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Abstract
The present article introduces a set of novel methods that facilitate the use of “natural moves” or
arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of
biological macromolecules. While such “natural moves” may spoil the stereochemistry and even
break the bonded chain at multiple locations, our new method restores the correct chain geometry
by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by
successive stages of partial closure that propagate the location of the chain break backwards along
the chain. At the end of these stages, the size of the chain break is generally reduced so much that
it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient
with a computational complexity of O(Nd), where Nd is the number of degrees of freedom used to
repair the chain break. The new method facilitates the use of arbitrary degrees of freedom
including the “natural” degrees of freedom inferred from analyzing experimental (X-ray
crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins.
In terms of its ability to generate large conformational moves and its effectiveness in locating low
energy states, the new method is robust and computationally efficient.
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1. INTRODUCTION
Conformational optimization of biomolecular structure is widely used both in computational
modeling and in the refinement of experimental measurements derived from X-ray
crystallography and nuclear magnetic resonance (NMR) spectroscopy. Any conformational
optimization protocol requires an energy function, an optimization algorithm, and a set of
independent degrees of freedom. The choice of the energy function depends on a particular
application that may model a biomolecular structure at coarse grain or at full atomic detail.
As our findings are independent of the particular energy function, we focus on optimization
algorithms and especially on the choice of degrees of freedom.

The choice of optimization algorithm has a significant effect on the quality of the generated
conformations giving rise to a demand for fast and accurate conformational optimization
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algorithms with widespread applicability. Energy minimization methods such as the
conjugate gradient (Hestenes and Stiefel, 1952) or the truncated Newton (Schlick and
Overton, 1987) methods are well suited for finding a conformation that corresponds to a
local minimum of the energy surface. Locating the global minimum conformation is
generally better achieved by simulated annealing type methods (Kirkpatrick et al., 1983;
Nayeem et al., 1991). In order to find a diverse set of local minimum conformations, either
Monte Carlo minimization (MCM) (Li and Scheraga, 1987; Wales and Scheraga, 1999;
Brooks et al., 2001) or stochastic tunneling (Barhen et al., 1997) is preferred. If the aim is to
generate ensembles of conformations around each local minimum, then both molecular
dynamics (Voter, 1997; Minary et al., 2003, 2004) and Monte Carlo (Metropolis et al., 1953;
Swedensen and Wang, 1987; Tanner and Wong, 1987) based methods can be used. The
robustness and performance of all the above algorithms can be significantly improved by
methods that involve multiple replicas (Geyer, 1991; Kou et al., 2006; Minary and Levitt,
2006) of the system, smoothing transformation (Rahman and Tully, 2002a,b) of the energy
surface and global reformulation of the classical partition function (Minary et al., 2008).

The choice of degrees of freedom is also critically important in global optimization but has
received less attention. Two sets of degrees of freedom used from the earliest days of
biomolecular modeling are the atomic Cartesian coordinate and the single-bond torsion
angles. Torsion angles were used first on small peptides as a way to combat the many
degrees of freedom of these systems (Gibson and Scheraga, 1967a,b). Soon afterwards,
Cartesian coordinates were used in the first all-atom energy minimization of an entire
protein (Levitt and Lifson, 1969). While useful for energy minimization, the large number of
Cartesian degrees freedom (3 times the number of atoms) makes any conformational search
practically intractable. Torsion angle coordinates are more economical with about 4 single-
bond torsion angles per amino acid residue on average. Unfortunately, conventional Markov
Chain Monte Carlo algorithms (Metropolis et al., 1953) have a very slim chance of
accepting a torsional move in a long all-atom biomolecular chain. The problem, which is
caused to the long lever arm moving atoms distant from the bond about which the rotation is
applied, can be partially circumvented by local torsional moves applied to a segment of the
molecule while the rest of the system is kept fixed. The most widespread method in this
category is CONROT (Dodd et al., 1993), but there are several alternative approaches such
as symmetric (Krishna and Theodoru, 1995) or analytical rebridging (Wu and Deem, 1999),
window moves (Hoffmann and Knapp, 1996), and various modifications of the original
CONROT method (Umschneider and Jorgensen, 2003). A common result of such local
moves is that the polypeptide chain becomes broken; this then needs to be fixed by solving
chain closure equations numerically at considerable computational cost. Recently, a new
computationally more efficient constant bond length closure algorithm has been proposed by
Sklenar et al. (2006); it works by adjusting the position of a common bridging atom and
changing corresponding bond and torsion angles so that broken bond lengths are restored.
These and former studies by Umschneider and Jorgensen (2003) showed that augmenting
torsional with bond-angle space leads to a significant softening of the energy landscape.

In this article, we introduce a new chain breakage and closure method that allows us to use
arbitrary degrees of freedom for conformational optimization of biomolecular structures.
Thanks to its modest computational cost and its ability to handle arbitrary large chain
breaks, our approach combines the beneficial features of the best currently used methods. In
our approach, chain breaks caused by independent moves of arbitrary type (for both proteins
and nucleic acids) and magnitude can still be restored by adjusting a sufficient number of
torsion and bond angles. Furthermore, moves based on our new chain breakage-closure
method can be incorporated into any advanced sampling/optimization protocol (Geyer,
1991; Kou et al., 2006; Minary and Levitt, 2006; Rahman and Tully, 2002a,b; Minary et al.,
2008). In the present study, we have chosen to use conventional Metropolis Monte Carlo
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(Metropolis et al., 1953) as our conformational search tool. In this way, improvement in
computational efficiency is exclusively a result of our new algorithm.

Our results show that our new stochastic approach is one of the simplest, cheapest, and at
the same time, most robust of current closure-based algorithms. In particular, it can restore
an order of magnitude larger chain breaks than other closure algorithms at comparable
computational cost. Combining collective natural moves and our stochastic closure leads to
very efficient conformational optimization protocols that locate conformational energy
minima not easily found by other chain closure or torsional sampling algorithms.

