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Abstract
Objective—We evaluated the individual and combination effects of NAT1, NAT2 and tobacco
smoking in a case-control study of 219 incident prostate cancer (PCa) cases and 555 disease-free
men.

Methods—Allelic discriminations for 15 NAT1 and NAT2 loci were detected in germ-line DNA
samples using TaqMan polymerase chain reaction (PCR) assays. Single gene, gene-gene and gene-
smoking interactions were analyzed using logistic regression models and multi-factor
dimensionality reduction (MDR) adjusted for age and subpopulation stratification. MDR involves
a rigorous algorithm that has ample statistical power to assess and visualize gene-gene and gene-
environment interactions using relatively small samples sizes (i.e., 200 cases and 200 controls).

Results—Despite the relatively high prevalence of NAT1*10/*10 (40.1%), NAT2 slow (30.6%),
and NAT2 very slow acetylator genotypes (10.1%) among our study participants, these putative
risk factors did not individually or jointly increase PCa risk among all subjects or a subset analysis
restricted to tobacco smokers.

Conclusion—Our data do not support the use of N-acetyltransferase genetic susceptibilities as
PCa risk factors among men of African descent; however, subsequent studies in larger sample
populations are needed to confirm this finding.
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Introduction
Prostate cancer (PCa) is the leading cause of cancer incidence and the second leading cause
of cancer-related deaths among men in the United States.1 These cancer statistics are even
more alarming among men of African descent who have the highest incidence and mortality
rates in the world. In 2009, over twenty-seven thousand African-American men were
diagnosed with PCa and 3,690 men died from the disease. PCa incidence and mortality rates
for African-American men are two-fold higher relative to European-Americans.2 Other than
race, the established etiological determinants of PCa include age and family history of
disease. There is some evidence that environmental factors such as cigarette derived
polycyclic aromatic hydrocarbons and meat-derived heterocyclic aromatic amines induce
tumors in experimental animals, including prostate tumors in rodents.3–5 The International
Agency for Research on Cancer (IARC) regard heterocyclic amines as possible or probable
human carcinogens. In addition, a recent meta-analysis, involving pooled data from 24
studies, revealed that smoking increased the chance of developing PCa and dying from the
disease, while using crude smoking classifications as well as number of cigarettes smoked
per day.6 Consequently, inheritance of susceptibilities in genes responsible for the
metabolism of environmental carcinogens may influence one’s capacity to bioactivate or
detoxify pro-carcinogens as well as alter individual propensity toward PCa. Unfortunately,
the impact of genetic variations in two commonly studied biotransformation genes in
relation to PCa still remains understudied, especially among men of African descent.

N-acetyltransferase (NAT) activity plays an important role in the activation and
detoxification of meat-derived and cigarette derived pro-carcinogens (e.g., heterocyclic
amines, aromatic amines), respectively.7 Consequently, acetylator status may influence
individual response to environmental carcinogens as well as susceptibility to various
cancers.

NATs are encoded by two genes, NAT1 and NAT2, located on chromosome 8p 21.3–23.1.8
NAT1 is highly polymorphic with over 25 variant alleles.9 A common variant allele,
NAT1*10, defined by two single nucleotide polymorphisms (SNPs) in the 3′ untranslated
region (T1088A and C1095A) may cause a shift in the position of the mRNA polyadenylation
signal, resulting in a potential increase in mRNA stability.10 Two studies show that the
NAT1*10 configuration may represent a rapid acetylator allele, since it was associated with
increased N-acetylation activity in human bladder and colonic mucosa and higher DNA
adduct formation in the urinary bladder.10–11 The frequency of this putative rapid acetylator
NAT1*10 allele is fairly common among African-Americans (50%).12 There is some
evidence that inheritance of the NAT1*10 variant allele is associated with an increase in
colo-rectal, breast and PCa relative to carriers of the homozygous NAT1*4/*4
genotype.13–15 Rare variant NAT1 alleles, such as NAT1*14B, *15, *17, *19, and *22
alleles, exhibit negligible levels of NAT1 protein expression and have lower catalytic activity
toward N-hydroxylated heterocyclic. NAT1*3 and NAT1*11 are also rare variants. In
particular, the NAT1*11 allele appears to be associated with elevated breast cancer risk;
however, the acetylator phenotype among individuals carrying this marker is not completely
understood.16–17

