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Abstract
In decision under risk, people choose between lotteries that contain a list of potential outcomes
paired with their probabilities of occurrence. We previously developed a method for translating
such lotteries to mathematically equivalent motor lotteries. The probability of each outcome in a
motor lottery is determined by the subject’s noise in executing a movement. In this study, we used
functional magnetic resonance imaging in humans to compare the neural correlates of monetary
outcome and probability in classical lottery tasks where information about probability was
explicitly communicated to the subjects and in mathematically equivalent motor lottery tasks
where probability was implicit in the subjects’ own motor noise. We found that activity in the
medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC) quantitatively represent
the subjective utility of monetary outcome in both tasks. For probability, we found that the mPFC
significantly tracked the distortion of such information in both tasks. Specifically, activity in
mPFC represents probability information but not the physical properties of the stimuli correlated
with this information. Together, the results demonstrate that mPFC represents probability from
two distinct forms of decision under risk.
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Introduction
A choice among possible actions can be modeled as a choice among lotteries. A lottery is a
list of potential outcomes Oi, i = 1,…,n with associated probabilities of occurrence pi,i = 1,
…,n. In an economic decision task the decision maker may be asked to decide
between(0.05,$2000;0.95,0), a 5% chance of getting $2000 and otherwise nothing,
and(0.5,$200;0.5,0), a 50% chance of winning $200 or nothing. A decision maker who
knows the probabilities associated with outcomes is engaged in decision under risk (Knight,
1921).
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Research on the neural substrates of decision making has focused on such “classical” tasks:
subjects choose between lotteries with monetary outcomes and probabilities explicitly
specified in numerical or graphical form (Huettel et al., 2006; Paulus and Frank, 2006; Berns
et al., 2008; Tobler et al., 2008; Hsu et al., 2009; Christopoulos et al., 2009). Yet many of
the decisions we face every day involve choices between actions whose outcomes are
uncertain only because of perceptual and motor “noise” (Newsome et al. 1989;
Trommershäuser et al. 2003ab; Heekeren et al., 2004; Körding and Wolpert, 2004;
Churchland et al., 2006). In these situations, probability information is not explicitly given
and has to be estimated based on the knowledge of the noise properties in the environment
or within the neural system. The neural representation of this kind of probability
information, particularly in the motor domain, is not well characterized.

We recently developed methods (see Material and Methods) that permit comparison of
economic decisions under risk and analogous movement tasks (Wu et al., 2009). We
designed simple motor tasks equivalent to lotteries and asked subjects to choose between
these motor lotteries as they might choose between lotteries in economic tasks. Of critical
importance, information about probability was explicitly provided to the subjects in the
economic lottery tasks, but not in motor lottery tasks. Instead, probability was implicit in the
subjects’ own motor noise.

Using functional magnetic resonance imaging, we seek to address the following questions:
What are the neural correlates of probability when it is the result of the subjects’ own motor
noise? How might the neural correlates underlying the processing of potential outcome and
probability information differ between economic and motor tasks? In what brain areas might
probability of different sources converge and be commonly represented?

We found evidence for a common representation of potential outcome and probability in the
medial prefrontal cortex (mPFC) in the classical economic lottery task and in the motor
lottery task. Furthermore, activity in mPFC quantitatively tracked the subjective utility of
outcome and the distortion of probability information inferred from the subjects’ choice
behavior. While many studies have shown that mPFC encodes the value of different
categories of goods (Plassmann et al., 2007; Chib et al., 2009), no study to date has shown
that mPFC encodes different sources of probability information in decision under risk,
especially in situations where probability had to be estimated based on motor noise.

Materials and methods
Overall design

There were four sessions in the experiment. The first session was a control task in which
subjects judged either the size of rectangles or magnitude of numbers. The second was a
motor training session – a single session where the subjects were trained to perform a rapid
pointing task. The third session was a decision-making session consisting of choices
between motor lotteries and choices between classical lotteries. In the last session, subjects
estimated their probability of success in the motor task.

The rapid pointing task
During the motor training session, subjects were trained to reach and touch a rectangular
target presented on a touch screen with their index finger, within 300 ms (Figure 1A).
Subjects won O1 if they hit the target within the time limit, and otherwise 0 if they hit
anywhere else on the screen or exceeded the time limit. For more details on the payoff
structure for this rapid pointing task, see Procedure in the following section.
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Due to the very limited time window, the realization of such speeded movement was
stochastic in nature. The probability of hitting the target and hence winning O1 depended on
the noise intrinsic in the motor system. In past work and in the experiment presented here
(Trommershäuser et al., 2003ab, 2005; Wu et al., 2006; Wu et al., 2009), we found that
movement end points were well described by an isotropic bivariate Gaussian distribution.
We used the standard deviation of the movement end points, σ, to characterize motor noise
and we estimated each subject’s σ separately. To obtain a reliable measure of σ, we trained
subjects extensively at hitting a single target that varied in size from trial to trial. In Figure
1B, we superimposed 355 movement end points from an actual subject with σ = 4.25 mm.
Subjects could maximize their expected gain only by aiming at the center of the rectangle. In
past work and in the current study we verified that any biases in aiming did not affect our
conclusions.

Constructing a motor lottery
Once we have an accurate estimate of σ for a particular subject we can adjust the height of
the target so that the subject’s probability of hitting it has any specified value. To distinguish
the lottery in motor task from the “classical” lottery, we referred to the motor task as the
motor lottery. The parameter σ is all that is needed to translate a classical lottery to a motor
lottery. The relationship between a lottery (p,$x;1 − p,$0) and the height (h) of the
equivalent motor lottery is the following

where y represents the vertical axis and y0 the center of the motor target.