2. METHODS
2.1. Stochastic partial closure

The central part of our method is called Stochastic Partial Closure (SPC). It is better than the
previously used Deterministic Full Closure (DFC) approach by Sklenar et al. (2006) in that
it always provides a solution to the closure problem. More specifically, under certain
conditions, DFC provides a favorable solution, but otherwise it provides no solution (Fig.
1a).

The algorithm—Given four consecutively connected atoms, r1, …, r4, an arbitrarily
positioned fifth atom, r5 and a desired value for the bond length d45, SPC proceeds as
follows (Fig. 1b): (i) Define a line (a) that connects atoms 4 and 5. (ii) Find the intersection
point (IP) between line a and a sphere of radius d45 centered on atom r5. (iii) At the
intersection point, construct a plane (ST) tangential to surface S. (iv) Choose a random point
PT on the tangential surface, ST, using a two-dimensional normal distribution, N2 (μ, Σ) with
mean l μ = (xIP, yIP) and standard deviation, (Σ11, Σ22) = (σspc, σspc). (v) Obtain the new
position of atom 4 by projecting PT onto the spherical surface, S.

In the absence of the chain break, SPC done with σspc = 0 leaves the conformation
unchanged, whereas SPC done with σspc > 0 may still produce a new position for atom 4. In
further context, both SPC and DFC also refer to a unary operator that acts on the
conformation of a single atom.

2.2. Recursive stochastic closure
Consider a segment of an atomic chain and the next chain atom called the “head.” Recursive
Stochastic Closure (RSC) repairs a broken connection between the terminal atom of the
segment and the fixed head atom by distributing a bond length preserving deformation along
the segment. The segment region that participates in the deformation is called the molten
zone whose atoms are numbered from 1 to Nm. Atom 1 is adjacent to the head atom.
Succeeding atom Nm, the segment has at least two more “anchor” atoms that do not
participate in the deformation.

The algorithm—Consider a molten zone with Nm = n + 1 atoms r1, …, rn+1, an arbitrarily
positioned head atom rh and two anchor atoms, rn+2, rn+3 which are continuation of the
molten zone along the segment. One RSC cycle combines n recursively executed SPC steps
that update the position of the first n atoms of the molten zone followed by a final step of
DFC that determines the new position of atom n + 1. When RSC is defined as a unary
operator that operates on the conformation to the right, the full cycle can be expressed as:
RSC(σspc) = DFC · SPCn(σspc) · SPCn−1(σspc) … · SPC1(σspc). Here, SPC1(σspc) repairs the
broken connection between atom 1 and the head atom, SPCi(σspc) connects atoms i and i − 1
and DFC terminates the cycle by setting bond angle at atom n + 2.
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When RSC is used with σspc = 0, it acts like a projection onto the surface of constant bond
length. When RSC is used with σspc > 0, then the chain break is repaired (Fig. 1c) and bond
and torsion angles are changed by randomly changing atomic positions along the molten
zone. Thus, repeated applications of RSC will produce a series of different conformations
for the molten zone. Our algorithm is flexible in that it allows the use of any kind of DFC
following after a recursive sequence of an arbitrary number of SPC steps. In this article, we
always use the cost-effective algorithm described in Sklenar et al. (2006) for DFC. Note that
the value of n depends on the geometry of the system under consideration.

Implementation of the algorithm—Assuming that the final DFC step always have a
solution, the following code segment outlines the set of instructions used to perform a single
RSC cycle that repairs the chain break by resetting the position of atoms in the molten zone.

subroutine rsc(MG, i)

1. if i = 1

2.  ri ← (spc)[ri, rh]

3. else

4.  ri ← (spc)[ri, ri−1]

5. if i < n + 1

6.  call rsc(MG, i + 1)

7. else

8.  rn+1 ← (dfc)[rn+3, rn+2, rn+1, rn]

One of the arguments of subroutine “rsc” is the atomic index, i that monitors the internal
progress of the RSC cycle. Prior to calling “rsc,” initial condition i = 1 is set so that the cycle
starts with the first atom of the molten zone. The other argument, group MG holds the
coordinates of molten zone, head, and anchor atoms. The referenced functions, “spc” and
“dfc,” implement one step of SPC and DFC, respectively. Besides, both of these functions
return the modified conformation of a single atom. Subroutine “rsc” is called recursively
until the chain break is repaired.

Lemma 1—Given that Nd is the number of dependent degrees of freedom changed by an
RSC cycle, the asymptotic cost of the chain closure problem is ½ cspc O(Nd), where cspc is
the number of operations used in one SPC step.

Proof—The number of operations used to perform one RSC cycle involving n SPC steps is
n cspc + cdfc, where cspc and cdfc are the number of operations in one SPC and DFC steps,
respectively. Therefore, the asymptotic cost of one RSC cycle is O(n cspc + cdfc) = cspc O(n).
By altering the position of all Nm atoms in the molten zone, one RSC cycle changes the
value of Nm + 2 bond angles and Nm + 3 torsion angles. Therefore, Nd = 2 Nm + 5 = 2 (n + 1)
+ 5. Thus, cspc O(n) = cspc. O(½ (Nd − 5) − 1) = ½cspc O(Nd).

2.3. Monte Carlo recursive stochastic closure
The algorithm—Consider any molecular assembly which is divided into independent
structural segments that upon rearrangement may cause chain breaks at different locations in
the system. Each of these locations has a molten zone. One step of Monte Carlo Recursive
Stochastic Closure (MCRSC) starts with an arbitrary random move that rearranges the
structural segments and causes chain breaks. These chain breaks are then repaired by
applying m cycles of RSC to all the molten zones. The first RSC cycle attempts to repair the
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chain break by a simple geometric closure, which may not satisfy local stereochemistry. If
any of the first RSC cycles fail, the step is rejected. If all succeed then each additional RSC
cycle move is accepted according to the Metropolis criterion using an energy function that
measure bond and torsion angle strain. In this way each additional RSC cycle move attempts
to find a closure that is energetically more favorable than the one found by the preceding
cycle. Thus, a conformation for each molten zone is found so that all the associated torsion
and bond angles are strain free. Finally, the resulting chain break free conformation is also
accepted according to the Metropolis criterion, but this time the complete energy function of
the system is used. Thus, there is only one costly energy evaluation per step, which may also
involve many low-cost RSC cycles that attempt to find an energetically favorable chain
closure.

