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Abstract
During behavior, the oculomotor system is tasked with selecting objects from an ever-changing
visual field and guiding eye movements to these locations. The attentional priority given to visual
targets during selection can be strongly influenced by external stimulus properties or internal goals
based on previous experience. Although these exogenous and endogenous drivers of selection are
known to operate across partially overlapping time scales, the form of their interaction over time
remains poorly understood. Using a novel choice task that simultaneously manipulates stimulus-
and goal-driven attention, we demonstrate that exogenous and endogenous attentional biases
change linearly as a function of time after stimulus onset and have an additive influence on the
visual selection process in rhesus macaques (Macaca mulatta). We present a family of
computational models that quantify this interaction over time and detail the history-dependence of
both processes. The computational models reveal the existence of a critical 140-180 ms attentional
“switching” time, when stimulus and goal-driven processes simultaneously favor competing visual
targets. These results suggest that the brain uses a linear sum of attentional biases to guide visual
selection.
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Introduction
Visual selection is the process by which the brain’s attentional mechanisms target one
location in the visual field for the purpose of perceptual enhancement or saccade planning
(Awh et al., 2006). In the primate oculomotor system, two distinct attentional processes are
known to drive visual selection: sensory-driven exogenous (“bottom-up”) attention and
goal-driven endogenous (“top-down”) attention (Desimone and Duncan, 1995; Egeth and
Yantis, 1997; Kastner and Ungerleider, 2000; Awh et al., 2006; Knudsen, 2007). Exogenous
attention is automatic and can reliably be “captured” by a flashed object (Yantis and Jonides,
1984; Nakayama and Mackeben, 1989; Yantis and Jonides, 1996; Egeth and Yantis, 1997)
or pop-out stimulus (Joseph and Optican, 1996), even if these cues are uninformative or
task-irrelevant (Liu et al., 2005; Giordano et al., 2009). Endogenous attention is a voluntary
process that supports the monitoring of peripheral targets or locations, has been shown to
improve discriminability and speed of information accrual at monitored locations, and varies
flexibly with task demands such as cue validity (Giordano et al., 2009).

Recent work has shown that sensory- and goal-driven attention are subserved by distinct
brain mechanisms (Kastner and Ungerleider, 2000; Corbetta and Shulman, 2002; Giordano
et al., 2009; Ross et al., 2010). These mechanisms are likely to interact, based on the
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observation that exogenous attention to a distractor location interferes with endogenous
attention to a target located elsewhere in the visual field (Theeuwes and Burger, 1998).
However, the nature of this interaction remains unknown, because endogenous and
exogenous manipulations of competition have been studied in isolation only (Beck and
Kastner, 2009). How is competition resolved when stimulus- and goal-driven factors
simultaneously drive the selection of different targets in the visual field?

To address this problem, we developed a simple two-target, free reaction time decision task,
in which we simultaneously manipulate sensory- and goal-driven attentional processes by
varying the relative luminance and relative reward values of the targets. Through parametric
variation of luminance contrast and expected reward, and by using reaction time as a proxy
for internal selection dynamics, we investigate how attentional biases derived from these
stimulus properties evolve in time after target onset. In particular, when luminance and
reward favor different targets, we find that the selected target location is strongly influenced
by reaction time: fast reaction times lead to a stronger sensory-driven attentional bias, while
slow reaction times lead to a stronger goal-driven attentional bias. We present a family of
computational models to quantify the interaction between luminance and reward biases in
time, as well as their dependence on prior experience. Our best-fitting model demonstrates
that bottom-up and top-down biases combine linearly at all times to drive visual selection,
and although reward bias is shaped by previous experience, luminance bias is not.

Methods
Experimental Preparation

Two adult male rhesus macaques (Macaca mulatta) participated in the study (Monkey A and
Monkey S, 9.5 kg and 8.4 kg, respectively at the start of the experiments). Both animals had
been used previously in other experiments studying eye movements but were naive to the
choice task used in this study. Identical training protocols were used for both animals (see
below). Prior to behavioral training, each animal was instrumented with a head restraint
prosthesis to allow fixation of head position and tracking of eye position. All surgical and
animal care procedures were approved by the New York University Animal Care and Use
Committee and were performed in accordance with the National Institute of Health
guidelines for care and use of laboratory animals.

Each monkey was behaviorally trained for several weeks in an unlit sound-attenuated room
(ETS Lindgren). Eye position was constantly monitored with an infrared optical eye tracking
system sampling at 120 Hz (ISCAN). Eye positions were digitized at 1 kHz. Visual stimuli
were presented on an LCD screen (Dell Inc) placed 34 cm from the subjects’ eyes. The
visual stimuli were controlled via custom LabVIEW (National Instruments) software
executed on a real-time embedded system (NI PXI-8184, National Instruments).

