatch and repeated nonmatch. (E)
Schematic of the circuit model. Neurons in the working memory (WM) and comparison
networks (match enhancement (ME) and suppression (MS) sub-populations) are tuned to
directions of motion (indicated by arrows) and receive directional bottom-up input. Top-
down projections from the WM to the comparison network are heterogeneous. ME neurons
(red circles) receive stronger top-down excitation than MS neurons (blue circles). The
decision network (match and nonmatch sub-populations) generates categorical match vs.
nonmatch choices by pooling activities of the ME and MS neurons through synapses that
undergo reward-dependent Hebbian plasticity.
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Figure 2.
Active and passive memory mechanisms in the circuit model: (A-C) active match
enhancement and suppression, (D-F) passive repetition suppression. (A,D) Spatio-temporal
activity pattern in the WM, ME and MS populations in an ABBA task, where a sample (90°)
is followed by two nonmatch test stimuli (270°) and then by the final match (90°). x-axis:
time, y-axis: neurons labeled by their preferred directions, firing rate is color-coded. (A)
Comparison neurons respond to their preferred stimuli, but the activity is higher in the ME
cells than in the MS cells for the match, and vise versa for the nonmatch stimuli. (D) If the
activity in the WM circuit is disrupted, passive repetition suppression prevails in the
comparison neurons. (B,E) Firing rates of a neuron preferring the test stimulus on two trials:
when the test appears as a match (orange line) and as a nonmatch (purple line). In the match
condition, the sample is also the preferred stimulus for this neuron, and in the nonmatch
condition the sample is the antipreferred stimulus. Note sample-selective persistent activity
in the ME cell during the delay. (C,F) Average responses to the neuron's preferred stimulus
appearing as a sample, match, nonmatch and repeated nonmatch. These model results
account for the single-neuron activities recorded from behaving monkeys in Figures 1C,1D.
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Figure 3.
Circuit mechanism of match enhancement and suppression and neural tuning to the sample-
test similarity. (A,B) Left: configuration of the top-down (green) and bottomup (red) inputs
to the ME population in the nonmatch (A) and match (B) conditions. Right: a column with
the ME and MS neurons preferring the test stimulus is drawn. (A) Nonmatch condition: the
MS neuron has higher activity due to stronger recurrent excitation (thick blue arrows). (B)
Match condition: top-down input compensates for weaker recurrent excitation, and the ME
neuron has higher activity. (C) Similarity tuning. Average population firing rate for the ME
(red line) and MS (blue line) neurons as a function of directional difference between the
sample and test. The ME and MS populations are parametrically tuned to the sample-test
similarity in complementary ways.
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Figure 4.
Learning the DMS task through reward-dependent Hebbian plasticity. (A) Schematic of
synaptic connections between the comparison (ME and MS) and the decision (match and
nonmatch) populations. Through synaptic plasticity a connectivity profile emerges such that
the ME and MS neurons preferentially target match and nonmatch populations, respectively,