Implementation of the algorithm—Considering that X, which denotes all degrees of
freedom of a molecular assembly, is divided into independent, Xi, and dependent, Xd,
variables, the use of MCRSC is demonstrated by the following program.

program mcrsc

1. Ea ← E[X]

2. for imc ← 1 to Nmc do

3.  sX ← X

4.  call update_idof(Xi)

5.  call general_rsc(Xd)

6.  dEa ← dE[Xd]

7.  for irsc ← 1 to m − 1 do

8.   sXd ← Xd

9.   call general_rsc(Xd)

10.   dEp ← dE[Xd]

11.   pa ← exp[ − β (dEp − dEa)]

12.   if min[1, pa] > y ∈ U(0, 1)

13.    dEa ← dEp

14.   else

15.    Xd ← sXd

16.  Ep ← E[X]

17.  pa ← exp[− β (Ep − Ea)]

18.  if min[1, pa] > y ∈ U(0, 1)

19.   Ea ← Ep

20.  else

21.   X ← sX

This program performs Nmc MCRSC steps and uses the following key functions and
variables: (1) Function E[…] takes argument X and returns the energy score for the whole
system. (2) Function dE[…] takes argument dX and returns the energy associated with the
state of all bond and torsion angles that are used to solve chain breaks. (3) Variables Ep and
Ea hold the energy score of proposed and accepted conformations. (4) Variables dEp and dEa
hold the energy score returned by function dE[…] for proposed and accepted closure states.
(5) In one-dimensional arrays sX and sXd, the state of X and Xd are saved. At the beginning
of each MCRSC step all independent degrees of freedom are updated (line 4) by subroutine
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update_idof, which is defined in Section 7.1. This is followed by one cycle of RSC by
subroutine general_rsc that updates all dependent degrees of freedom and repairs all chain
breaks. This subroutine is presented in Section 7.2. The following, m − 1 RSC cycles drive
an encapsulated Monte Carlo scheme (lines 7–15) guided by cheaply evaluated energy
function dE[…]. This leads to conformational relaxation along dependent variables so that
energetically favorable chain closures are found. Further conformational relaxation along
dependent variables may be achieved by simulated annealing. Finally, the energy score of
the new proposed conformation, X is evaluated (line 16) and X is accepted (lines 17–21)
according to the Metropolis criterion. In theory, we could choose such a large move size
along the independent variables so that some of the chain breaks may not be repaired due to
the lack of a geometric solution (line 5). While not indicated explicitly, in this case the
whole step is rejected.

Lemma 2—Consider a molecular assembly that has Nc chain breaks and adjacent molten
zones. If Nd is the number of dependent degrees of freedom, the asymptotic cost of applying
an RSC cycle to all the molten zones is ½ cspc O(Nd) + cdfc O(Nc), where cspc and cdfc are
the costs of a single SPC and DFC steps, respectively.

Proof—See the Appendix.

Lemma 3—Consider the molecular assembly of Lemma 2 with N atoms. For any value of
Nc and Nd, the asymptotic cost of applying an RSC cycle to all the molten zones has an
upper bound (1.5 cspc + cdfc)O(N), where cspc and cdfc are the costs of single SPC and DFC
steps.

Proof—See the Appendix.

Corollary 1—Assume that ceO(N) is the asymptotic cost of the total energy calculation in
an N atom system. For any Nc and Nd, the asymptotic cost of repairing all chain breaks by
RSC cycles does not exceed the asymptotic cost of the energy calculation. If both Nc and Nd
are orders of magnitude smaller than N (e.g., the present applications), the total energy
calculation will dominate the cost of an MCRSC step.

Comparison with other methods—Given that for every new state of the independent
degrees of freedom the dependent degrees of freedom (chain closure variables) are relaxed,
MCRSC is equivalent to Metropolis Monte Carlo sampling guided by the function,

(1)

Our new method is similar to the MCM technique reviewed in Wales and Scheraga (1999)
in which the Monte Carlo sampling is guided by the transformed energy function

(2)

where min refers to minimization along X. This transformation preserves all local minima
and also leads to an energy surface Ẽ (X) that can be efficiently explored by using Monte
Carlo as described in Metropolis et al. (1953).
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2.4. Using Monte Carlo recursive stochastic closure for nucleic acids
Figure 2 illustrates MCRSC for nucleic acid structure using the rigid-body motion of the
base pairs as the natural variables. In Figure 2a, RSC repairs a chain break between two
nucleotides by randomly adjusting the positions of atoms in the molten zone. The number of
atoms in molten zone, Nm determines the number of SPC steps in each RSC cycle, n = Nm −
1, because one atom is always moved by DFC. In this study, each molten zone of all-atom
nucleic acids is composed of three (Nm = 3) consecutive atoms P, O5′, and C5′. Therefore, in
each RSC cycle, the number of SPC steps n = Nm − 1 = 2. Unless otherwise noted,
randomness was introduced by setting σspc = 10−4 Å and we used five consecutive RSC
cycles (m = 5) in each MCRSC step.

The ten independent degrees of freedom, Xi, of each nucleotide in a DNA double helix are
depicted in Figure 2b. Here, six out of ten degrees of freedom are responsible for the global
orientation of nucleotides and four provide the internal flexibility of the furanose ring.
Unless explicitly noted, the move sizes (see Section 6.3) of independent natural degrees of
freedom were set to σ = 2.5×10−5 Å for translational, σ = 10−5 radian for rotational and
internal angle moves. In addition to breaking the chain along the P – O3′ bond, changes in
the independent degrees of freedom may also break the furanose ring bond C4′ – O1′; this
ring break is always restored by DFC.