Luminance-Reward Selection (LRS) Task
Each monkey performed the two-alternative choice task shown in Figure 1b. Two identically
sized rectangular stimuli with a 3-to-1 aspect ratio served as the targets in this task, with
each target associated with a different value of liquid reward. The long axis of each target
subtended 2° of visual arc. Target 1 (T1) was oriented so that the long axis was vertical, and
Target 2 (T2) was oriented so that the long axis was horizontal (Fig 1b). The monkeys were
motivated to find the target associated with the highest value of liquid reward. The mean
value of the liquid reward associated with each target was kept constant for blocks of 40 - 70
trials, after which a new mean for each target was assigned. We randomized the number of
trials in each block to discourage an influence by the number of trials completed in a block.
The mean of the reward values tested varied between 0.04 mL/trial and 0.21 mL/trial across
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blocks. Changes in reward magnitude between block transitions were unsignaled, and a
Gaussian-distributed variability (standard deviation = 0.015 mL) was added to the value
associated with both targets on every trial. Adding variability to reward magnitude across
trials ensured that we could perform regression analyses and increased the subjects’
uncertainty about the times of reward block transitions.

The luminance of T1 was randomly chosen on each trial from a log-uniform distribution of
values ranging from 0.01 to 12.15 candelas/m2. The minimum of this distribution was set
above the psychophysical threshold for stimulus detection during a single-target delayed
saccade task for both monkeys. After the luminance parameter for T1 was chosen, the
luminance of T2 was assigned such that the mean luminance across both targets was 6
candelas/m2. Although the luminance of one target was informative about the luminance of
the other target, the randomized target locations guaranteed that subjects could not
determine the location of a dim target from the location of a bright target. On each trial,
target luminance values were chosen independently from the rewards associated with T1 and
T2.

Each monkey performed saccadic eye movements for liquid rewards. The monkeys started
each trial by placing both hands on proximity sensors, after which a red square was centrally
presented. The monkeys were required to fixate within 2° of the center of the red square for
a 500 - 800 ms baseline period. After the baseline, the central red square was extinguished
and two red targets (T1 and T2) were presented at random locations in the visual periphery
at a 10° eccentricity from the central fixation. We randomized the spatial locations of each
target on each trial to reduce the influence of previous experience on the allocation of spatial
attention at the start of each trial. The separation between target pairs was constrained to be
at least 90° on each trial. Target onset cued the subjects to perform a free-choice saccade to
one of the two targets. After the saccade was completed, fixation was maintained for 300 ms
at the chosen target, following which the appropriate reward was delivered less than 500 ms
after the eye movement was completed. Each trial lasted 890 to 1400 ms, and only one
choice could be made per trial. Trials were separated by a 1000-1500 ms inter-trial interval
(ITI) beginning at the end of the time of reinforcer delivery. No visual stimuli were
presented during the ITI. The range of trial durations derives from the variability in the
amount of time taken by the monkeys to select and execute their eye movements. Relative to
the duration of the trial, this time was short (mean +/− sd reaction time 168+/−31 ms for
Monkey A, 192+/−30 ms for Monkey S). Reaction times shorter than 100 ms, mediated by
express saccades (Sommer, 1997), were rare in data from each animal: 1060 trials in
Monkey A and 480 trials in Monkey S, or 3% and 1% of all trials, respectively. These data
were included in all model fits shown here, and our results were unaffected by their
exclusion.

A trial was aborted if the monkey failed to align its gaze within 2° of the center of the
fixation or choice targets. When an abort was detected, all visual stimuli were extinguished
immediately, no reinforcers were delivered, and the trial was restarted after a 1200 - 1800
ms intertrial interval. Both monkeys rarely aborted trials (4% for Monkey A, 5% for
Monkey S). Aborted trials were excluded from further analyses. The data analyzed were
37,816 completed trials for Monkey A (30,938 after excluding the first 10 trials from each
block) and 54,026 completed trials for Monkey S (43,774 after excluding the first 10 trials
from each block). Data reported here were collected after at least 3 weeks of training on the
choice task.

Computational Models of Choice Behavior
We developed computational models of choice behavior to describe steady-state choice
behavior and dynamic choice behavior.
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Steady-state choice behavior: A generalized linear model (GLM) was fit to steady-state
choice behavior to explain choices in terms of choice biases derived from luminance
contrast and reward difference after the current reward distribution was learned:

(1)

where pT1 and pT2 are the probability of choosing T1 or T2, respectively, BL is the
luminance-driven choice bias and BR is the reward-driven choice bias. The exact form of the
model is:

(2)

where L encodes the luminance contrast (log10(L T1/L T2)) on the current trial, R encodes
the mean reward difference for the current block, and T encodes reaction time on the current
trial. In all fits of this model, L and R range from [−1,1], and T ranges from [0,1]. This
required us to map luminance contrast (L) from the domain (−2,2) candelas/m2 onto (−1,1)
for both monkeys. Reward difference (R) was mapped from (−0.2,0.2) mL onto (−1,1) for
Monkey A, and from (−0.07,0.07) mL onto (−1,1) for Monkey S. This 3-fold decrease in
range was used to correct for Monkey S’s comparatively higher sensitivity to reward
differences.