We chose the target in Figure 1B so that the subject whose end points are shown has a 50%
chance of hitting it. The resulting motor lottery was equivalent to a lottery(0.5,O1; 0.5,0) for
this subject.

In the decision-making session, we presented pairs of classical lotteries or pairs of
equivalent motor lotteries to the subjects and asked them to choose the one they preferred on
every trial. In Figure 1C, we showed a pair of classical lotteries, (0.5,200 NTD) and
(0.05,2000 NTD) (NTD: National Taiwan Dollar; US $1=30 NTD), and an equivalent pairs
of motor lotteries tailored to a subject with motor noise σ = 4.25 mm.

We emphasize that no chosen lottery was realized during the decision-making session. The
subjects only made a button-press movement to indicate which lottery from a pair of
lotteries she preferred. She did so during both classical and motor lottery tasks and at the
same time window within a trial.

The subjects were told that, at the end of the experiment, two of their chosen options, one
from the classical pairs and one from the motor pairs would be selected at random and
executed. They would receive the outcomes of these two lotteries as a bonus. See Payoffs
below. Subjects could potentially win up to 4000 NTD bonus (133 US dollars) although
their actual winnings were likely to be less.

Subjects
Sixteen right-handed subjects participated in the experiment (11 women, mean age, 23). One
subjects’ fMRI data were excluded from further fMRI analysis due to excessive head motion
during the scans. Prior to the experiment, all participants gave informed consent in
accordance with the procedures of the University Committee on Activities Involving Human
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Subjects of National Yang-Ming University, Taiwan. The subjects were paid 400 NTD
(National Taiwan Dollar) for their participation of the experiment and earned an average
bonus of 858 NTD from the motor training session and playing the lotteries (bonus range,
279-2594 NTD). 1 US dollar = 30 NTD.

Procedure
Session 1: Size judgment task—This session was conducted inside the MRI scanner.
The goal of this session was to serve as a control comparison across the motor and classical
lottery tasks with respect to the physical properties of the stimuli. In a size judgment task,
the subjects were asked to compare either the size of two numbers or the size of two
rectangular targets. In every trial, two options were presented, with each option consisting of
a single number and a rectangular target. The number and the target size of one of the
options remained fixed within a block of trials. This option was termed the reference option.
The other option, whose number and target size changed from trial to trial, was called the
varying option. An instructional colored cue also appeared at the center of the screen during
a trial, with the particular cue color indicating which component of the options, number or
rectangular target, to compare. When the cue was green, the subjects were asked to compare
the size of the targets. Alternatively, the subjects were asked to compare the size of the
numbers when the cue was red. There were 3 blocks of trials, each consisting of 24 trials.
Each block had a unique reference option. Prior to the start of a block, the subjects were
briefly shown the reference item for that block.

We emphasize that the stimuli in this task were identical to the motor lottery task that took
place in Session 3, only that the subjects had no knowledge of the similarity between them.
During this session, subjects were not aware of the subsequent sessions to come. Since we
had no information about the subjects’ motor noise at this point of the experiment, we
cannot create rectangular targets of the same sizes as those in the later motor lottery task.
We approximated the target size to that in the motor lottery task by using the mean motor
noise of 10 pilot subjects.

Session 2: Motor training—This session was conducted in a behavioral testing room.
The goals of this session were to allow the subject to practice the rapid pointing task
(described earlier) and to allow the experimenter to reliably estimate each subject’s motor
noise, σ, the standard deviation of movement end points. During motor training, subjects
performed rapid pointing to targets presented on a touch screen. The targets carried small
monetary rewards of 100 points (100 points = 1 NTD). On every trial, the subject had only
300 ms to hit the target. If she hit the target, she won 100 points, 0 if anywhere else on the
screen was hit, and lost 700 points if the finger did not reach the touch screen within 300 ms.
We implemented the monetary penalty simply for the purpose of training the subjects to
reach and attempt the target within the time limit. In past and current experiments, the
number of trials the subjects did not reach the touch screen within 300 ms and hence
received penalty was usually below 3% of the total number of trials. We varied the size of
the target (6 different sizes) from trial to trial. There were 12 blocks of 30 trials each. In
each block, we randomized the order in which the different targets were presented. Each
target size was repeated five times in each block. During Session 2, subjects were not aware
of the subsequent decision-making session to come.

Session 3: Decision-making under risk—This session was conducted inside the MRI
scanner. The goals of this session were to compare choice performance and BOLD activity
between classical decision under risk task and an equivalent motor task. In every trial,
subjects were presented with either a pair of motor lotteries or a pair of classical lotteries
and had to choose the one she preferred. The lotteries were presented for 4 s and were
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followed by a fixation period (2 s). After fixation, a yellow dot appeared at the center of the
screen for 2 s, during which the subjects had to indicate her choice by pressing either the left
or right button. The inter-trial interval (ITI) was 12 s. See Figure 2AB for details on the trial
sequence of the task.

The motor lottery task and the classical lottery task were run in separate blocks of trials.
There were 3 blocks of classical lottery task and 3 blocks of equivalent motor lottery task.
The order of motor and classical blocks was randomized for each subject. Each block
consisted of 24 trials. A single trial consisted of a pair of lotteries. One of the lotteries
remained fixed within a block and was termed the reference lottery, while the outcome and
probability of the other lottery varied from trial to trial and hence was called the varying
lottery.