Polymorphism in the NAT2 gene has led to the identification of a NAT2*4 (reference) and
over 25 variant alleles.9 Several SNPs alone or in combination (e.g., C282T, T341C, C481T,
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G590A, A803G, and G857A) result in NAT2 alleles (e.g., NAT2*5, *6, *7, *14) with reduced
activity and protein. However, polymorphism found in the NAT2*5 gene cluster resulted in
the greatest reduction in N- and O-acetylation activity when compared to the reference
genotype.18 Specifically, the T341C SNP targets the NAT2 protein for enhanced proteosomal
degradation and is associated with the very slow NAT2 acetylator phenotype.19–20

Compared to rapid/intermediate acetylators, NAT2 slow acetylators had a 1.4-fold increase
in bladder and prostate cancer risk that was stronger for cigarette smokers than for never
smokers.21–22 This increased risk is attributed to reduced capacity to detoxify N-
hydroxylated aromatic amines in the liver and extrahepatic tissue, including the small
intestine, bladder and prostate.23–24

The NAT1*10 and the slow NAT2 genotypes (individually and jointly) are suspected to
increase PCa risk due to their affect on the metabolic activation of heterocyclic aromatic
amines (via O-acetylation) in the prostate and/or decreased detoxification of aromatic
amines (via N-acetylation) in the liver and prostate. In fact, Hein and co-workers (2002)
observed a 5- and 7.5-fold increase in PCa susceptibility among individuals who possess the
putative rapid NAT1*10 combined with the NAT2 slow (OR = 5.08; 95% CI: 1.56–16.5; p =
0.008) or very slow NAT2 genotypes (OR = 7.50; 95% CI: 1.55–15.4; p = 0.016),
respectively.15 However, additional studies are still warranted to clarify their role in
susceptibility to PCa among men of African descent.

Despite the striking prevalence of PCa and the high frequency of NAT1*10 and slow NAT2
slow alleles among men of African descent, the phenotypic ramifications of polymorphic N-
acetyltransferases remain understudied in this underserved subgroup. Hooker and co-
workers (2008) evaluated 4 NAT2 SNPs (rs11120005, rs7832071, rs1801280, rs1799930) in
relation to PCa susceptibility among participants of the current study.25 Two of these NAT2
loci (rs1801280, rs1799930) have been documented to influence NAT2 protein levels and N-
acetyltransferase activity. However, there are thirteen other NAT1 and NAT2 SNPs that are
used to correctly identify individuals as slow, intermediate and rapid acetylators that were
not included in Hooker’s analysis. The current study addresses this issue by evaluating the
individual and joint effects of 15 functional NAT1 and NAT2 sequence variants on PCa risk
among men of African descent using a statistically rigorous statistical tool, namely multi-
factor dimensionality reduction (MDR). This data-mining tool has excellent statistical power
(i.e., >80%) to evaluate main effects and complex interactions in relationship to discrete
outcome, even with a relatively small sample size (i.e., >200 cases and >200 controls). This
approach was also applied to explore whether susceptibilities detected in xenobiotic
metabolizing genes combined with environmental factors (i.e., tobacco smoking) can
significantly modify prostate cancer risk.