To allow for the possibility that reward information does not become available until a fixed
delay after target onset, the reward bias, BR, was treated as a piecewise linear function that
has value β*R at reaction times between 0 and Tmin ms, and follows the time-dependent
form R(β – γRT) when T> Tmin. To enforce this piecewise linearity, reaction time (T) was
mapped from (128,300) ms onto (0,1) for Monkey A, and from (81,300) ms onto (0,1) for
Monkey S. Reaction times less than Tmin = 128 or 81 ms, respectively, were linearly
mapped onto negative values of T in the BL expression, but clamped to 0 in the BR
expression. These Tmin values were chosen from the range 0-300 ms to minimize the
deviance of model fits based on Eqn (2) (see below). In practice, these optimal fits resulted
in β ≈ 0 for both monkeys. Therefore, we omitted β from both steady-state fits with only
minimal increase of deviance (see Table 1). In all models, the fit quality was similar whether
BR was piecewise linear or not, because most of the reaction times in our data are greater
than 128 ms.

The α and β coefficients in Eqn (2) measure the initial choice bias derived from luminance
contrast and reward difference, respectively, when T = 0. The γL and γR coefficients specify
the rate of change of these choice biases over time. Model parameters were fit through a
logistic regression of luminance contrast and reward difference on individual trials,
excluding the first 10 trials after each block transition. Therefore, this model studies
competitive interactions between contrast and reward at steady state, i.e. after the animal has
learned the current reward distribution. The independent variable specified a binary
encoding of choice behavior on individual trials, with 1 indicating choice of T1 and 0
indicating choice of T2. All parameters of Eqn (2) were fit using the glmfit command in
Matlab (Mathworks) using a logit link function. Although the constant term was
unconstrained in the GLM, all constants were zero in the fits and therefore are not reported
here. Model predictions for a given set of regressor values were obtained using the glmval
command in Matlab. This function returns an estimate of pT1, the probability of choosing
Target 1.
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We performed model selection to determine the relationship between all regressors and
choice behavior. We fit multiple models using subsets of the coefficients specified by Eqn
(2) and tested the reduction in deviance between each pair of models using a likelihood-ratio
statistic called Akaike’s Information Criterion (AIC; Akaike, 1974). The AIC estimates the
information lost by approximating the true process underlying the data by a particular model
(Burnham and Anderson, 1998). For each candidate model, the AIC is computed as

(3)

where the deviance is the maximized log-likelihood of the model fit and k is the number of
parameters. This measure balances the quality of each fit against the increase in model
complexity due to the addition of more model parameters (Lau and Glimcher, 2005). The
differences in AIC values across models represent the degree of evidence in favor of the
best-fitting model, and give a sense of the contribution of each model component when two
models differ by inclusion of one parameter. The larger the difference in AIC, the less
plausible a model is compared to the best model; values greater than 10 on this scale provide
strong support for the model with the smallest AIC value (Burnham and Anderson, 1998).
We checked goodness-of-fit by using the best model to predict mean choice behavior
(excluding 10 trials following transitions between reward blocks) as a function of reaction
time (see Fig 6). We chose not to use cross-validation or bootstrapping methods to further
test goodness-of-fit because the AIC already provides a conservative estimate of fit quality
and the mean predicted choice behavior was consistent with experimental data using a
model with only four parameters.

We also extended the steady-state computational model to test other forms of the
dependence between choice behavior, reaction time, luminance and reward. Specifically, we
tested an extension of the steady-state model that adds a (δ TT + δLRL*R) term to Eqn (2).
The δ T and δLR coefficients describe the influence of reaction time alone and the
multiplicative interaction between luminance contrast and expected reward on choice
behavior, respectively. AIC values for these model extensions are presented to test whether
these terms significantly improve model performance (see Tables 1 and 2).

Dynamic choice behavior model: To investigate the dependence of choice behavior on
previous experience, we extended the steady-state choice behavior model in Eqn (2) to
incorporate the influence of luminance contrast and experienced reward values during
previous trials:

(4)

where the subscript i indexes the value of a coefficient or regressor on trial i with respect to
the current trial. Ri

T1 and Ri
T2 represent experienced reward on trial i if the subject chose T1

or T2, respectively. The reward regressor associated with the unchosen target was set to zero
on each trial. Therefore, unlike the steady-state choice behavior model, the dynamic choice
behavior model makes no assumptions about steady-state behavior and can be used to model
changes in choice biases both within and across trials.