The varying lotteries were determined by the outcome-probability matrix shown in Figure
2C. There were 4 levels of outcomes, ranging from 100 to 2000 NTD. There were 4 levels
of probability ranging from 0.05 to 0.95. The color of each cell in the matrix was scaled
according to its expected value (EV). Note that the diagonal entries all had the same EV of
100 NTD. There were 3 possible reference lotteries, with each block having a fixed
reference lottery. All the reference lotteries had the same EV of 100 NTD. For the varying
lotteries, in a block of trials, each diagonal entry had 3 repetitions, while each of the
remaining 12 off-diagonal entries was placed in a single trial. Thus, a single block had 24
trials, with half of the trials consisting of lottery pairs having the same EV. This design
ensured that at least in half of the trials within a block, the decision would not be trivial.
Meanwhile, the correlation between outcome value and probability for the varying lottery
within a block was kept at a relatively low value at approximately 0.3, which would allow us
to construct the General Linear Model (GLM) for fMRI data analysis by including both
outcome value and probability as regressors without introducing high degree of collinearity
between the two in the GLM.

Subjects indicated whether she preferred the varying lottery or the reference lottery by
pressing one of two buttons with their left or right thumb. For half of the subjects, the button
corresponding to the right thumb was designated for the varying lottery while the left thumb
indicated choosing the reference lottery. For the other half of the subjects, the finger-button
correspondence was reversed.

We also emphasized to the subjects that their chosen lotteries would not be realized during
the session. They were informed that, after the conclusion of the session, two of the lotteries
they chose, one from the motor trials and one from the classical trials, would be selected at
random and executed. The amount they won from this session would be part of their final
payoff.

Note that in both the motor training session and this session, we presented a ‘ruler’ next to
the motor targets (Figure 1A and Figure 2B) to control for possible differences in viewing
conditions between the two sessions (the motor training session was conducted in the
behavioral testing room, this session was conducted inside the MRI scanner). During the
training session, the subjects were instructed to pay attention to the size of the targets
relative to the ruler but we emphasized that the ruler played no role in deciding whether a
target was hit or not. During the decision-making session, we presented the ruler in the
motor lottery task. We instructed the subjects that the same ruler she saw in the training
session was again presented and that she should evaluate the targets and their corresponding
probabilities of hit with respect to the ruler. That is, a target that occupied the same area on
the ruler in the fMRI session would occupy the same area in the behavioral session even
though the perception of size of the same target might be different between the two sessions
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as a result of differences in viewing conditions. We chose not to control for visual angle of
the target because there is often an effect of size constancy and therefore even though the
retinal size of the target would be controlled when visual angle was controlled, the
perception of target size may still be different and hence the estimation of the probability of
hit. We asked the subjects to give verbal estimates of the probability of hit at different target
sizes in both the behavioral testing room and inside the MRI scanner to verify that such
manipulation was effective in the sense that the verbal estimate of the same target did not
differ across these two sessions.

Session 4: Estimation—After the conclusion of Session 3, the subjects were asked to
provide verbal estimate of the probability of hitting the target while still inside the scanner.
The subjects were presented with 5 different target sizes, each repeating twice. The 5
different targets were constructed for each subject separately by taking into account her
motor noise such that the probability of hit corresponded to 0.05, 0.25, 0.5, 0.75, 0.95. After
the subject gave her verbal estimates, she was taken back to the behavioral testing room. The
subject was then presented with the same targets and again was asked to give verbal
estimates.

Payoffs
After giving verbal estimates, two lotteries were selected at random, one from the motor
lotteries the subjects chose and the other from the chosen classical lotteries. To select the
lotteries from each domain (motor or classical), subjects first picked one poker chip out of
an urn that contained numbered chips equal to the number of the trials in each task in
Session 3. Once a chip was picked, the experimenter found the corresponding trial and
identified the lottery chosen in that trial.

To execute the classical lottery, subjects picked one ping-pong ball out of 100. On each
ping-pong ball, we had painted a unique number from 1 to 100. If, for example, the lottery
specified a 5% chance of winning 2000 NTD or nothing, the subjects would win 2000 if the
number was between 1 and 5, and 0 otherwise. To execute the motor lotteries, subjects
performed a single pointing movement to the selected motor lottery. Prior to the single task,
subjects could practice hitting targets as many times as they wanted. On average, the
subjects practiced for 10 trials.

Analysis of choice data
Cumulative prospect theory (CPT) is a descriptive model of choice under risk developed by
Tversky and Kahneman (1992) as a major upgrade of prospect theory (Kahneman and
Tversky, 1979). In CPT, the subjective utility of a monetary outcome is characterized by the
value function, while the distortion of probability information is modeled by the probability
weighting function. Both are modeled as non-linear transformations of objective quantities.
For each subject, we estimated the value function v (O)and the probability weighting
function w (P) separately for the classical lottery task and motor lottery task, based on her
choice data. The detailed estimation procedure can be found in Wu et al. (2009).

In CPT, the value function describes the subjective utility for monetary outcome (O) with
the functional form v(O) = Oα. The value of α controlled the shape of the value function and
the extent of deviation of subjective utility from object amount. When α = 1, the subjective
utility of outcome value is equivalent to objective amount. When α < 1, the value function is
concave, indicating a decrease in marginal utility as the objective amount increases. When α
> 1, the value function is said to be convex, indicating an increase in marginal utility as the
objective amount increases.
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The probability weighting function captures how the subject used probability to weight
subjective utility. Previous studies have shown that people tend to overweight small
probabilities and underweight moderate to large probabilities in classical lottery tasks where
information about probability was explicitly communicated to the subjects in number or
graphic form (Tversky and Kahneman, 1992; Gonzalez and Wu, 1999; Wu et al. 2009). The
functional form of the weighting function we chose was a one-parameter form proposed by
Prelec (1998):w(p) = exp[−(−ln(p))γ],0 < p < 1.

CPT is based on the assumptions that the subject assigns a prospect value to each lottery and
that, in comparing lotteries, the subject chooses the lottery with the higher prospect value.
For our simple lotteries with only one non-zero outcome, the prospect value is just w
(p)v(O).