2.5. Using Monte Carlo recursive stochastic closure for proteins
The molten zones are located along loops between structural segments. Here, we place the
chain break within the residue that marks the starting point of molten zones which include
three additional residues. Because we use two backbone atoms per residue in our protein
representation (see Section 6.2), the molten zones consist of Nm = 2×3 + 1 = 7 atoms. Thus,
the number of SPC steps per RSC cycle, n = Nm − 1 = 6. Randomness was modeled by σspc
= 10−4 Å, and we used five RSC cycles (m = 5) in each MCRSC step.

Sets of independent degrees of freedom, Xi, for the relative orientation of segment pairs
composed of two rigid β-sheets, two α-helices and an α-helix with a β-sheet are shown in
Figure 3a–c. Here, the move sizes (see Section 6.3) of independent degrees of freedom were
set to σ = 10−4 Å for translational and σ = 10−5 radian for rotational moves.

3. RESULTS
3.1. Robust handling of chain breakages in nucleic acids

We investigated how the proposed move size along independent degrees of freedom effects
the acceptance rate of MCRSC steps. In doing this, translational and rotational degrees of
freedom are treated separately because they are expressed in units of Ångstroms and radians,
respectively. Figure 4 shows how the average acceptance rates depend on the move size of
translational nucleotide degrees of freedom such as Shear, Stretch, Stagger, Shift, Slide &
Rise. Clearly, MCRSC works with significantly larger move sizes than does MCDFC
introduced by Sklenar et al., (2005). The improvement can be quantified by comparing
move sizes that lead to an acceptance rate of 0.3, which is a standard value for practical
applications. This gives an improvement of between 0.5 to 1 log10 units (3 to 10 fold) when
MCRSC is used with m = 1 or m = 5 cycles of RSC, respectively. Thus, increasing the
number of consecutive RSC cycles improves performance but this advantage is reduced for
very large step sizes due to large fluctuations in the intermolecular energy. Because
evaluating the intra-molecular energy terms of the all-atom force field (Cornell et al., 1995)
is inexpensive both MCDFC and MCRSC steps have the same computational cost.
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3.2. Loop torsion angle sampling in proteins
The exploration of protein tertiary assembly can be effectively performed by Loop Torsion
Monte Carlo (LTMC) search (Minary et al., 2008a) which we successfully applied to study
protein fold space. Loop torsion angle space, which controls the assembly of rigid segments,
can also be explored by using MCRSC with independent degrees of freedom that directly
alter the position of rigid segments such as α-helix, β-strand or β-sheet. The deterministic
MCDFC method of Sklenar et al. 2006 used as for comparison in Figure 4, is not able to
keep the rearranged structural segments connected and other closure based methods (Dodd
et al., 1993; Umschneider and Jorgensen, 2003; Krishna and Theodoru, 1995; Wu and
Deem, 1999; Hoffmann and Knapp, 1996) that works with multi-atomic molten zones are
significantly more costly than MCRSC. Thus we compare MCRSC to LTMC.

Figure 5 shows the average energy of conformational minima found as a function of bond
angle stiffness. As bond angles become very stiff, varying the orientation of structural
segments is the same as varying the conformations of the loops between them so that the
energies found by MCRSC approach those found by LTMC. With softer bond angles lower
energies are reached, which suggests that LTMC may not be able to explore space as well as
MCRSC.

3.3. Conformational optimization in nucleic acids
In Figure 6, we benchmark MCRSC and MCDFC algorithms according to their
effectiveness in locating low energy DNA conformations; both the depth of energy minima
and the number of Monte Carlo iterations needed to reach them can be used as a measure for
performance. The figure shows the three sets of independent degrees of freedom used in this
test and marks the location of chain breaks. Figure 6a shows that MCRSC reaches DNA
conformations with lower energy than MCDFC. MCDFC works better with rigid body
coordinates, which is consistent with earlier studies (Rohs et al., 2005). Figure 6b also
shows that MCRSC converges most rapidly. Both tests of MCDFC found new low energy
conformational states towards the end of the simulation run.

3.4. Conformational optimization in proteins
In Figure 7, we benchmark the LTMC and MCRSC algorithms for conformational
optimization of protein structures. The figure shows the two sets of independent degrees of
freedom used in this test; loop torsion angles and natural coordinates serve as independent
degrees of freedom for LTMC and MCRSC, respectively. Figure 7a shows that LTMC and
MCRSC trajectories are similar when stiff bond angles are used (kb2). When softer bond
angles are used (kb1), MCRSC trajectories visit conformational minima with lower energy.
Figures 7b shows that the number of MCRSC iterations that leads to convergence does not
increase with softer bond angles. Figure 7d shows that MCRSC with soft bond angles not
only finds lower energy states but explores the conformational space significantly better in
that there are more structures in the low energy values.

4. DISCUSSION
4.1. Methods that facilitate natural degrees of freedom in nucleic acids

When comparing MCRSC to MCDFC, an established method that works with natural
degrees of freedom in nucleic acids, we found that MCRSC works with chain breaks that are
an order of magnitude larger. While its simplicity and low computational cost makes DFC a
practical closure method for biological applications, our results show that its use largely
depends on the break in the chain being small. We found that RSC is more robust while still
maintaining the simplicity and low computational cost of DFC. Our result also indicates that
consecutive RSC cycles increase the acceptance rate because they correct the
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stereochemistry that may not be corrected by the first RSC cycle. Therefore, additional RSC
cycles help in that they produce an energetically favorable closure by removing bond and
torsion angle strain of the atomic chain spanning the molten zone.

