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Abstract
Alzheimer disease (AD) is multi-factorial and heterogeneous. Independent of the aetiology, this
disease is characterized clinically by chronic and progressive dementia and histopathologically by
neurofibrillary degeneration of abnormally hyperphosphorylated tau seen as intraneuronal
neurofibrillary tangles, neuropil threads and dystrophic neurites, and by neuritic (senile) plaques of
β-amyloid. The neurofibrillary degeneration is apparently required for the clinical expression of
AD, and in related tauopathies it leads to dementia in the absence of amyloid plaques. While
normal tau promotes assembly and stabilizes microtubules, the abnormally hyperphosphorylated
tau sequesters normal tau, MAP1 and MAP2, and disrupts microtubules. The abnormal
hyperphosphorylation of tau also promotes its self-assembly into tangles of paired helical and or
straight filaments. Tau is phosphorylated by a number of protein kinases. Glycogen synthase
kinase-3 (GSK-3) and cyclin dependent protein kinase 5 (cdk5) are among the kinases most
implicated in the abnormal hyperphosphorylation of tau. Among the phosphatases which regulate
the phosphorylation of tau, protein phosphatase-2A (PP-2A), the activity of which is down-
regulated in AD brain, is by far the major enzyme. The inhibition of abnormal
hyperphosphorylation of tau is one of the most promising therapeutic targets for the development
of disease modifying drugs. A great advantage of inhibiting neurofibrillary degeneration is that it
can be monitored by evaluating the levels of total tau and tau phosphorylated at various known
abnormally hyperphosphorylated sites in the cerebrospinal fluid of patients, obtained by lumbar
puncture. There are at least five subgroups of AD, each is probably caused by a different
etiopathogenic mechanism. The AD subgroup identification of patients can help increase the
success of clinical trials and the development of specific and potent disease modifying drugs.
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Introduction
Alzheimer disease (AD), the single major cause of dementia in the middle- to old-aged
individuals, is histopathologically characterized by intraneuronal neurofibrillary
degeneration of the abnormally hyperphosphorylated tau and extracellular β-amyloidosis.
Neurofibrillary degeneration is seen as neurofibrillary tangles, neuropil threads and as
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dystrophic neurites surrounding the amyloid core in the neuritic (senile) plaques. β-
amyloidosis is seen as plaque core amyloid in the brain parenchyma and as congophilic
angiopathy in the cerebral vessels. Although the two hallmark lesions of AD, the β-
amyloidosis and neurofibrillary degeneration were described by Alois Alzheimer in 1907, it
was only in the 1980s that their molecular composition was discovered. Glenner and Wong,
in 1984, discovered by amino acid sequencing Aβ peptide as the major component of
cerebrovascular amyloid in AD brain. Subsequent studies confirmed Aβ peptide as the major
component of neuritic (senile) plaques [1, 2]. The major protein subunit of neurofibrillary
tangles/paired helical filaments was isolated in 1974 from bulk-separated tangles from AD
brain and identified by Western blots as microtubule associated protein tau in 1986 [3, 4].
The same year, we demonstrated (1) that tau in AD brain was abnormally
hyperphosphorylated and, in this state, was polymerized into PHF/neurofibrillary tangles
[5], and (2) that, unlike normal tau, cytosolic abnormally hyperphosphorylated tau in AD
brain was unable to promote microtubule assembly [6]. These findings laid down the
foundation of very exciting studies on the molecular mechanisms of AD and molecular
biomarkers associated with plaques and tangles, and development of disease modifying
drugs.