The reaction time regressor, T0, represents reaction time on the current trial (i = 0) only, and
uses the same piecewise-linear encoding for each animal described previously. This resulted
in β i ≈ 0 for both animals. We generated variants of equation (4) using subsets of
parameters from the full model, and tested the reduction in deviance between each pair of
models using the AIC statistic (Table 2). All model fits presented here reflect p<0.05
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confidence (Student’s t-test) for all parameter values. Here, we present a 10-trial lag in the
dynamic choice model to discover the influence of non-zero regressor coefficients on
previous trials while still achieving the desired level of confidence for all fits. We tested
models with a lag parameter greater than 10 trials and found that higher-order lag
coefficients either were not statistically significant (Student’s t-test) or, when significant, the
coefficients at lags greater than 10 trials were all approximately equal to zero. These results
indicate that including more than 10 trials in the past is not relevant for understanding choice
behavior under the circumstances studied here.

The dynamic choice behavior model is more informative than the steady-state choice
behavior model about the drivers of choice behavior on each trial as a function of trial lag.
However, this advantage occurs at the expense of significantly increased model complexity.
The large number of coefficients necessary to model changing choice biases means we
cannot test nonlinear interactions between luminance contrast and reward with the limited
numbers of trials available. By contrast, we can use the steady-state choice behavior model
to study both linear and nonlinear models of selection. For this reason, both steady-state and
dynamic choice behavior models are useful for understanding the processes that drive
selection.

Results
A simple conceptual model of selection is that “top-down” expected reward and “bottom-
up” sensory input channels drive visual selection, which then drives choice behavior (Fig 1a;
Awh, Armstrong, & Moore, 2006; Knudsen, 2007; Theeuwes, 2010). To understand how
these drivers interact, we parametrically varied the strength of each driver by training two
monkeys to perform a Luminance-Reward Selection (LRS) task (Fig 1b, see Methods) and
treating choice behavior as a proxy for visual selection in our analysis. We reasoned that
each monkey would show a strong choice bias for one target when reward and luminance
differences both favored the selection of the same target (Congruent scenarios; Fig 1c).
However, it was unclear which target would be selected when reward and luminance drove
selection of different targets (Conflict scenarios).

Figure 2 summarizes behavioral data from two monkeys that performed the LRS task
(37,816 trials Monkey A; 54,026 trials Monkey S). Saccade reaction times for both animals
were typically within 100-300 ms (Fig 2a(i), 2b(i); express saccades not shown). Since
perceptual deficits caused by exogenously captured attention become weaker over time
(Bisley and Goldberg, 2003; Giordano et al., 2009), we analyzed the relationship between
luminance contrast (calculated using log10(L T1/L T2)), where Lk represents the luminance
of target k, and target choice probability as a function of reaction time.

We partitioned each monkey’s reaction time histogram into three categories (Fast, Medium
and Slow; Fig 2a(i)) using boundaries chosen to illustrate the variability of choice behavior
over time. These boundaries were different across animals, due to idiosyncratic differences
in reaction time distributions and time-dependent selection biases. Then we calculated the
marginal probability of choosing a target as a function of luminance contrast for all trials
with zero reward difference, and grouped these data according to the three reaction time
categories. Fig 2a(ii) shows that luminance contrast strongly influences choice probability
when reaction time is fast (<140 ms), but these variables become weakly related when
reaction time is slow (>200 ms). We observed the opposite relationship when the same
analysis was applied to trials with variable reward and zero luminance contrast (Fig 2a(iii)).
In these data, reward is weakly related to choice probability when reaction time is fast, but
these variables become strongly related when reaction time is slow. These results are
qualitatively consistent across reaction time categories for both monkeys (Fig 2b(ii-iii)).
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However, when compared over absolute time, these data suggest that the reward sensitivity
of Monkey S is larger and increases more rapidly after target onset than that of Monkey A.

The marginal choice probability profiles shown in Figure 2 suggest that exogenous and
endogenous attention evolve over different time scales, with sensory-driven attention
dominating early after target onset, and reward-driven attention dominating later in the trial.
Given that these processes are supported by distinct mechanisms in the brain (Kastner and
Ungerleider, 2000; Corbetta and Shulman, 2002; Giordano et al., 2009), their influence over
choice behavior could be additive when reward difference and luminance contrast are varied
simultaneously. To test this hypothesis, we developed the steady-state choice behavior
model (Eqns 1,2, and see Methods).