4.2. Robust algorithms for chain closure
Our results indicate that replacing the single atom molten zone used by DFC with the multi-
atom molten zone used by RSC enhances robustness in restoring large chain breaks. In
general, increasing the number of atoms in the molten zone or equivalently the number of
degrees of freedom, Nd, that is used to restore chain breaks enhances the robustness of RSC.
In addition, as it was demonstrated in Section 2.2, the computational complexity of RSC is
O(Nd). This linear scaling in Nd enabled us to use up to Nd = 2 Nm + 5 = 19 (Nm = 7 was
used for proteins) degrees of freedom for chain closure. In contrast, the computational
complexity of current multi-atom closure algorithms is O(fNP(Nd)), where fNP refers to a non
polynomial function. Thus, current algorithms are limited to a value of Nd = 6 and the
degrees of freedom include either six torsion angles (Dodd et al., 1993) or three bonds and
three torsion angles (Umscneider and Jorgensen, 2003). By defining six constraints, the
complicated geometric problem of six equations with six unknowns could have from 2 to 12
numerical solutions (Dodd et al., 1993) with average dihedral angle variations of 40°. Jump
between different solutions usually leads to a steric clash between the rigidly attached side
chains and surrounding atoms (Hoffmann and Knapp, 1996). In contrast to these algorithms,
solutions are iteratively improved by each RSC cycle that builds on and refines the solution
found by the preceding cycle.

4.3. Methods that facilitate natural degrees of freedom in proteins
We investigated how MCRSC relates to LTMC which we have shown to efficiently explore
protein conformations along natural degrees of freedom in applications including model
peptides (Minary and Levitt, 2006) and structures representing all protein folds (Minary and
Levitt, 2008). Our finding implies that as bond angles become stiff MCRSC and LTMC
sample from the same space of arrangements of secondary structure segments. Our results
also indicate that soft bond angles permit more variety in the orientation of structural
segments so that MCRSC is able to discover energetically more favorable tertiary
arrangements. This finding high-lights some limitations of LTMC that could be overcome
by varying bond angles in addition to torsion angles. Unfortunately, this would introduce
additional independent degrees of freedom, which would slow down the search of
conformational space. By contrast, the independent degrees of freedom of MCRSC are
strictly restricted to the orientation of segments. All loop conformations are changed by the
dependent degrees of freedom so as to keep the segments connected; this does not slow
down the search. When studying larger systems, simple variations in the loop torsional
degrees of freedom lead directly to steric clashes that reduce the search efficiency. Again
MCRSC is more successful because of local moves that vary the orientation of a segment
but leave the rest of the molecule unchanged. Without bond angle variation there is a rough
energy landscape that LTMC is unable to explore by simple Monte Carlo protocols as
described in Metropolis et al. (1953). None of these limitations are present with MCRSC
which explores the smooth loop torsional & bond angle energy surface and samples short
and long protein chains with equal efficiency. Note, that the use of natural degrees of
freedom for conformational exploration by the popular fragment based algorithms of Simons
et al. (1997) is restricted to non-continuous sampling.

4.4. Conformational optimization of proteins and nucleic acids
In our study of conformational relaxation of DNA, we compared the two most cost-effective
algorithms, MCRSC and MCDFC. Using the natural degrees of freedom, we found that
relaxation driven by MCRSC leads to lower energies and converges faster than relaxation
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driven by MCDFC. In addition, the distributions of the energy imply that MCDFC gets
easily trapped in various conformational basins with diverse energies. The superior
performance of MCRSC is partly due to treating some of the independent degrees of
freedom of MCDFC as dependent degrees of freedom that are adjusted to further
accommodate natural moves. For example, in the present case the three variables are the two
torsion angles (γ, ε) and the bond angle at O3′. Treating these variables as dependent in
MCRSC not only facilitates natural moves but also improves convergence by reducing the
number of independent variables. In accordance with previous studies by Rohs et al. (2005),
we found that MCDFC performs well if the global orientation of individual nucleotides is
varied by simple translational and rotational moves.

MCRSC was also benchmarked in relaxing the tertiary structure of our protein example. In
accordance with our previous findings, MCRSC with stiff bond angles and LTMC relaxed
the initial structure with the same efficiency. This implies that in average they converge to
very similar conformational states. Removing the stiffness from bond angles opens a
passage around torsional energy barriers so that MCRSC could discover new favorable
tertiary arrangements. The large variation of their RMSD distance from the initial state
implies that the new arrangements are not just energetically refined structures found by
LTMC but ones that may represent new fold topologies.

4.5. Limitations of our work
Any conformational modeling study is as good as the force field that is used by the sampling
or optimization algorithm. In this article, we focus on the description and testing of a novel
algorithm rather than characterizing conformations we generate. While successful biological
applications that use our algorithm may rely on a particular force field, testing force fields or
reproducing biologically relevant findings is not in the scope of the current article.
Benchmarking the performance of alternative multi-atomic closure methods has also not
been done in the current study, because either they have not been shown to work with the
present type of natural moves, or their computational complexity does not allow the use of a
sufficient number of closure degrees of freedom.

Like MCM, MCRSC is designed to sample a transformed energy surface in which some of
the transition energy barriers are removed. Thus, both MCM (Li and Scheraga, 1987; Wales
and Scheraga, 1999) and MCRSC are not expected to generate canonically distributed
conformational ensembles along all degrees of freedom of the original energy surface.
Nevertheless, MCRSC may be used as a canonical sampling method along the independent
degrees of freedom. Proof of this property is not in the scope of our current work, but it is
similar to that used to show that the very successful MCM explores conformational space
well.

5. CONCLUSION
This article has presented a novel approach to the chain closure problem. It differs from
existing work in that it combines their beneficial features such as simplicity and cost
effectiveness, but is more robust and generally applicable. Thus, large chain breaks that are
caused by functionally relevant natural moves can still be restored. As a result, the new
chain breakage-closure protocol has been demonstrated to explore conformational space
more effectively then currently used protocols for both nucleic acids and proteins. Given its
capabilities, use of MCRSC is expected to advance our understanding of a large variety of
problems in structural biology and macromolecular biochemistry. Such problems include
protein and RNA folding, small molecule docking, protein-protein, and protein-nucleic acid
interactions and the refinement of experimental structures.
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6. MATERIALS
6.1. Nucleic acid structures and models

Initial DNA conformations are obtained from the idealized B-DNA form of the 12 base-pair
pappilo-mavirus E2 protein DNA binding site (5′-ACCGAATTCGGT-3′) which has been
determined by X-ray crystallography (Hizver et al., 2001). The Cornell et al. (1995)
AMBER force field and an implicit electrostatic solvent description by Hingerty et al.
(1985) was applied here throughout all energy calculations. The later relatively simple
description of the solvent is not only in very good agreement with experimental data but also
indispensable here in order to realize the computational advantage of collective moves.
More sophisticated implicit solvent models as reviewed in Tsui and Case (2001) would
require the costly calculation of the Born radii at each step due to the extensive change in the
conformational space. Charges of the DNA backbone are neutralized by the explicit
presence of sodium counterions, which rapidly sample the 20 Å cylinder around the DNA.
The current model used here has been already extensively tested to reproduce crucial details
of all atom explicit solvent simulations performed on the same binding site in Rohs et al.
(2005).