Imaging data acquisition
Imaging data were collected with a 3T MRI whole-body scanner (Siemens Magnetom Tim
Trio, Erlangen, Germany) equipped with a high-resolution 32-channel head array coil. T2*-
weighted functional images were collected using an EPI sequence (TR=2s, TE=30ms, 33
axial slices acquired in ascending interleaved order, 3.4×3.4×3.4 mm isotropic voxel, 64×64
matrix in a 220-mm field of view, flip angle 90°). Each subject completed 6 scans in one
scanning session. There were 24 trials in each scan. Each trial lasted 8 s with an inter-trial
interval of 12 s. Consequently each scan consisted of 240 images. T1-weighted anatomical
images were collected after the functional scans using an MPRAGE sequence (TR=2.53 s,
TE=3.03 ms, flip angle = 7°, 192 sagittal slices, 1×1×1 mm isotropic voxel, 224×256 matrix
in a 256-mm field of view).

fMRI statistical analysis
Functional imaging data were analyzed using FMRIB’s Software Library (FSL) (Smith et
al., 2004). Motion correction was applied using MCFLIRT (Jenkinson et al., 2002); Spatial
smoothing using a Gaussian kernel of FWHM 8mm; high-pass temporal filtering was
applied using Gaussian-weighted least square straight line fitting with σ = 50s. Registration
was performed using a 2-step procedure: EPI images from each scan were first registered to
the high-resolution T1-weighted structural image where non-brain structures were removed
using BET, and were then registered to the standard MNI space using 12-parameter affine
transformations.

fMRI statistical analysis was carried out using FEAT (fMRI Expert Analysis Tool). Time
series was pre-whitened using FILM with local autocorrelation correction (Woolrich et al.,
2001). FILM estimated the autocorrelation structure in the time series and removed it before
conducting General Linear Model (GLM) analysis. The GLM analysis was carried out in 3
steps. First, lower-level FEAT analysis was carried out for each scan/block of each subject.
Then a fixed-effect (FE) analysis was carried out for each subject that combined the lower-
level FEAT results from different scans using the summary statistics approach (Beckmann et
al., 2003). That is, the parameter estimate (beta) of each contrast specified in the first-level
analysis was treated as data for the FE analysis. Finally, a mixed-effect (ME) analysis using
FLAME (FMRIB’s Local Analysis of Mixed Effects) was carried out across subjects by
taking the FE results from the previous step and treating subjects as a random effect.

General linear models: decision-making session
For the decision-making session, we described 2 different General Linear Models (GLMs)
whose results were reported in this paper.
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Model 1—During lottery presentation period (4s), we implemented a dummy regressor that
took the value of 1 and 0 elsewhere. In addition, there were 2 parametric regressors during
this period: a regressor for the subjective utility of monetary outcome v(O) of the varying
lottery (p,$O) and a regressor for the probability weight,w(p). Note that since the reference
lottery was fixed within a block, there was no need to create v(O) and w(p) regressors for it.
During the choice period (2s), there was a dummy regressor having the value of 1 and 0
elsewhere.

Model 2—During the lottery presentation period (4s), we implemented a dummy regressor
that took the value of 1 and 0 elsewhere. In addition, the product of the subjective utility of
outcome and probability weight (prospect value, PV), constituted the parametric regressor
during this period. During the choice period (2s), there was a dummy regressor having the
value of 1 and 0 elsewhere.

Note that since PV is the product of v(O) andw(p), the correlations between PV andv(O), and
between PV and w(p) were high under the current lottery design. Hence, a GLM that
includedv(O), w(p), and PV would very likely make the beta estimate associated with each
of them less efficient and reliable. A more realistic attempt was to implement PV in a
different GLM by itself with one caution when interpreting the results. That is, an area that
is significantly correlated with v(O) or w(p) (as a result of Model 1) does not imply that it is
uniquely correlated with v(O) or w(p) but not PV. Similarly, an area significantly correlated
with PV obtained from Model 2 does not imply that it is only correlated with PV but not
v(O) orw(p). Since the main goal of the experiment was to dissociate outcome-related
signals (e.g. v(O)) from probability-related signals (e.g. w(p)) (which is why we want the
correlation between outcome and probability to be low), and not to dissociate outcome- or
probability-related signals from EV-related signals (e.g. PV), the GLMs implemented here
remained suitable to address the main research question.

General linear models: size judgment session
For the size judgment session, we ran one GLM. During the presentation of the two options,
we set up two sets of regressors. The first set of regressors was created to model the trials
where the subjects were asked to judge the size of numbers. The second set of regressors
was created to model trials for judgment of target size between the two options. Each set
contained 3 regressors— a dummy regressor that took the value of 1 during the presentation
period and 0 elsewhere, a regressor for the number in the varying option, and a regressor for
the size of the rectangular target in the varying option. During the choice period (2s), there
was a dummy regressor having the value of 1 and 0 elsewhere.

Results
Behavioral results

In Figure 3AB, we plotted the subjects’ estimated probability weighting functions separately
in the classical lottery task (Figure 3A) and in the motor lottery task (Figure 3B). Each curve
represented the estimated weighting function from a single subject. As can be seen in the
graphs, individual subjects exhibited different extent of probability distortion in both the
classical and the motor lottery task. In general, we found that the pattern of distortion was in
the opposite direction between the classical and the motor tasks, as reported in Wu et al.
(2009). That is, subjects tended to overweight small probabilities and underweight moderate
to large probabilities in the classical lottery task. The black thick curve in Figure 3A
represented the median weighting function in the classical task(γ = 0.8274). On the other
hand, in the motor lottery task, subjects tended to underweight small probabilities and
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overweight moderate to large probabilities, with the black thick curve in Figure 3B
representing the median weighting function(γ = 1.3315).