Materials and Methods
Study Population

Study population—Between 2001 and 2005, 774 unrelated male residents were recruited
from the Washington, D.C. and Columbia, SC areas through the Howard University
Hospital (HUH) Division of Urology or PCa screening programs. The study population of
men of African descent (i.e., self-reported African Americans, East African Americans,
West African Americans, and Afro-Caribbean Americans) consisted of 219 incident PCa
cases and 555 unrelated controls. PCa patients between the ages of 41 and 91 were
diagnosed within one year of enrollment. Following a visit to the HUH Division of Urology
for an annual PCa screening exam or urinary symptoms, incident PCa cases were identified
by a urologist using a transrectal ultrasound-guided biopsy.26 Biopsy cores were reviewed
by members of the Department of Pathology at the Howard University College of Medicine.
PCa cases were classified according to a well-established Gleason scoring system.27
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Inclusion criteria of controls included men older than 45 with a low prostate specific antigen
(PSA) level ≤ 4.0 ng/ml and normal digital rectal exams (DREs) or biopsies. Individuals
were excluded as controls if: they failed at least one diagnostic test (i.e., PSA > 4.0 and/or
irregular PSA), even though they had a normal biopsy; or were ever diagnosed with benign
prostatic hyperplasia (BPH). Clinical characteristics including age at diagnosis/enrollment,
family history of PCa, PSA level (ng/ml), and Gleason score for PCa patients, were obtained
from medical records, as summarized in Table 1. Histopathological grade was recorded as
the Gleason score. Information on smoking history was also collected at the time of
recruitment using a short questionnaire. Male residents from D.C. were classified as current
(n = 37), former (n = 73) and never cigarette smokers (n = 104). Never smokers smoked less
than 100 cigarettes over their lifetime; whereas ever/former cigarette smokers had at least 1
cigarette per day. All study participants had DNA extracted from whole blood and provided
written informed consent for participation in genetic analysis studies under a protocol
approved by Howard University, the HUH Division of Urology, and the University of
Louisville Institutional Review Board.

Genotyping
The genomic DNA was obtained from isolated lymphocytes using cell lysis, proteinase K-
treatment, protein precipitation, and DNA precipitation.28 SNPs in two carcinogen
metabolism genes (NAT1 and NAT2) were determined using a 10μl Taqman Polymerase
Chain Reaction (Taqman PCR) allelic discrimination assay, as described elsewhere.29–30

Briefly, approximately 40 ng/μl of germ line DNA was added to a reaction consisting of 1X
Universal Master Mix and assay specific concentrations of primers (forward and reverse)
and probes (FAM and VIC). All reactions (10μl) were performed in a 384 well plate and
sealed using optical covers. Reaction plates were thermocycled on the ABI Prism 7900HT
Sequence Detection System (Applied Biosystems). The polymerase chain reaction (PCR)
amplification conditions consisted of the following previously validated conditions: an
initial 2 step hold (50°C for 2 minutes, followed by 95°C for 10 minutes) and 40 cycles of a
two step PCR (92 °C for 15 seconds, 60 °C for 1 minute). To minimize misclassification
bias, laboratory technicians were blinded to the case status of subjects. To ascertain percent
concordance rates, 72 samples were subjected to repeat genotyping, resulting in concordance
rates > 95%. Based on 24 non-DNA template controls per batch analysis, the percent cross-
contamination during sample handling was minimal (< 3%). In addition, deviations from the
Hardy-Weinberg equilibrium were tested among controls using a chi-square test (or Fisher’s
Exact test) and significance level of P < 0.005.

The aforementioned assay was designed to differentiate between SNPs in NAT1 (n = 8) and
NAT2 (n = 7) to minimize NAT1 and NAT2 genotype misclassification. The SNPs detected
in NAT1 were: C97T (R33Stop), C190T (R64W), G445A (V149I), and C559T (R187Stop),
G560A (R187Q), A752T (D251V), T1088A (3′UTR), and C1095A (3′UTR). SNPs detected in
the NAT2 gene were: G191A (R64Q), C282T (silent), T341C (I114T), C481T (silent), G590A
(R197Q), A803G (K268R), and G857A (G286E). NAT1 and NAT2 alleles, genotypes, and
deduced phenotypes were determined as previously described 31 and summarized in Table 2.