6.2. Protein structures and models
The protein studied here has 55 residues and represents one of the α + β fold classes from
the SCOP-1.71 database introduced by Murzin et al. (1995). The structure of this particular
protein was obtained through the ASTRAL database (Brenner et al., 2000) by following
SCOP id: d1div_2. Built on previous work (Minary and Levitt, 2008) the protein was
described by a three center per residue knowledge based model. Here, the three centers used
for each residue are the Cα atom, the carbonyl oxygen and a single side chain atom used to
represent the center of mass of the side chain. Any side chain atom used for a particular
residue is taken as the atom that is most commonly closest to the actual center of mass of the
side chain in known proteins. In this way the knowledge based energy function derived on
atomic positions can be easily adopted. The current coarse grained potential has been
extensively tested in Minary and Levitt, (2008) to reproduce near native state features of a
large number of folds.

6.3. Monte Carlo move
In all Monte Carlo methods, new conformations are selected from an N dimensional normal
distribution, NN (μ, Σ), where N is the number of independent degrees of freedom of a
particular type, the center of normal distribution, μ, is the current state, the uniform standard
deviation is Σii = σi, = σ; i = 1, …, N and the move size is σ. The unit of measurement for σ
depends on the nature of the move: for translational moves σ is in Ångstroms and for
rotational moves it is in radians.

6.4. Software
Idealized B-DNA form was generated by the nucgen software package described in Bansal
et al. (1995). All methods and algorithms described in this article are implemented in our
MOSAICS software package (Minary, 2010), which is available on request from the
corresponding author.
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7. APPENDIX

7.1. Updating independent degrees of freedom, Xi

We can divide any molecular assembly into Ns arbitrary structural segments, Sk, for k = 1,
…, Ns. We chose a center group, Ck, comprising of three atoms in the center of each
segment and group, SGk containing the coordinates of all the remaining atoms in Sk. The
independent degrees of freedom of the system, which can be internal to a segment or else
global, are updated using the following subroutine:
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subroutine update_idof(Xi)

1. for k ← 1 to Ns do

2.  call resolve (SGk)

3. iXi ← (update) [iXi]

4. gXi ← (update) [gXi]

5. for k ← 1 to Ns do

6.  call rebuild (SGk)

First, the positions of each atom in SGk are resolved into internal coordinates (line 2) using
subroutine resolve defined in Section 7.3. Next, all independent coordinates are updated
(lines 3 and 4, see Section 6.3). Internal independent degrees of freedom, iXi may include
bend and torsion angles whereas all information about the global independent degrees of
freedom, gXi is encoded into the Cartesian position and orientation of each center group, Ci;
updating the position and orientation of the center groups effectively updates gXi (line 4;
Figure 3a,b). Finally, we calculate the Cartesian coordinates of all segments by subroutine
rebuild defined in Section 7.3.

7.2. Setting dependent degrees of freedom, Xd

After all independent variables are updated (see Section 7.1), there may be chain breaks
present in the structural assembly. Adjacent to the break we have a molten zone. Following
Section 2.2, the atom across the break from the molten zone is known as the “head” atom;
the two atoms on the other side of the molten zone are known as the “anchor” atoms. In
general, we can assume that there are Nc chain break locations and adjacent molten zones,
Ml, l = 1, …, Nc. In MGl, we store coordinates of the molten zone plus the head and anchor
atoms associated with Ml. In order to maintain all connectivity (e.g., branching atoms, side
chains) when the position of Ml is changed, additional atoms need to be moved. For each
Ml, the coordinates of all these atoms are stored in BGl. The execution of one RSC cycle in
each molten region is done by the following subroutine.

subroutine general_rsc(Xd)

1. for l ← 1 to Nc do

3.  call resolve(BGl)

4.  call rsc(MGl, 1)

5.  call rebuild(BGl)

First atoms in BGl are resolved into internal coordinates (line 3). Next subroutine rsc (see
Section 2.2) is executed (line 4) where the recursive iteration is started with the first atom.
Finally, all atoms in BGl are rebuilt into Cartesian coordinates (line 5). The loop is going
through all molten zones.

7.3. The missing subroutines
Given group G = {rg(i): i = 1, …, Ng} comprising the coordinates of Ng atoms, transforming
all coordinates from Cartesian to internal and from internal to Cartesian variables is done by
the following subroutines:
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subroutine resolve (G)

1. for i ← Ng to 1 do

2.  (b(1), b(2), b(3)) ← (base) [g (i)]

3.  rg(i) ← R(rb(1), rb(2), rb (3)) · (r g(i) − rb(3))

4.  rg(i) ← (rg(i), θg(i), φg(i)) [xg(i), yg(i), zg(i)]

subroutine rebuild (G)

1. for i ← 1 to Ng do

2.  rg(i) ← (xg(i), yg(i), zg(i)) [rg(i), θg(i), φg(i)]

3.   (b(1), b(2), b(3)) ← (base) [g (i)]

4.  rg(i) ← rb(3) + RT(rb(1), rb(2), rb(3)) · rg(i)

For each atom function “base” returns the indices of three atoms whose Cartesian
coordinates define the local reference frame used to express the atom position in internal
variables. Therefore, ordering of atoms from 1 to Ng is done in a way such that the base
atoms of an atom are expressed in Cartesian coordinates every time when the atom
coordinates are transformed. Note that base atoms that are not in G are always assumed to
have Cartesian positions while these transformations are performed. To obtain rotation
matrix, R, two unit vectors, e1 = (rb(3) − rb(2))/|rb(3) − rb(2)| and e2 = (rb(1) − rb(2))/|rb(1) −
rb(2)| are first constructed, where |…| denotes Euclidean lengths. Next, e1 and e2 are used to
construct a local coordinate frame spanned by three vectors, ez = e1, ey = (e1 × e2)/|e1 × e2|
and ex = (ey × ez)/|ey × ez|. Given, ex, ey and ez, R = (ex

T, ey
T, ez

T)T, where ei
T refers to the

transpose of column vector, ei, i ∈ {x, y, z}.