In Figure 3C, we plotted the estimated values of the value function parameter α in the motor
lottery task against the classical lottery task. Each data point represented a single subject.
For the classical task, 13 out of 16 subjects had α < 1. Compared with the classical task,
there were more subjects having α > 1 in the motor task. In general, there seemed to be a
pattern that α was larger in the motor lottery task than in the classical lottery task. In a linear
regression analysis where we regressed α in the motor task against α in the classical task, we
found that the estimated slope (β ̂1) was significantly different from 1 but not significantly
different from 0 (β ̂1=0.0943), suggesting that α was not significantly correlated between the
two tasks. The estimated intercept (β ̂0) was significantly different from 0 (β ̂0= 0.9037),
suggesting that α in general was greater in motor task than the classical task. This outcome
differed from that of Wu et al (2009) where no difference between motor and classical α was
found.

In Figure 3D, we plotted the subjects’ mean verbal estimates of probability of hitting the
motor target as a function of probability of hit based on her performance in the motor
training session. The subjects were asked to give verbal estimates both inside the scanner
and in the behavioral testing room. Since the viewing condition inside the scanner was likely
different from that in the behavioral testing room, we need to make sure that the ruler
implementation was successful (See Materials and Methods for details) and that the
subjects’ verbal estimates inside the scanner were consistent with those in the behavioral
testing room. We separately plotted the mean verbal estimates obtained from the MRI
scanner (color coded in black) and mean estimates obtained from the behavioral testing
room (color coded in blue). Error bars represented ±1 standard error of the mean. At all 5
levels of probability, we did not find significant difference between the two viewing
conditions. The subjects on average had accurate estimates of probability, although there
was a slight tendency to underestimate probability.

Neural correlates of the subjective utility of monetary outcome
We found that activity in the medial prefrontal cortex (mPFC) and the posterior cingulate
cortex (PCC) was significantly correlated with the value function, i.e. the subjective utility
of monetary outcomes, estimated from the subjects’ choice data. Figure 4A showed the
results of random-effect analysis of 2 contrasts at the group level. One contrast was to test
parameter estimate (beta) of the subjective utility of outcome against 0 in the classical task,
while the other was to test the beta of the regressor of subjective utility of outcome against 0
in the motor task. The statistical maps for the classical task and the motor task were color
coded by red and green respectively. To further illustrate that mPFC and PCC represent the
value functions of subjects having a wide range of parameter estimate, Figure 4B-D showed
the value functions estimated from choice behavior for three subjects and the regions in the
brain whose activity was correlated with the value functions. For each subject, the left graph
showed the estimated value functions (red: classical task; green: motor task); the right
column showed common areas correlated with value function in both tasks as a result of a
conjunction analysis. From Model 1 described in “General linear models: decision-making
session” (see Materials and Methods for detail), at the single-subject level, we obtained 2
statistical maps, one for the value-function contrast (testing the beta of the value function
regressor against 0) in the classical task, and the other for the value-function contrast in the
motor task. We then separately thresholded and binarized the two statistical maps at p<0.05
(uncorrected). The clusters shown in yellow were the results of multiplying the binarized
statistical maps. A similar approach in reporting single-subject results can be seen in Kable
and Glimcher (2007). Each subject exhibited a distinct shape of the value function: subject
BYC’s (4B) value function was concave in both tasks, subject PCT’s value function was
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close to linear in both tasks, and subject TJH’s value function was concave in classical but
convex in motor task. Such large individual differences are typical of decision making data
(see Luce, 2000). Despite the variability in the estimated value functions across subjects and
the two tasks, activity in mPFC and PCC was significantly correlated with the value
function.

Neural correlates of probability weight
Figure 5A showed the results of random-effect analysis of 2 contrasts at the group level.
One contrast was to test parameter estimate (beta) of the probability-weight regressor
against 0 in the classical task, while the other was to test the beta of the probability-weight
regressor against 0 in the motor task. Regions significantly correlated with probability
weight were displayed with distinct color coding for classical (red) and motor (green) trials.

We found that distinct regions in mPFC represented probability weight in both the classical
and motor lottery task. The mPFC activation in the motor task was more ventral and
extended to the anterior cingulate cortex (ACC) compared with the classical task. On the
other hand, regions in mPFC correlated with probability weight in the classical task were
more in the dorsal part of mPFC. In addition, activity in the visual cortex was correlated
with probability weight in the motor lottery task.

Figure 5B-D showed the results from 3 subjects each having unique shapes of the
probability weighting function. For each subject, the left graph showed the probability
weighting functions estimated from choice behavior (red: classical task; green: motor task);
the right column showed common areas correlated with probability weighting function in
both tasks as a result of a conjunction analysis. From Model 1 described in “General linear
models: decision-making session” (see Materials and Methods for detail), at the single-
subject level, we obtained 2 statistical maps, one for the probability-weight contrast (testing
the beta of the probability-weight regressor against 0) in the classical task, and the other for
the probability-weight contrast in the motor task. We then separately thresholded and
binarized the two statistical maps at p<0.05 (uncorrected). The clusters shown in yellow
were the results of multiplying the binarized statistical maps. Each subject exhibited a
distinct shape of probability weighting function: subject BYC (5B) exhibited the typical
shape, i.e. overweighting of small probabilities and underweighting of moderate to large
probabilities in both tasks; subject CCH underweight small probabilities and overweight
moderate to large probabilities in both tasks; subject TJH’s probability weighting function
between the two tasks exhibited the opposite direction of distortion. Despite the variability
in the shape of the weighting functions, activity in mPFC was significantly correlated with
individually estimated weighting function in both tasks, as illustrated in Figure 5B-D.