Figure 3 presents the steady-state model for four special cases. When α = 1 and all other
parameters are set to zero, the model specifies that target choice probability is a function of
luminance contrast alone (Fig 3a). Similarly, when β = −1 and all other parameters are zero,
target choice probability is a function of reward difference alone (Fig 3b). When α = 1 and β
= −1, target choice probability depends jointly on luminance contrast and reward difference
(Fig 3c). Finally, Figure 3d shows a model parameterization that qualitatively reproduces the
reaction time dependence of L and R implied by the marginal choice curves in Figure 2.
This parameterization is described in equation (5) below:

(5)

For fast reaction times (T = 0), Eqn (5) specifies that target choice probability is a function
of luminance contrast only. For intermediate reaction times (T=0.5), target choice
probability depends jointly on luminance contrast and reward difference. For slow reaction
times (T=1), target choice probability is a function of reward difference only.

The model parameterization shown in Eqn (5) also makes specific predictions concerning
the time evolution of the bias terms, BL and BR, during congruent and conflict scenarios
(Fig 4). During congruent scenarios, when both L and R favor the same target, the net choice
bias (BL - BR) favors a single target for all reaction times. During conflict scenarios, when L
and R favor different targets, the net choice bias transitions from favoring T1 to T2, or vice
versa, at a critical “switching” point, Tswitch.

Figure 5a summarizes T1 choice probability, pT1, for Monkey A’s behavior during trials
when luminance contrast and reward difference were varied simultaneously. Behavioral data
are grouped according to the reaction time categories shown in Figure 2a(i). In these data,
luminance contrast is the primary driver of choice probability when reaction time is fast,
luminance contrast and reward difference jointly drive choice probability when reaction time
is intermediate, and reward difference is the primary driver of choice probability when
reaction time is slow. These behavioral results are consistent across animals (Fig 5c) when
grouped by reaction time category.

In separate analyses, we fit the steady-state choice behavior model to behavioral data from
each animal on a single trial basis, excluding the first 10 trials from each reward block (see
Methods). Table 1 presents the Akaike Information Criterion (AIC) values for variants of
Eqn (2) that include subsets of parameters from the full model. Of all linear models tested,
the lowest AIC value occurs for models of the form described in Eqn (2). A nonlinear
extension to Eqn (2) that incorporates an additional δLRLR term did not significantly
improve the model fit (Table 1).
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The optimal parameterization of Eqn (2) for each animal is described in Eqns (6-7) below:

(6)

(7)

Figures 5b,d show the T1 choice probabilities predicted by these models for both monkeys.
As suggested by their low AIC values (Table 1), the models shown in Eqns (6-7) provide a
good quantitative fit to the behavioral data. These fits do not change substantially when
express saccades are included (as shown) or excluded (not shown) from the training data.

A prediction of the steady-state choice behavior model is that target choice bias switches
from one target to the other over time during conflict scenarios. We tested this prediction by
summarizing T1 choice probability for all congruent and conflict scenarios in our behavioral
data and plotting this as a function of reaction time (Fig 6). We then overlaid the T1 choice
probability values that are predicted by Eqns (6-7). The model predictions provide a strong
quantitative fit to the behavioral data, consistent with the low AIC values shown in Table 1.
Notably, during conflict scenarios, the choice probability transitions between targets at times
near Tswitch = 180 ms for Monkey A and Tswitch = 137 ms for Monkey S, which are
predicted by the steady-state choice models.

To relax the assumption of reward-driven behavior at steady-state and therefore study the
influence of prior experience on choice bias, we extended the model from Eqn (2) to include
data from the previous 10 trials (see Methods, Eqn (4)). In this dynamic choice behavior
model, T0 encodes reaction time on the current trial, Li encodes luminance contrast on the
current trial, and (Ri

T1-Ri
T2) encodes the experienced reward on preceding trial i (see

Methods). All variables are scaled for consistency with the GLM fits shown in Eqns (6-7).
The coefficients αi, βi, γi

L and γi
R specify the weighting of the associated parameter values

on indexed trial i. Table 2 shows the AIC values for variants of Eqn (4) that include subsets
of parameters from the full model, similar to the analysis shown in Table 1. We were unable
to fit a nonlinear interaction parameter, δi

LR Li (Ri
T1-Ri

T2), while maintaining p<0.05 for all
parameters in the model, likely due to sampling limitations. Of all models tested, the lowest
AIC value occurs for linear models of the form described in Eqn (4).

Figure 7 presents the parameter fits for the dynamic choice behavior model. For Monkey A,
αi = 2.85 on the current trial, but drops to approximately zero for previous trials (Fig 7a). γi

L

exhibits similar behavior. By contrast, γi
R decays monotonically from 1.99 on the previous

trial to 0.36 at a 10 trial lag. These results are qualitatively similar for Monkey S (Fig 7b).
This confirms that, in the context of the LRS task, the luminance contrast kernel is
dominated by the current trial only, whereas the reward difference kernel takes a weighted
sum of rewards experienced at a trial lag of at least 10 trials.