Ancestry markers
Cases and controls were also genotyped with a set of 100 genome-wide ancestry informative
markers to correct for potential population stratification among our admixed population of
self-reported African-Americans, West African-Americans, East African-Americans, or
Afro-Caribbean-Americans, as previously described.32–33 Study participants were grouped
from lowest to highest genetic West African Ancestry, with scores ranging from 0–100%.
These 100 markers were assembled using DNA from self-identified African-Americans
(Coriell Institute for Medical Research, n = 96), Yoruban West Africans (HapMap, n = 60),
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West Africans (Bantu and Nilo Saharan speakers, n = 72), Europeans (New York City, n =
24), and CEPH Europeans (HapMap Panel, n = 60), as previously reported.33 Individuals
with a West African ancestry (WAA) score and available NAT genotype data (178 cases,
492 controls for NAT1 and 190 cases, 493 controls for NAT2) ≥ 25% were included in the
final analysis.

Statistical Analysis
Evaluation of Patient & Tumor characteristics—Differences in continuous [ie., age
(yrs) and percent West African Ancestry] and categorical [i.e., PSA (ng/ml); tobacco
smoking status (current/former versus never)] variables between PCa cases and controls
were tested using the Wilcoxon Sign Rank test and the chi-square test for homogeneity (or
Fisher’s Exact test), respectively.

Evaluation of individual NAT loci and PCa risk using LR analysis—To assess
whether individuals possessing at least one high-risk factor (e.g., NAT1*10; NAT2 slow,
NAT2 very slow, NAT2 rapid genotypes) have an elevated risk of developing PCa, we tested
for significant differences in the distribution of NAT1 and NAT2 genotypes using the chi-
square test of homogeneity, respectively. The associations between polymorphic carcinogen
metabolism genes, expressed as odds ratios (ORs) and corresponding 95% confidence
intervals were determined using unconditional multivariate logistic regression analysis
models adjusting for potential confounders, namely age and West African ancestry, modeled
as continuous variables. The estimated odds ratios were not adjusted for family history of
PCa due to the high missing rate associated with this variable. For main effects, we
compared the odds of developing disease for carriers of one or more NAT1*10, two NAT2
slow (*5ABC, *6AC, *7AB, *14ABE) and two NAT2 rapid (*11A, *12ABC *13) genotypes
to the non-NAT1*10, NAT2 rapid and NAT2 slow referent categories, respectively. We
estimated the odds ratios for the joint effects of NAT1 and NAT2 by comparing individuals
possessing one or more risk factors to those who possessed homozygous NAT1*4 and
NAT2*4 referent alleles, respectively. To evaluate combined and interacting effects of the
genetic markers on PCa risk, we used conventional logistic regression (LR) modeling to
build multi-locus models predictive of PCa status in a stepwise fashion.

Evaluation of gene-gene and gene-tobacco smoking combination effects—The
joint modifying effects of two or more loci on PCa risk will be evaluated by the significance
of the coefficient of the product term β 3loci 1*loci 2 (i.e., NAT1*NAT2 and NAT2*smoking)
in the following models: (1) Logit = β0 + β1gene 1 + β 2gene 2 + β3gene 1* gene 2; (2) Logit
= β0 + β1gene + β2smoking + β3gene * smoking. All chi-square test, Fisher’s Exact test and
logistic regression analysis computations were carried out using SAS software 9.1.3 (SAS
Institute, Inc, Cary, NC). Test for trend included genotypes as ordinal variables. Statistical
significance was assessed using a P-value < 0.05.