Neural correlates of prospect value
We defined the prospect value (PV) of a lottery (p,$O) as the product of v(O) and w(p). In
Figure 6, we showed regions that were significantly correlated with PV. We found that
regions in mPFC (both in the dorsal and ventral parts of mPFC) and the lateral orbitofrontal
cortex (lOFC) were correlated with PV in the classical task (Figure 6A). For the motor task,
we found that mPFC and PCC were correlated with PV (Figure 6B).

The previous analyses focused on identifying regions where the correlation between BOLD
response and the variables of interest, i.e. subjective utility of outcome, probability weight,
and prospect value, was significantly different from 0. The results cannot tell us which areas
in the brain are more correlated with these variables of interest in one task than the other or
the sign of correlation is different between the two tasks. We performed a separate analysis
to answer this question. For probability weight, we found that the lingual gyrus in the
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occipital cortex was the only region for the difference between the motor and the classical
task (contrast: motor – classical, p<0.001 uncorrected), while no region was significant at
the same threshold for the contrast (classical – motor).

For the subjective utility of monetary outcome, we found that the correlation of activity in
the supplementary motor area (SMA) with the (motor – classical) contrast was positive and
was marginally significant (p<0.005 uncorrected; peak voxel (-2,-14,50), z=3.03; no voxel
was significant at p<0.001 uncorrected); we did not find any region to be positively
correlated with the (classical – motor) contrast at the same threshold. Closer inspection on
the beta estimates around the peak voxels in SMA revealed that activity in this region was
positively correlated with subjective utility in the motor task but was negatively correlated
with it in the classical task. For prospect value, we also did not find any region significantly
correlated with the (classical – motor) contrast at p<0.005 (uncorrected). However, for the
(motor – classical) contrast, we found that a region in the primary motor cortex was
significant at p<0.001 (uncorrected) (peak voxel (-2,-30,80), z=3.23). The beta estimate of
the prospect-value contrast in the motor task was positive, and was negative for the same
contrast in the classical task. The differences in the sign of correlation between the 2 tasks
are potentially interesting. However, it was beyond the scope of the current study to address
as to what this might imply.

Comparison between the lottery task and the size judgment task
In the motor lottery task, information about the probability of obtaining monetary outcome
was determined jointly by the size of the motor target and the subjects’ own motor noise.
Hence, regions whose activity was correlated with probability weight could simply reflect
the representation of the physical size of the bar, not probability per se. The size judgment
task served to resolve this issue. The stimuli in this task were identical to the motor lottery
task. What the subjects were asked to do, however, was different from the motor lottery task.
In every trial, two options, each consisting of a number and a bar, were presented. The
subjects were asked to compare either the size of bar or the size of number between two
options.

We found that mPFC was significantly correlated with probability weight in the motor
lottery task but was not correlated with bar size in the size judgment task. This ruled out the
possibility that activity in mPFC simply reflects response to the physical size of the bar. The
difference between motor task and size judgment task (contrast: motor probability weight –
bar size) in mPFC was also significant. For the same contrast, we also found significant
difference in the ventral striatum (vStr) (Figure 7B) and the lingual gyrus (LG) extending to
the temporal occipital fusiform cortex (Harvard-Oxford cortical structural atlas) (Figure 7C).
For vStr, the beta estimates extracted was positive for the probability-weight contrast in the
motor task but was negative for the bar-size contrast in the size judgment task. For LG, the
correlation between its activity and probability weight in the motor task and the correlation
between activity in LG and bar size in the size judgment task were both positive and
significantly different from 0. LG exhibited significantly stronger correlation with
probability weight during motor decision-making than with bar size during size judgment.

Discussion
In this study, we demonstrated that the medial prefrontal cortex (mPFC) represents
information about probability in two distinct forms of decision under risk. Research in this
area typically uses lotteries that contain explicit specifications of outcome values and
corresponding probabilities (Kahneman and Tversky, 1979; Kahneman and Tversky, 2000).
However, many decision problems we face everyday involves choosing among lotteries, i.e.
probability distribution over possible outcomes, where information about probability is
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known to the chooser but is not explicitly given. In this study, we investigated the neural
correlates of outcome and probability under two different task modalities when subjects
were engaged in making risky decisions. The key difference between the two types of lottery
choice tasks was how probability information was revealed to the chooser. In the classical
lottery task, information about probability was explicitly provided to the subjects. In the
motor lottery task, probability was not explicitly given and was dependent upon the
subjects’ own motor noise – noise in executing a rapid pointing movement. On each trial
subjects had to estimate their probabilities of obtaining monetary rewards when evaluating
the motor lotteries, based presumably on their knowledge of motor noise obtained from the
motor training session of the experiment.

We found that the same areas of mPFC and PCC compute the subjective utility of monetary
outcome in lotteries at the time of choice irrespective of whether probability of winning
monetary rewards was described explicitly or learned implicitly through trial and error in a
motor task. For information about probability, we found that activity in mPFC and the
occipital cortex were significantly correlated with probability weight, i.e. the distortion of
information about probability of reward during decision under risk, of obtaining monetary
rewards in the motor task. For the classical lottery task, we also found distinct regions in
mPFC that quantitatively represented probability weight. The mPFC results on probability in
the classical task were in general consistent with previous studies (Knutson et al., 2005;
Preuschoff et al., 2006; Yacubian et al., 2006; for reviews, see Platt and Huettel, 2008;
Rushworth and Behrens, 2008). Past research also has shown that the mPFC is involved in
the computation of subjective value of choice object in a wide variety of tasks (Kable and
Glimcher, 2007; Plassmann et al., 2007, for a review, see Kable and Glimcher, 2009) and
across different types of goods (Chib et al., 2009). We found that activity in the mPFC was
correlated with probability weight when it was explicitly revealed to the subjects and when
it had to be inferred through previous experience with a motor task. This result indicates that
while probability may be estimated by different neural systems depending on how it is
revealed, such modality specific representation converges to key valuation structures like the
mPFC during decision-making. To summarize, our results suggest the possibility of a
common representation of information about probability weight in mPFC when it is
explicitly revealed (classical lottery task) and when it needs to be estimated by taking into
account motor noise (motor lottery task).