7.4. The missing proofs
Proof of Lemma 2

Next to each chain break, there is a molten zone, Ml, l = 1, …, Nc. The cost of applying an
RSC cycle to Ml is nl cspc + cdfc, where nl = lNm − 1 and lNm is the number of atoms in Ml.
Changing the position of lNm number of atoms will alter lNm + 2 bond angles and lNm + 3
torsion angles. Thus, the number of degrees of freedom used to repair the chain break
adjacent to Ml is lNd = 2 lNm + 5. Therefore, nl = ½ (lNd − 5) − 1 and the number of
operations used to perform one RSC cycle to each molten zone is Σl ((½ (lNd − 5) − 1) cspc
+ cdfc) = (½Nd − 3.5 Nc) cspc + Nc cdfc where Nd = Σl

lNd is the total number of dependent
degrees of freedom changed when applying an RSC cycle to each molten zone. Thus, the
asymptotic cost O((½Nd − 3.5 Nc) cspc + Nc cdfc) < ½ cspc O(Nd) + cdfc O(Nc).

Proof of Lemma 3
Following Lemma 2, the asymptotic cost is ½ cspc O(Nd) + cdfc O(Nc). Next, we can make
two assumptions: (1) The number of bonds does not exceed the number of atoms in a
molecular system, Nc ≤ N. (2) The total number of closure degrees of freedom must always
be bonded by the maximum number of degrees of freedom, Nd < 3N. Thus, ½ cspc O(Nd) +
cdfc O(Nc) < 1.5 cspc O(N) + cdfc O(N).
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FIG. 1.
(a) Two-dimensional illustration of Deterministic Full Closure (DFC) applied to a five-atom
chain r1, …, r5 with a broken bond between atom 4 and 5. If atom 4 is to be positioned by
changing the bond angle defined by atoms 2-3-4, then there will either be one favorable
solution (marked as point A) or else no solution. (b) Showing Stochastic Partial Closure
(SPC) applied to the problem in (a). We mark, S, the red circular arc of constant bond length
around atom 5 (a surface in 3D), and IP, the intersection point of the arc S and the line
connecting atom 4 to 5. SPC stochastically places atom 4 on arc S based on a normal
distribution centered on IP. This method always gives a solution, although it may stretch the
bond between atoms 3 and 4. (c) Showing one cycle of Recursive Stochastic Closure (RSC)
consisting of three successive, recursive stages of SPC and a single terminating stage of
DFC. Circles and lines colored in gray mark atoms and bonds set by SPC, whereas circle
and line in green mark atoms and bonds set by the final DFC stage. The figure shows how
RSC adjusts bond angles (in 3D, both torsion and bond angles are adjusted), so that the
chain break is repaired. The right-most atom is the head atom, which is on the other side of
the break; the two left-most atoms belong to the anchor. The other atoms are molten zone.
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FIG. 2.
Illustration of how our Monte Carlo Recursive Stochastic Closure (MCRSC) algorithm
works on a simple example of a dinucleotide. (a) Conformational space is drawn as a
function of bond lengths, bond angles and torsion angle rotations. The starting state, O, is
moved towards point A causing a break in the molecular chain. The break is repaired by one
cycle of Recursive Stochastic Closure (RSC) that adjusts the conformation of the molten
zone comprising atoms P, O5′, and C5′ (Nm = 3). The first two SPC stages, A→B & B→C,
which move atoms P and O5′, are followed by a DFC stage, C→Dm = 1, placing atom C5′.
The cycle is then repeated to relax chain stiffness between atoms O3′ and C4′ to reach point
Dm = 2. (b) Showing how we deal with degrees of freedom in nucleic acids. The dotted black
lines mark chain breaks that can be caused by Monte-Carlo moves in the independent
variables, Xi (marked in brown). After closing the furanose ring (RC) by adjusting the
position of atom C4′, RSC repairs the chain break while setting the value of dependent
variables, Xd: torsion angles (magenta) and bond angles at every atom of the chain
connecting nucleotides. There are 10 independent degrees of freedom per nucleotide: 12
“structural” degrees of freedom describing the relative orientations of bases (each counts as
½ as two nucleotides share each degree of freedom) and 4 variables of the ribose ring. The
“structural” degrees of freedom are Shear (Sx), Stretch (Sy), Stagger (Sz), Buckle (κ),
Propeller (π), Opening (σ), Shift (Dx), Slide (Dy), Rise (Dz), Tilt (τ), Roll (ρ), and Twist (ω).
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FIG. 3.
Natural degrees of freedom that are used on protein structure. (a) A sandwich of two three-
stranded anti-parallel β-sheets (β-strands are shown as rectangular slabs) with natural
degrees of freedom that treat the β-sheets as rigid bodies. These independent variables, Xi
are Shift (Dx), Slide (Dy), Rise (Dz), Tilt (τ), Roll (ρ), and Twist (ω). (b) Two rigid helical
segments (α-helices are shown as cylinders) with the natural degrees of freedom that
describe their relative orientation. These independent variables, Xi, are Shear (Sx), Stretch
(Sy), Stagger (Sz), Buckle (κ), Propeller (π), and Opening (σ). (c) Illustration of the move
along Shear (Sx), one of the natural degrees of freedom describing the relative orientation of
a three-stranded β-sheet and an α-helix. All the remaining independent variables, Xi, are
identical to the ones in (b) and can be derived if one aligns the α-helix with the central strand
of the β-sheet. (d) Showing one possible arrangement of the flexible protein loops (dashed
line) that connect individual β-strands and α-helices. The red rectangle illustrates a loop
segment containing a molten zone with Nm = 7 between magenta atoms. Recursive
Stochastic Closure (RSC) changes the conformation of the molten zone, so that the broken
connection between segments (β-strands, α-helices) is repaired. In the lack of torsion or
bond angle constraints (e.g., peptide planes are not described explicitly in coarse grain
representation), there are 19 dependent degrees of freedom, Xd (magenta).
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FIG. 4.
Showing the dependence of the Monte Carlo acceptance ratio on the log of the step size used
to propagate the nucleotide base degrees of freedom (Fig. 2b) for the 12 base pair
pappilomavirus DNA binding site. Curves are presented for Monte Carlo Deterministic Full
Closure (DFC; red circles) and Monte Carlo Recursive Stochastic Closure (MCRSC) with
one cycle (m = 1, blue circles) and five cycles (m = 5, blue triangles) of Recursive Stochastic
Closure (RSC), respectively. The step size, which is the variance of the normal distribution
for all random Monte Carlo steps, is expressed in Å for the independent nucleotide base
degrees of freedom, Xi, which are “structural translations” such as Shear, Stretch, Stagger,
Shift, Slide, and Rise. The dependent degrees of freedom, Xd, are the same as in Figure 2b.
An optimal value of the acceptance rate (Pacc = 0.3) is marked by a dashed red line. Each
point represents the average from a trajectory with 1,000,000 Monte Carlo iterations.
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FIG. 5.
The average of energies of all conformational minima found by MCRSC (blue) as a function
of the bond angle force constant kb. All averages are calculated for twenty independent
trajectories started from the crystal structure of a 55-residue protein (α + β fold class; SCOP
id: d1div_2) having an α-helix and a small three-stranded β-sheet, and modeled by a
previously used coarse-grained knowledge-based energy function (see Section 6.2). The
independent degrees of freedom, Xi, that are reduced to model the relative orientation of the
α-helix and the central strand of the β-sheet are Shear, Stretch, Stagger, Buckle, Propeller,
and Opening (see Fig. 3c). The rigid segments are connected by a loop which accommodates
the flexible molten zone with dependent degrees of freedom, Xd, depicted in Figure 3d. The
average energy obtained by Loop Torsion Monte Carlo (LTMC) is shown by the red line.
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FIG. 6.
Analyzing energetic relaxation of chain breakage-closure Monte Carlo trajectories started
from regular B-DNA conformation. Location of the chain break (dotted line) and the
independent degrees of freedom, Xi (marked brown), for the three protocols used. In the first
protocol (RSC-10, blue), MCRSC is employed on the closure problem of Figure 2b; the
nucleotide conformation is changed by “natural” moves to give 10 independent degrees of
freedom. In the second protocol (DFC-13, red), MCDFC is employed on P–O5′ bond
closure; the nucleotide conformation is changed by “natural” moves with two additional
main chain torsion angles and one additional main chain bond angle to give 13 independent
degree of freedom. In the third protocol (DFC-14, green), MCDFC is employed on P–O5′
bond closure; the nucleotide conformations are changed by “physical” moves that include
rigid body motion of the base to give 14 independent degrees of freedom. In all protocols,
the dependent degrees of freedom, Xd, include torsion angle variables (magenta) that are
depicted next to the bond around which the rotation is applied. Unless indicated otherwise,
bond angles at all atoms along the chain also contribute to Xd. (a) The averaged value of the
total energy as a function of Monte Carlo iterations where the averages are calculated from
10 independent runs. (b) The cumulative variation of the averaged total energy over the final
400,000 Monte Carlo iterations. (c) The distribution of the averaged total energy using the
same data as in (b).