In order to compliment LR, MDR was used to further evaluate gene-gene and gene-smoking
interactions associated with sporadic PCa. MDR has been described and reviewed
elsewhere. 34–35 Briefly, MDR is a rigorous statistical method for detecting and
characterizing high-order interactions in case-control studies, even in the presence of
relatively small sample sizes. With MDR, multi-locus variables (e.g., NAT alleles, tobacco
smoking status) are pooled into high-risk and low-risk groups, reducing high-dimensional
data to a single dimension, permitting an investigation of gene-gene and gene-smoking
interactions (i.e., NAT1-NAT2, NAT1-smoking, NAT2-smoking interactions) after adjusting
for potential confounders. One dimensional multi-locus variables were evaluated for their
ability to classify and predict PCa susceptibility. Validation of multi-locus models as
effective predictors of PCa susceptibility was performed using permutation testing. This
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approach accounts for multiple testing issues as long as the entire model fitting procedure
was repeated for each randomized dataset, which provided an opportunity to identify false-
positives. These MDR permutation results were considered statistically significant at the
0.05 level.

Statistical Power
We conducted calculations to determine the power of our sample to detect significant
relationships between N-acetyltransferase genotypes and PCa risk. The expected risk
estimates of our study can be estimated by specifying values for a number of parameters,
including a minor allele frequency of at least 47.6%, PCa disease prevalence of 1.86% for
African-Americans, statistical power (80%), #cases (178–190), and #controls (492–493).
We assumed the outcome was in complete linkage disequilibrium with an innate immunity-
predisposing variant (r2 = 1.0). With our anticipated sample size of 178 cases and 492
controls, we have >80% power to detect genetic markers with risk estimates of 1.4–2.0 and
larger, for MAFs of at least 47.6%, assuming a codominant model with 1 degrees of
freedom (df). Recessive (df = 1), dominant (df = 1) and codominant (df = 2) genetic models
would have ample statistical power to observe risk estimates ranging from 1.7–2.0. Power
calculations were performed using Power for Genetic Association Version 2 Software.36

Results
Patient & Tumor Characteristics

Descriptive information for the study participants is summarized in Table 1. Cases were
significantly older and had higher PSA levels relative to controls. There was a modest
difference in median West African genetic ancestry estimates comparing cases and controls
(p = 0.0227).

Prevalence of NAT1 and 2 genotypes
The NAT1*4/*10 (data not shown) followed by NAT1*4/*4 (data not shown) and NAT1*10/
*10 (Table 3) were the most common genotypes among controls with frequencies of 40.1%,
29.7% and 27.0%, respectively. Sixty-two NAT2 genotypes were well distributed among
cases and controls (data not shown). The most common NAT2 genotypes among controls
were NAT2*5B/*6A (9.5%), followed by NAT2*4/*6A (7.3%), NAT2*4/*5B (6.9%) and
NAT2*5B/*5B (7.7%). Collectively, men of African descent in the current study population
were more likely to inherit intermediate (45.4%) and slow (30.6%) NAT2 acetylator
genotypes. The NAT1 and NAT2 allele frequencies among controls did not deviate from the
Hardy-Weinberg Equilibrium (P ≥ 0.018), given a significance level of 0.005 (data not
shown).

Individual and Multilocus Effects
No statistically significant association was observed between tobacco smoking use (current/
former versus never) and PCa (Phmoogeneity = 0.5709). There was no association with PCa
risk among carriers of: one or two copies of NAT1*10 compared with zero copes, NAT2
intermediate, slow, or very slow compared with the rapid genotype; and one or two copies of
NAT2*rapid alleles compared to the slow genotypes (Phomogeneity = 0.1574 for NAT1,
0.3298 for NAT2*slow and 0.3278 NAT2*rapid). The absence of gene combination effects
were confirmed by MDR analysis supplemented with permutation testing (p ≤ 0.078; data
not shown).

In an exploratory analysis, we assessed whether NAT1-NAT2 or NAT2-smoking modified
PCa risk. The two-way interactions of NAT1 and NAT2 combined (Pinteraction ≥ 0.2897 for
NAT1*10 and NAT2*slow and 0.2156 for NAT1*10 and NAT2*rapid; Supplementary Table
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A) or NAT2 and tobacco smoking were not significant in the unadjusted and adjusted models
(Pinteraction = 0.1445; Supplementary Table B).