When information about probability of reward was learned from experience in simple
conditioning task where certain stimulus was associated with a particular probability of
reward, fMRI studies have shown that part of the reward system, such as the striatum (Abler
et al. 2006; Tobler et al., 2007, 2008), was correlated with probability. A recent study
(FitzGerald et al., 2010) that compared the neural correlates of value learned from
experience and value explicitly described to the subjects showed that the ventromedial
prefrontal cortex (vmPFC) and PCC were positively correlated with learned value, while
described value was correlated with activity in the ventral putamen. In this study, we found
that mPFC was correlated with prospect value in both the classical lottery task and motor
lottery task. Note that information about monetary outcome in both tasks was explicitly
revealed, while information about probability was explicitly revealed in the classical task but
had to be estimated based on motor experience in the motor task. Future research needs to
directly compare situations in which knowledge of reward probabilities was learned through
different types of experience, for example, learning about reward probabilities resulting
from perceptual or motor noise versus learning in classical ‘bandit’ lottery tasks.

Prior experience and decision making under risk
There are two issues related to prior experience in this experimental design. The first issue is
the subjects’ experience associated with the rapid pointing task. The second issue is
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subjects’ experience associated with decision making under risk, i.e. choosing between
lotteries in the lottery tasks.

The process of inferring and computing probability of hitting targets (and thereby winning
monetary rewards in the motor lottery task) likely relied on subjects’ experience with the
rapid pointing task during the motor training period prior to the fMRI session (See Materials
and Methods for design details). While subjects did not practice choosing between motor
lotteries during this training period, they did practice the rapid pointing task and observe
their own success or failure to hit the target on each trial. Hence, one conjecture is that while
comparing the motor lotteries in the fMRI session, the subjects simulated movements based
on previous experience with the pointing task to compute the probability of winning. The
corresponding neural conjecture would be that regions involved in motor imagery would
participate in estimating probability information in the motor task. Our study, however, does
not provide evidence that the subjects are simulating the motor task at the time of choice.
The results indicated that the correlation between probability weight in the motor task and
BOLD response in regions involved in motor imagery, primarily the posterior parietal cortex
and the motor cortices, was not significantly different from 0. When we compared the extent
of correlation with probability weight in motor task against that in the classical task, we did
find that the resulting parameter estimate was significantly different in the visual cortex, and
was marginally significant in the posterior parietal cortex and the motor cortices. While non-
significant results in fMRI need to be interpreted with caution (Tom et el. 2007), based on
the current result, we cannot conclude that the motor imagery network is more correlated
with probability in the motor task than in the classical task.

Hertwig et al. (2004) conjectured that choice patterns are different when subjects have
acquired probability through experience than when probability is explicitly provided. In
their study, though, “experience” referred only to simulated practice with the actual decision
task. It is well known that decision performance changes with repeated choices among
lotteries (Redelmeier and Tversky, 1992; Wakker et al, 1997; Thaler and Johnson, 1990).
Subjects in the present study only practiced the motor task, i.e. repeatedly attempting a
single target varying its size and received feedback on hit or miss after each attempt in the
training period. They did not receive feedback or gain “experience” in choosing between
motor lotteries until the very end of the experiment outside the scanner where they were
allowed to execute two of their chosen lotteries, one from the motor and the other from
classical.

Hence, while subjects’ experience with the motor task during training did play a critical role
in establishing the knowledge of his or her motor noise and consequently the likelihood of
hitting motor targets, such experience was experience concerning their own motor successes
and failures, not experience with the decision task.
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Figure 1. Construction of a motor lottery
A. A single target of a rapid pointing task. The subjects rapidly attempted to hit such targets
with the index fingers of their dominant hand. B. 355 movement end points for one subject
are superimposed. The distribution is close to isotropic bivariate Gaussian with σ 4.25 mm.
The height of the target was adjusted so that this subject had a 50% chance of hitting the
target and earning a reward O1. The resulting motor lottery was equivalent to a lottery(0.5,
O1;0.5,0). C. In a later session, the subjects were either shown pairs of classical lotteries or
pairs of motor lotteries and were simply asked to choose the one they preferred. A pair of
classical lotteries where information about monetary outcomes and their probabilities were
explicitly stated and a pair of equivalent motor lotteries where probabilities were implicit in
the subjects’ own motor noise are shown. The chosen lottery was not executed after subjects
made their choices and hence no feedback on winning was available during the decision-
making session.