Discussion
In this study, we use a novel Luminance-Reward Selection (LRS) task to demonstrate that
choice biases derived from top-down and bottom-up processes combine linearly in time to
drive selection. We quantify the dependence of these biases on reaction time and prior
experience using computational models of steady-state and dynamic choice behavior. Based
on this quantification, the models in Eqns (6-7) predict - and the behavioral data in Figure 6
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confirm - that competing sensory and reward-driven processes drive a “switch” in target
selection bias at Tswitch ≈ 140-180 ms. Our findings in monkeys agree with and build
substantially on the human attentional literature, which has shown that visual selection is
completely stimulus-driven at time scales <150 ms, while volitional control based on
expectancy drives selection at later times (Theeuwes, 2010).

Two features of the LRS paradigm were critical to the recovery of our findings:
simultaneous manipulation of top-down and bottom-up attention, and spatial randomization
of target locations. Most previous studies of the competitive interaction between top-down
and bottom-up processes manipulate attention using separate target and distractor stimuli.
Typically, a pre-cue illuminates first, followed by a distractor at some delay, followed by a
cue to perform a movement (Reynolds et al., 1999; Bisley and Goldberg, 2003; Giordano et
al., 2009; Liu et al., 2009). In such paradigms, spatial attention is allocated to the pre-cue
before attention is captured by the distractor, and reward-driven endogenous attention is
allocated when the cue appears after the distractor. Therefore, multiple forms of attention are
deployed over partially overlapping time intervals. In such cases, the time course of their
evolution and interaction is difficult to map without presenting competing stimuli
simultaneously and allowing the subject to react immediately, as we do here.

Presenting the two targets at random spatial locations on each trial allowed us to control for
the influence of spatial attention on choice behavior. Previous work has shown that spatial
biases induced by cueing have a suppressive influence on exogenous attention (Liu et al.,
2009) and can improve acuity in the attended area at the expense of unattended areas
(Montagna et al., 2009). These data suggest that pre-existing spatial attention may bias
competition between stimulus- and goal-driven attention. We reasoned that repeated
presentation of two targets to a predictable set of locations might lead to similar biases. In
principle, randomization should lead to the deployment of reward-driven attention only and
provide an unbiased measurement of its competitive interaction with sensory drive.

Reaction Time Dependence of Selection Biases
The time scales underlying top-down and bottom-up selection processes have been a major
focus of experimental work over the last 20 years. Human behavioral studies using the
Additional Singleton Task (Kim & Cave, 1999; Theeuwes, 1992; Theeuwes et al, 2000), in
which a distractor singleton is presented at a variable delay before a target singleton, have
established that the interference effect of a distractor is present at SOAs of up to 150ms
before the target singleton. These results in humans are consistent with our observation in
monkeys that time-varying stimulus- and reward-driven selection biases can have a balanced
influence on behavior at “switching” times that range from 140-180 ms. It is interesting that
Monkey S appears to pursue a reward-maximizing strategy by waiting until well after this
transition (mean reaction time = 192+/−31 vs Tswitch = 137 ms), while Monkey A exhibits
greater exogenously-driven behavior (mean reaction time = 168+/−30 vs Tswitch = 180 ms).

Although the physiology of top-down and bottom-up competition remains poorly
understood, there is experimental support at the single neuron level for “switching” between
bottom-up and top-down selection biases at the time scales discussed here. Recordings from
isolated V4 neurons in behaving monkeys show that firing rate modulations occur after 175
ms when the animal is looking for a color singleton among an array of targets (Ogawa and
Komatsu, 2004), while these modulations do not occur when the monkeys search for a shape
singleton. Other studies have demonstrated the dominant influence of salient stimuli on
neural activity at times <150 ms in IT (Chelazzi et al., 1998; Chelazzi et al., 2001), PPC
(Constantinidis and Steinmetz, 2005) and LIP (Buschman and Miller, 2007). These time
scales are consistent with the time-varying stimulus- and reward-driven choice biases
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described here, and the neural activity may therefore reflect attentional “switching” during
competition.

Evidence for Additive Drivers of Selection
An extensive literature has investigated the nature of competitive interactions between top-
down and bottom-up attention. The biased competition theory of selective attention
(Desimone and Duncan, 1995; Desimone, 1998) has been especially influential. One of its
three basic principles of control suggests that competition can be biased by reward-driven
and stimulus-driven factors. In this framework, competition between systems is integrated,
and the target that is selected in the up-stream processors will be biased-for by down-stream
processors. Importantly, biased competition implies a joint - and potentially nonlinear -
dependence of choice behavior on sensory and goal-directed processes. Here we show that
the effects of these processes on choice behavior are additive over the 100-300 ms reaction
time scale studied. One interpretation of these findings is that competition between systems
may not be integrated over this time scale. Instead, the dissociable influence of luminance
and reward biases on selection implies that top-down and bottom-up processes are
functionally independent during the LRS task.