Discussion
Inter-individual differences in PCa susceptibility may be mediated in part through
polymorphic variability in genes encoding enzymes that activate and deactivate chemical
carcinogens. The current study sought to determine whether genetic polymorphisms in the
bio-activation and deactivation enzymes for meat-and tobacco-derived carcinogens (e.g.,
heterocyclic amines, aromatic amines) may contribute to increased risk for PCa. To our
knowledge, the impact of NAT1 and NAT2 genes on PCa susceptibility among men of
African descent remains under-reported. The current study addressed this deficiency by
evaluating the single gene, gene-gene, and gene-environmental effects among men of
African descent using logistic regression modeling and a data-mining tool (i.e., MDR)
designed to handle single and multi-locus analyses. However, even in the presence of a 10-
fold cross validation scheme afforded by MDR, we did not generate evidence supporting the
role of individual or joint modifying effects for NAT1 or NAT2 in relation to PCa risk among
men of African descent.

To date, there are twelve published reports and one publically available database with
inconsistent findings on the relationship between genetic polymorphisms in NAT1 and/or
NAT2 and the risk of developing PCa. With the exception of two studies,25, 37 ten of these
PCa epidemiology studies have not included men of African descent. For instance, two
independent studies revealed a 2-fold increase in PCa risk among Japanese (OR = 2.4;
95%CI = 1.0–5.6) or European (OR = 2.17; 95%CI = 1.08–4.33) men who possessed one or
more of the putative “high-risk” NAT1*10 alleles.14–15 Similar risk estimates were observed
for carriers of the NAT2 slow or very slow acetylator genotypes in relation to PCa
susceptibility among Japanese.22 However, nine subsequent published reports, as well as a
paper in press (Kidd, L.R., “unpublished data”, August 2010), did not substantiate the
aforementioned marginal main effects for either NAT1 and/or NAT2 in relation to
PCa.25, 37–44

Failure to observe significant relationships between genetic polymorphisms and PCa may be
partially attributed to small samples sizes, failure to consider gene combination effects or
methodological differences. Two out of the twelve previously mentioned studies evaluated
NAT1-NAT2, NAT-heterocyclic aromatic amines, and/or NAT-tobacco smoking
interactions.15, 37 However, these two studies, like many genetic epidemiology studies,
failed to implement MDR, a rigorous statistical tool with the capacity to detect and validate
higher-order interactions that would remain undetected by conventional methods, such as
logistic regression modeling. As a consequence, in the absence of studies with adequate
statistical power or rigor, it is challenging to conclude with certainty whether these
biomarkers are important in relation to prostate cancer. The current study attempted to
overcome statistical issues that often plague genetic epidemiology studies by evaluating both
main and joint effects using MDR.

In light of the genome wide association era, in a post-hoc analysis, we attempted to evaluate
our findings in the context of those found in the Cancer Genetic Markers of Susceptibility
(CGEMS) data portal that houses over a half million SNPs collected from 2277 Caucasian
participants (1176 PCa cases, 1101 controls).45 The CGEMS data portal contains genotype
data for 6 NAT1 and 10 NAT2 SNPs; however, none of these markers were related to either
PCa or aggressive disease. Upon closer inspection, only the NAT2 SNP (rs1208; A803G,
Lys268Arg) matched one out of 7 SNPs analyzed in the current study. Since the rs1208 SNP
is one of 8 NAT2 SNPs that are used to generate various haplotypes to properly classify
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individuals as slow, intermediate and rapid acetylators, it was not feasible to compare our
data to the CGEMS database. Unfortunately, NAT1 and NAT2 SNP data in relation to
prostate cancer risk among men of African descent has not been collected within the context
of genome wide association studies, to our knowledge.