i.e.  and . (B) In the decision circuit, the trial-
averaged performance is captured by the sigmoidal dependence of probability to choose
“Match” on the difference in synaptic input currents to the match and nonmatch populations
ΔI = gΣi[ΔcMErME + ΔcMSrMS]. Firing rates of the match (orange) and nonmatch (purple)
populations in ten simulated trials are shown in two cases: for ΔI = 0 when match and
nonmatch are chosen equally often, for ΔI > 0 when match is chosen more frequently than
nonmatch. (C) Learning rate is a monotonically increasing function of the presynaptic firing
rate. Arrows indicate the firing rates of a ME (red) and MS (blue) neuron in response to their
preferred stimulus appearing as match and as nonmatch (0° and 180° directional difference,
respectively). (D) Spatio-temporal dynamics of the synaptic strengths. Differences of the
synaptic strengths ΔcME and ΔcMS are color coded for all comparison neurons. x-axis: trial
number, y-axis presynaptic neurons labeled by their preferred directions. (E) In the learning
process, the fraction of correctly performed trials increases faster for higher learning rates
q0. Solid black line - steady state performance, dashed line - chance level. (F) Psychometric
function obtained from the steady-state calculations (black line) and from simulations with
different q0 (colored circles). The performance approaches the steady-state level for
sufficiently low q0. Stimulus statistics is the same as in Figure 7 for p0= 0.5.
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Figure 5.
The model's behavioral performance is jointly determined by the firing rates of the ME and
MS neurons, sensitivity of the decision circuit and the profile of synaptic connections
between the comparison and decision circuits. For this simplified analysis, we assumed
linear similarity tuning in the ME and MS populations as well as linear dependence of the
learning rate q(r) on the firing rate. Specifically, we used the functions fME,MS(x) = ± αx +
0.5(1mα), where the upper and lower signs refer to the ME and MS populations,
respectively. For different directional differences θi , the firing rates followed: rME,MS(θi /
180°) = 12Hz· fME,MS(x), and the learning rates were just qME,MS(θi /180°) = fME,MS(x). (A)
The parameter α determines the sharpness of similarity tuning in the ME (solid lines) and
MS (dashed lines) populations, whereby larger α corresponds to larger difference between
the activities of the ME and MS populations. (B) The model's overall performance (fraction
of correct responses) color coded as a function of synaptic differences ΔcME and ΔcMS .
Right panel: zoom into the region of small Δc . White star indicates the steady-state Δc
obtained through learning. α = 0.4 and β = 200 nA −1 are fixed. (C) Two contributions to the
difference in postsynaptic currents, | ΔIME | (solid lines) and | ΔIMS | (dashed line) for
different values of λ =| ΔcMS / ΔcME |. The crossing point of these two curves and hence the
psychometric threshold shift to larger directional differences for λ < 1, and to smaller
directional differences for λ > 1. α = 0.4. (D) Dependence of the psychometric function on
the sharpness of similarity tuning in the comparison network. Sharper tuning (corresponds to
larger values of α) results in lower psychometric threshold, larger slope of the psychometric
function, and better overall performance. β = 200 nA −1 is fixed. (E) Dependence of the
psychometric function on the sensitivity of the decision network. Higher sensitivity
(corresponds to larger values of β ) results in lower psychometric threshold, larger slope of
the psychometric function, and better overall performance. α = 0.4 is fixed. The synaptic
strengths in panels (D-E) are adjusted through learning. Stimulus statistics is the same as in
Figure 7 for p0 = 0.5.