The brain is known to combine information about decision variables using a weighted sum
in the auditory (Green, 1958) and visual systems (Young et al., 1993; Landy et al., 1995;
Kinchla et al., 1995), and there is recent evidence for this in parietal association cortex
(Ipata et al., 2009). Our steady-state model fits demonstrate that a relatively simple linear
model is sufficient to reveal the time evolution of choice biases and their influence on
behavior at reaction times from 100-300 ms. Future work can investigate the deviation of
observed choice behavior from model predictions at reaction times longer than 250 ms
during congruent scenarios for Monkey A, and during conflict scenarios for Monkey S.

The behavioral data shown here are consistent with a race between two signals that favor
separate targets. The race paradigm has been used previously to model the dynamics of
behavior (Logan, G. D., & Cowan, 1984; Boucher et al., 2007). These models connect with
our analysis, in which the luminance and reward signals shown in Eqn (1) could serve as
inputs to the race signals for each target. Future analysis of our data using a race model may
provide greater insight into the reaction time distributions shown in Figure 1.

Changing Selection Bias as Changing Utility
One interpretation of the time dependent selection biases shown here is that the utility of
targets changes as a function of reaction time. For the monkeys to make a choice on each
trial, they must integrate information regarding the luminance and reward magnitudes of the
targets by first converting these values into a “common currency” from which they can be
compared (Sugrue et al., 2005; Kable and Glimcher, 2009). Only then can the monkeys form
a subjective value for each target and make a choice. Interestingly, the manner in which
luminance and reward are converted to this common currency changes over time in the LRS
task. Early in a trial, the subjective value of choosing the bright target is highly driven by
exogenous attention. As time progresses, however, endogenous attention increases the
weighting placed on the high reward magnitude target.

Implications for Priority Map Formation
On a physiological level, our findings are consistent with the formation of two spatial
priority maps in the brain that drive the selection process in an additive manner. In lateral
intraparietal cortex (area LIP), there is evidence for priority map formation based on visual
salience (Gottlieb et al., 1998; Bisley and Goldberg, 2003) and expected reward (Platt and
Glimcher, 1999; Bendiksby and Platt, 2006; Rorie et al., 2010). Since LIP receives direct
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input from dorsal visual areas, it is possible that this area encodes spatial priority based on
exogenously-captured attention, in addition to expected reward. This interpretation could
reasonably be extended to frontal areas such as the frontal eye fields (FEF), which share
strong reciprocal connections with LIP.
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Figure 1. Conceptual Motivation and Behavioral Task
(a) Schematic of the oculomotor selection process. Target selection may be driven by
sensory drive and/or expected reward, after which the selected target is used to guide choice
behavior. (b) Luminance-Reward Selection (LRS) task. Following baseline fixation, two
iso-eccentric targets appear at random locations and the subject is immediately free to
choose either target. Target reward magnitudes and differences are fixed in blocks of 40-70
trials and reward block transitions are unsignaled. Target luminance magnitudes and
differences are randomly chosen on each trial (see Methods). (c) Expected target choice
behavior, plotted as a function of luminance contrast and reward difference between the two
targets. When both properties favor selection of the same target (Congruent condition), we
expect a strong choice bias toward that target. When luminance contrast and reward
difference each favor a different target (Conflict condition), however, it is unclear which
target will be selected.