MINARY and LEVITT Page 21

J Comput Biol. Author manuscript; available in PMC 2011 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 7.
Energy relaxation of the native structure of a 55-residue protein (α + β fold class; SCOP id:
d1div_2) with an α-helix and a three-stranded β-sheet. Each amino acid residue is modeled
using three centers: the alpha carbon, the carbonyl oxygen, and a side-chain atom that is
closest to the center of mass of the side chain. All pairwise interactions are described by a
statistical/knowledge-based energy (see Section 6.2). Simulations are performed using two
different Monte Carlo protocols. In the first one, Monte Carlo Recursive Stochastic Closure
(MCRSC; blue box on the upper right), six independent rigid-body degrees of freedom, Xi
(shown in brown), describe the relative arrangement of the central β-strand and the α-helix.
Recursive Stochastic Closure (RSC) works on the molten zone between magenta atoms and
sets the value of the dependent variables, Xd (magenta). In the second one, LTMC (red box
on the middle right), the relative arrangement of the two segments is described by six
independent loop torsion angles (LT). As torsion angle moves in loops move the entire
chain, no chain breakages occur. (a) Showing the average value of the knowledge-based
energy plotted against the number of Monte Carlo steps for trajectories started at the native
conformation and averages are calculated from 10 independent runs. Given that the
stochastic closure has bond angle flexibility, MCRSC is used with harmonic potentials to
keep all bond angles close to their initial value. MCRSC simulations (blue) were performed
using two distinct harmonic constants kb1 = 40.0 kcal/(mol rad2) and kb2 = 200.0 kcal/(mol
rad2) for stiff and soft bond angles, respectively. The knowledge-based energy (red) as a
function of LTMC steps is also plotted. (b) Showing the cumulative average of the expected
knowledge-based energy over the 400,000 Monte Carlo iterations. (c) Showing the
knowledge based energy distribution calculated using the data in (b). (d) Showing the
energy versus RMSD plot for LTMC an MCRSC with soft bond angles.
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