Wu et al. Page 16

J Neurosci. Author manuscript; available in PMC 2011 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Experimental design
A. Trial sequence of the classical lottery task. A pair of classical lotteries presented for 4 s
and conveying information about outcome and probability. A short fixation (2 s) followed
the lottery presentation period. Following the fixation, a yellow dot appeared on the screen
for 2 s, during which the subjects had to indicate her choice by pressing one of 2 buttons. In
particular, the subjects had to indicate whether she preferred the varying lottery to the
reference lottery or not. The inter-trial interval was 12 s. B. Trial sequence of the motor
lottery task. The trial sequence was the same as the classical lottery task and the subjects’
task was the same: to choose between motor lotteries. A ruler was displayed at the center of
the screen to serve as a reference to the subjects in judging the size of the targets due to
difference in viewing conditions between the motor training session and the fMRI session.
In both the classical lottery task and the motor lottery task, no chosen lottery was realized
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during the fMRI session. C. Lottery design. Every pair of lotteries consisted of a reference
lottery and a varying lottery. The varying lottery was selected from the 4×4 outcome-
probability matrix shown here. The color map represented the expected value (EV) of the
lotteries. There were 3 possible reference lotteries indicated by the yellow dots on the
matrix. The diagonal entries of the matrix, and the reference lotteries, all had the same EV.
The values are in National Taiwan dollars (NTD). 30 NTD is approximately US $1.
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Figure 3. Behavioral results
A. Estimated probability weighting functions in the classical lottery task. Each gray curve
represented the estimated w(p) of a single subject. The black thick curve indicated the
median w(p). B. Estimated w(p) in the motor lottery task. Each gray curve represented the
estimated w(p) of a single subject. The median w(p) was indicated by the black thick curve.
C. The estimated parameter value that characterized the shape of the value function in the
motor task was plotted against that in the classical task. Each data point represented a single
subject. D. At the conclusion of the fMRI session, the subjects were presented with 5 motor
targets of different sizes and asked to indicate her verbal estimates on the probability of
hitting the target. The subjects gave verbal estimates both in the scanner and in the
behavioral testing room. The subjects’ mean verbal estimate of probability of hit was plotted
as a function of probability. The solid dots indicated the verbal estimates obtained while the
subjects were in the scanner, while the hollow dots indicated estimates obtained from the
behavioral testing room. Error bars represented ±1 standard error of the mean.
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Figure 4. Neural correlates of the subjective utility of monetary outcome
A. Statistical parametric maps obtained from random-effect analysis at the group level.
Green represented clusters of voxels positively and significantly correlated with the
subjective utility of monetary outcome, i.e. the value function in cumulative prospect theory
(dark green: p<0.005 uncorrected; bright green: p<0.001 uncorrected). Red represented
clusters of voxels (cluster size > 15 voxels) significantly and positively correlated with the
value function in the classical task at the same thresholds. Regions in the medial prefrontal
cortex (mPFC) (classical: peak voxel [4,42,10], z=3.6; motor: peak voxel [0,46,-2], z=3.89)
and the posterior cingulate cortex (PCC) (classical: peak voxel [16,-52,30], z=3.12; motor:
peak voxel [0,-34,40], z=3.73) significantly correlated with the value function in both tasks.
B-D. Results from 3 individual subjects. For each subject, we plotted the value function,
v(O), separately estimated for the classical task (red) and the motor task (green) against
objective monetary outcome (O) on the left, and areas significantly correlated with v(O) in
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both tasks (conjunction analysis). The statistical maps were overlaid on the individual
subject’s high-resolution T1 image. Each subject exhibited unique shapes of v(O) and
activity in mPFC and PCC represented these distinct shapes that could be seen at the
individual level in these subjects. Voxel coordinates were in MNI space.
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Figure 5. Neural correlates of probability weight
Statistical parametric maps obtained from random-effect analysis at the group level. Green
represented clusters of voxels positively and significantly correlated with probability weight
(dark green: p<0.005, bright green: p<0.001 uncorrected). Red represented clusters of voxels
(cluster size > 15 voxels) significantly and positively correlated with probability weight in
the classical task at the same thresholds. Distinct regions in the medial prefrontal cortex
(mPFC) (classical: peak voxel [-8,36,30], z=3.19; motor: peak voxel [-4,54,-2], z=3.12)
significantly coded for probability weight in both tasks. Activity in the occipital cortex
exhibited strong correlation with probability weight in the motor task (peak voxel:
[-18,-54,-10], z=4.22). B-D. Results from 3 individual subjects. For each subject, we plotted
the probability weighting function, w(p), separately estimated for the classical task (red) and
the motor task (green) on the left, and areas significantly correlated with the w(p) in both
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tasks (conjunction analysis). The statistical maps were overlaid on the individual subject’s
high-resolution T1 image. Each subject exhibited unique shapes of w(p) and activity in
mPFC represented these distinct shapes that could be seen at the individual level in these
subjects. Voxel coordinates were in MNI space.
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Figure 6. Neural correlates of prospect value
Prospect value (PV) of a lottery (p,$O) was defined by the product of the subjective utility of
outcome v(O) and its associated probability weight w(p) inferred from choice behavior. A.
Regions in mPFC (peak voxel: [-6,48,8], z=3.02) and the right lateral orbitofrontal cortex
(lOFC) (peak voxel: [40,26,-8], z=3.25) were correlated with PV in the classical task (cluster
size > 15 voxels; dark red: p<0.005 uncorrected, bright red: p<0.001 uncorrected). B. For
the motor task, we found that mPFC (peak voxel: [-2,36,-2], z=3.03) and PCC (peak voxel:
[-2,-34,42], z=3.07) was significantly correlated with PV at the same thresholds. Voxel
coordinates were in MNI space.
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Figure 7. Neural representation of probability weight compared with bar size
We compared the neural representation of probability weight in the motor lottery task with
the neural representation of bar size in the size judgment task. A-C. Thresholded statistical
map for the contrast (probability weight in motor task – bar size in the size judgment task)
was shown on the left column in mPFC (peak voxel: [-4,54,-2], z=3.05), ventral striatum
(vStr) (peak voxel: [-10,8,0], z=2.77), and the lingual gyrus (LG) in the occipital cortex
(peak voxel: [-18,-52,-8], z=3.30. Voxel coordinates were in MNI space.
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