Engel and Wang Page 28

J Neurosci. Author manuscript; available in PMC 2011 November 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Degradation of performance in the DMS task with memory delay. (A) Memory of the
sample is encoded by the peak location of the bell-shaped persistent activity pattern in the
WM circuit (see Materials and Methods). Variance of the remembered sample growths
linearly with time, consistent with a diffusion process. Insets show the probability density
for the remembered sample after 1 s (orange) and 10 s (blue) delays (grey histogram:
simulations; solid color line: Gaussian fit). (B) Example traces for the peak location of the
persistent activity pattern in the WM circuit, which represents the sample memory during
the delay. (C) Psychometric function in the DMS task for different durations of the memory
delay. (D) Psychometric threshold increases and the slope of the psychometric function
decreases for longer delays. The overall performance decreases for longer delays, but
remains at relatively high level for all delays. Relative discrimination (ratio of the threshold
at 0.2 s delay to the threshold at longer delays) decreases with the delay duration, which
accounts for the psychophysical observations with monkeys (Pasternak and Greenlee, 2005).
Stimulus statistics is the same as in Figure 7 for p0 = 0.5.
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Figure 7.
Plastic synapses encode priors for match and nonmatch and act to optimize performance.
(A) Schematic of the stimulus statistics in the DMS task with different priors for match.
Sample motion direction is drawn from a uniform distribution on [0°, 360°]. Match (red
arrow) corresponds to zero directional difference. Nonmatches (blue arrows) differ from the
sample by Δθ = {±5°,±10° ... ± 180°}, which are all equally probable. Note that the smallest
nonmatch directional difference is ±5°, which sets the tolerance level. Match and nonmatch
trials are randomly interleaved. Prior probability for a match trial is p0 (indicated by the
thickness of the red arrow). (B) Performance of the network model for different match priors
p0 (colored lines labeled by p0 values). (C) Performance of the ideal Bayesian observer for
different match priors p0. In both cases (B,C) the psychometric function changes towards
higher probability to choose match as p0 increases, which reflects the tradeoff involved in
fine discrimination between the match and nonmatch stimuli that are similar to the sample.
(D-G) Psychometric threshold (D), slope of the psychometric function (E), probability to
correctly identify match (F) and the overall performance (G) for the network model (colored
symbols) and for the ideal Bayesian observer (grey symbols) as functions of the match prior
p0. Though changes in the psychometric function of the network model differ quantitatively
from the Bayesian strategy, the network's overall performance is virtually the same as for the
ideal Bayesian observer.
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Figure 8.
Range of sample-test similarities affects performance on the DMS task. (A) Schematic of
stimulus statistics with different ranges of sample-test similarities. Nonmatches differ from
the sample by Δθ = {±5°,±10° ... ± Ψ }, which are all equally probable, and Ψ is the range of
directional differences. Prior probability for a match trial is fixed at p0 = 0.5. (B) As the
range Ψ decreases, the number of erroneous match decisions for small Δθ ≠ 0° decreases,
but the number of correct match decisions for Δθ = 0° also decreases. (C) Probabilities to
correctly identify a match ( Δθ = 0°) and a nonmatch that is similar (| Δθ | = 5° - 20°) and
dissimilar (|Δθ | = 25° - 180°) to the sample are plotted for five Ψ values. The probability to
correctly identify dissimilar, easily discernible nonmatch (green diamond) is always high.
As the range Ψ decreases, the probability to correctly identify very similar nonmatch (purple
square) increases along with its prior probability (grey bar), while the probability to
correctly identify match (orange circle) decreases. (D) Overall performance decreases as the
range of directional differences becomes very narrow.
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Figure 9.
Synaptic plasticity adjusts the readout scheme according to task demands, illustrated by
simulations of a fine motion discrimination (Purushothaman and Bradley, 2005). Sample
moves in the fixed reference direction. Test stimuli are inclined by Δθ = {±0.5°,±1° ... ±3°}
relative to the reference direction. The task is to judge whether a test stimulus is inclined
clockwise ( Δθ > 0) or counterclockwise ( Δθ < 0) relative to the reference. After learning,
the choice-selective populations in the decision circuit encode clockwise/counterclockwise
(instead of match/nonmatch) decisions, and hence are labeled as CW and CCW. (A) Spatio-
temporal dynamics of the synaptic strengths. Differences of the synaptic strengths Δc = cCW

− cCCW are color coded for comparison neurons with all preferred directions. x-axis: trial
number, y-axis presynaptic neurons labeled by their preferred directions. Through learning a
connectivity profile emerges, such that neurons tuned clockwise and counterclockwise
relative to the reference preferentially target the CW- and CCW-selective populations,
respectively. (B) Psychometric function for the fine motion discrimination. Psychometric

threshold is ~ 1°-2°. (C,D) Strengths of synaptic connections to the CW-selective (red, 

and  ) and CCW-selective (blue,  and  ) populations after learning. Activity of
each neuron is gradually weighted in the decision process, whereby higher weights are
assigned to the most sensitive neurons tuned 40°- 70° away from the reference direction.
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Figure10.
Behavioral performance in the two-pool comparison model, but not in the one-pool addition
model, is robust to changes in the sensory input strength. (A) Schematics of the two-pool
comparison model (simplified version of Figure 1E) and of the one-pool addition model (see
Material and Methods for details). (B) Average population firing rate for the ME (solid line)
and MS (dashed line) neurons in the two-pool model as a function of directional difference
between the sample and test. Black line: control; gray line: doubled sensory input strength.
The difference in the activity of ME and MS neurons is only slightly affected by the increase
in the input strengths, while the firing rates in both populations increase significantly. (C)
Average population firing rate for the addition population in the one-pool model as a
function of directional difference between the sample and test. Black line: control; gray line:
doubled sensory input strength. The black dashed line indicates the firing rate threshold for
match vs. nonmatch decisions, obtained by fitting the parameters of the readout (Equation
14) so as to match the psychometric functions for the one- and two-pool models in the
control condition. (D) In the two-pool model, the psychometric threshold and overall
performance remain almost the same for the control (black bar) and doubled (gray bar) input
strength. In the one-pool model the overall performance decreases and the psychometric
threshold increases with the input strength. For the doubled input strengths (gray bar)
performance drops to the chance level (dashed line), and the psychometric threshold
(defined at 75% correct performance) cannot be determined, for comparison purpose we plot
the maximum possible threshold value 180°.
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