Markowitz et al. Page 14

J Neurosci. Author manuscript; available in PMC 2011 December 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Reaction Time Governs The Influence of Luminance Contrast and Reward Difference
on Choice Behavior
(a) (i) Histogram of free choice reaction times for Monkey A. Data are partitioned into
“Fast,” “Medium” and “Slow” categories to illustrate the variability of choice behavior over
time. (ii) Summary of target choice probability vs log10(L T1/L T2) for the two targets,
grouped according to the three reaction time categories described in a(i). (iii) Summary of
target choice probability vs reward difference for the two targets, grouped according to the
three reaction time categories described in a(i). (b) Same as a for Monkey S. Reaction time
category boundaries were chosen so that marginal choice curves were qualitatively similar.
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Figure 3. Predicted choice behavior using different parameterizations of the linear model
described in Eqn (2)
(a) Luminance contrast dependence when α = 1 and all other parameters = 0. (b) Reward
difference dependence when β = −1 and all other parameters = 0. (c) Joint dependence on
luminance contrast and reward difference when α = 1, β = −1 and all other parameters = 0.
(d) Target choice transitions from (i) pure luminance contrast dependence at fast reaction
time, to (ii) joint luminance-reward dependence at intermediate reaction time, to (iii) pure
reward difference dependence at slow reaction time when α = 1, β = 0, γL = −1 and γR = −1.
In each panel, the probability of choosing Target 1, pT1, is shown in grayscale.
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Figure 4. Time evolution of GLM bias predictions for congruent and conflict scenarios
(i) In the first conflict scenario, luminance contrast favors T2 and reward difference favors
T1. The sum over bias terms transitions from −1 to +1 with increasing reaction time,
illustrating a change in the selected target from T2 to T1 over time. (ii) In the first congruent
scenario, both luminance contrast and reward difference favor T1. The sum over bias terms
is maintained at +1 for all reaction times. Therefore, the model predicts T1 as the selected
target regardless of reaction time. (iii) The opposite congruent scenario from (ii), favoring
T2. (iv) The opposite conflict scenario from (i), favoring T1 and then T2. Each panel
assumes the parameterization described in Figure 3d.
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Figure 5. GLM fits reproduce the behaviorally observed time-dependent transition from
luminance to reward dependence of target choice
(a) Summary of T1 choice probability, pT1, as a function of log luminance ratio (x-axis),
reward difference (y-axis) and reaction time for Monkey A behavioral data. In each panel,
data are pooled over the corresponding reaction time interval from Figure 2 a(i). (b)
Statistical fit of the data from (a) using the GLM described in Eqn (6). (c) Choice plots for
Monkey S, obtained by grouping behavioral data using the reaction time intervals from
Figure 2 b(i). (d) Statistical fit of the data from b using the GLM described in Eqn (7).
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Figure 6. Time evolution of predicted and observed choice probabilities during congruent and
conflict scenarios
(a) Monkey A. (i) In the first conflict scenario, luminance favors T2 and reward favors T1.
The bias favors selection of T2 at 100 ms and T1 at 300 ms, with the transition point
occurring at 180 ms. (ii) In the first congruent scenario, both luminance and reward favor
T1. The bias favors selection of T1 throughout the range of observed reaction times. (iii)
The opposite congruent scenario from (ii), favoring T2. (iv) The opposite conflict scenario
from (i), favoring T1 and then T2. (b) Same as a for Monkey S. In (i) the transition point
occurs at 137 ms.
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Figure 7. Luminance and reward bias kernels for history-dependent GLM
(a) Monkey A. (i) Luminance coefficients (αi). (ii) Coefficients for reaction time and
luminance interaction terms (γi

L). (iii) Coefficients for the reaction time and reward
interaction terms (γi

R). (b) Same as a for Monkey S.
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Table 1

Steady State Model – Monkey A
Sample Total = 30,938 trials

Model Parameters # Parameters AIC δAIC

Bias Only 1 42,887 3,356

α 2 41,376 1,845

β 2 41,855 2,324

α, β 3 40,298 767

α, β, δT 4 40,296 765

α, β, δLR 4 40,296 765

α, β, γR 4 39,896 365

α, β, γL 4 39,834 303

α, γL, γR 4 39,531 0

α, β, γL, γR 5 39,528 −3

α, β, γL, γR, δLR 6 39,526 −5

Steady State Model – Monkey S
Sample Total = 43,774 trials

Model Parameters # Parameters AIC δAIC

Bias Only 1 60,682 7,139

α 2 60,574 7,031

β 2 54,235 692

α, β 3 54,104 561

α, β, δT 4 54,102 559

α, β, δLR 4 54,102 559

α, β, γR 4 53,723 180

α, β, γL 4 53,898 355

α, γL, γR 4 53,543 0

α, β, γL, γR 5 53,541 −2

α, β, γL, γR, δLR 6 53,539 −4
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Table 2

Dynamic Choice Model – Monkey A (10 trial lag)
Sample Total = 36,500 trials

Model Parameters # Parameters AIC δAIC

Bias Only 1 50,576 3,719

α i 12 48,985 2,128

β i 11 49,416 2,559

αi, βi 22 47,787 930

αi, βi, δi
T 33 47,765 908

αi, βi, δi
LR 32 47,196 339

αi, βi, γi
R 32 47,349 492

αi, βi, γi
L 33 47,767 910

αi, γi
L, γi

R 33 46,857 0

αi, βi, γi
L, γi

R 43 (lost significance) 46,823 −34

αi, βi, γi
L, γi

R, δi
LR 53 (lost significance) 46,803 −54

Dynamic Choice Model – Monkey S (10 trial lag)
Sample Total = 53,424 trials

Model Parameters # Parameters AIC δAIC

Bias 1 74,037 15,038

α i 12 73,854 14,855

β i 11 59,684 685

αi, βi 22 59,430 431

αi, βi, δi
T 33 59,408 409

αi, βi, δi
LR 32 59,410 411

αi, βi, γi
R 32 58,960 −39

αi, βi, γi
L 33 59,197 198

αi, γi
L, γi

R 33 58,999 0

αi, βi, γi
L, γi

R 43 (lost significance) 58,749 −250

αi, βi, γi
L, γi

R, δi
LR 53 (lost significance) 58,729 −270
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