Failure to consider all NAT sequence variants necessary to properly classify individuals as
NAT1 and NAT2 rapid, intermedicate, and slow acetylators is not unique to the CGEMS
database. Surprisingly, only 3 out of twelve of the previously mentioned studies considered
all 15 essential NAT1 and NAT2 SNPs to avoid errors in the deduced acetylator phenotypes.
These methodological differences in NAT SNPs assayed across studies, makes it impossible
to make comparisons across studies and draw any firm conclusions about the role of
polymorphic NATs in prostate cancer risk. In the current study, genotype misclassification
was minimized in the current study due to the determination of the fifteen SNPs in NAT1
and NAT2 pertinent to classifying genotypes accurately. In addition, the quality of the
genotype data is strengthened by lack of departures from Hardy-Weinberg equilibrium,
stringent quality control standards, and the observation of NAT1 and NAT2 genotype
frequencies commensurate with published reports involving men of African descent.

Cigarette smoking may increase a man’s risk for developing and dying from PCa, based on
pooled data from 24 studies involving 21,600 men with the disease indicates.6 This meta-
analysis, conducted by Huncharek and colleagues (2010) pooled findings from numerous
studies to better illuminate risks not clearly shown in previous individual studies. Pooled
analysis revealed consistent evidence that both the chance of developing PCa and dying
from PCa increases with smoking, even though many of the studies analyzed used crude
smoking classifications (i.e., ever versus never smoking). In eight studies that provided more
in-depth number of cigarettes smoked per day in nearly 8,700 men, Huncharek’s team
revealed a 1.3 fold increase in the risk of dying from PCa in the heaviest smokers versus
nonsmokers. They also observed a 1.22 fold increase in PCa risk among the heaviest
smokers, based on pooled information from four studies of about 2,100 men. In an
exploratory analysis, we assessed whether a crude smoking classification (i.e., ever versus
never smoking) combined with inheritance of slow NAT2 (linked with a reduced capacity to
detoxify cigarette-derived procarcinogens (i.e., aromatic amines) would increase one’s
chances of developing PCa. However, we were unable to observe significant gene-
environment interactions. Nevertheless, we cannot ignore the possibility that the lack of
available data on duration of smoking, tobacco smoking preferences (cigarette, pipe, cigars),
and the extent of inhalation may lead to under-estimation of both exposure to cigarette-
smoke derived agents as well as observed risk estimates. In addition, subsequent studies
with adequate statistical power are necessary to effectively evaluate gene-environment
interactions. Emphasis needs to be placed on studies that quantify the number of cigarette
packs and smoking duration that influence PCa risk and progression.

We considered the strengths and challenges of the current study. Like many genetic
epidemiology studies, the current study did not adjust risk estimates for potential cofounders
such as family history of prostate cancer, body mass index, and socio-economic status.
However, this study took advantage of a freely available data-mining tool to evaluate main
and joint modifying effects in relation to prostate cancer risk among men of African descent.
Utilization of bioinformatic tools designed to detect higher-order interactions even in the
absence of main effects should become a standard practice within future prostate cancer
epidemiology studies. This is a reasonable suggestion especially since MDR has been
reported in more than 90 genetic epidemiology studies based on a recent pubmed search.

In summary, we did not observe strong main or gene combination effects of NAT1 and
NAT2 polymorphisms in relation to PCa risk among men of African descent. However,

Kidd et al. Page 8

Biomark Cancer. Author manuscript; available in PMC 2011 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



confirmation is required in culturally diverse studies with more detailed exposure
assessments using publically available data-mining tools. Consequently, our laboratory will
consider whether other biotransformation related genes alone or in combination with
environmental exposures predict PCa risk among men of African descent using data
collected from a multi-center study. Such findings will facilitate future studies focused on
improving cancer prevention or detection strategies and ultimately reducing PCa health
disparities.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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