Key findings on tau include (i) the cloning of tau gene from mouse brain [7] and alternate
splicing of its pre-mRNA, generating different isoforms in bovine brain [8] discovered by
Kirschner’s lab; (ii) the presence of six molecular isoforms of tau by alternate splicing in the
human brain by Goedert et al. [9]; (iii) the identification of the cyclin-dependent protein
kinase 5 (cdk5) and glycogen synthase kinase-3 (GSK-3) as the major tau kinase activities
that can abnormally hyperphosphorylate tau by Imahori’s group [10–12]; (iv) the mapping
of the phosphorylation sites of normal [13] and PHF tau [14], and ubiquitination of PHF tau
[14] by Ihara’s lab; (v) the identification of Ser262 as one of the major functional
phosphorylation sites of tau and its phosphorylation y microtubule-affinity regulation kinase
(MARK) by Mandelkow’s lab [15, 16]; (vi) the higher-than-normal adult level of
phosphorylation in foetal tau by the group of Lee and Trojanowski [17]; (vii), the selective
decrease in the activities of protein phosphatase (PP)-2A and PP-1 in AD brain, and PP2A
as the major tau phosphatase by Gong from our group [18, 19]; (viii) the in vitro assembly
of tau into filaments and the promotion of this assembly by phosphorylation of this protein
by Avila’s laboratory [20]; (ix) the discovery of the sequestration of normal mitogen
activated proteins (MAPs) by the abnormally hyperphosphorylated tau by Alonso from our
group [21–23] and (x) the use of the CSF level of tau as a biomarker for AD by the
Innogenetics group [24].

AD is multi-factorial and heterogeneous. Identification of various etiopathogenic
mechanisms and of various subgroups of the disease is critical for the development of potent
disease-modifying drugs. In less than 1% of the AD cases the disease co-segregates with
certain mutations in β-amyloid precursor protein, presenilin-1 and presenlin-2 [25]. Over
99% of the AD cases are not associated with any known mutations, and the nature of the
aetiological agent is not yet understood, but might involve metabolic and signal transduction
abnormalities [26]. These different etiological factors, nevertheless, may lead to some
common downstream pathogenic events that ultimately produce the disease clinically.
Independent of the aetiology, AD is histopathologically characterized by the presence of
numerous neurofibrillary tangles and neuritic (senile) plaques with neurofibrillary changes
in the dystrophic neurites [27]. In a large number of the mature tangles, tau is ubiquitinated
[14, 28, 29]. Several detailed reviews on each of these aspects of AD have recently been
published [26, 30–32]. Here, we update some of the major findings on neurofibrillary
degeneration of the abnormally hyperphosphorylated tau concerning the pivotal role of this
lesion in the disease and as a molecular biomarker, and as a drug target.
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Significance
Studies on the clinical-to-pathological correlation have consistently demonstrated that the
number of neurofibrillary tangles, and not the plaques, correlates best with the presence and
or the degree of dementia in AD [33–35]. Whereas neurofibrillary degeneration appears to
be required for the clinical expression of the disease, the dementia, β-amyloidosis alone in
the absence of neurofibrillary degeneration does not produce the disease clinically. In fact
some of the normal aged individuals have as much β-amyloid plaque burden in the brain as
typical cases of AD, except that in the former case plaques lack dystrophic neurites with
neurofibrillary changes surrounding the beta-amyloid cores [33, 34, 36–38]. On the other
hand, neurofibrillary degeneration of the AD type, but in the absence of β-amyloidosis, is
seen in several conditions such as Guam Parkinsonism-dementia complex, dementia
pugilistica, frontotemporal dementia with Parkinsonism linked to chromosome-17
(FTDP-17), corticobasal degeneration, Pick disease, and progressive supranuclear palsy. All
of these neurodegenerative disorders, collectively called tauopathies, are clinically
characterized by dementia. Furthermore, in inherited cases of FTDP-17, certain missense
mutations in the tau gene, including those that affect the alternate splicing of its mRNA,
favouring the 4-repeat tau isoforms, co-segregate with the disease [39–41]. These mutated
taus and the 4-repeat tau become more favourable substrates for abnormal
hyperphosphorylation [42].

Etiopathogenesis
Currently, the most popular hypothesis on the etiopathogenesis of AD is the Amyloid
Cascade Hypothesis, according to which the generation of Aβ is the primary pathological
event which leads to neurofibrillary degeneration and dementia [43, 44]. Consistent with this
hypothesis, both intracerebral infusion of Aβ in FTDP-17 tau mutation P301L-expressing
transgenic mice, as well as crossing these animals with APPTg2576 (APP Swedish plus
London mutations), were found to exacerbate neurofibrillary pathology [45, 46] and, in the
triple transgenic mice 3XTgAD (APPSWE-PS1M146V-tau P301L), β-amyloid deposition
was found to precede the neurofibrillary pathology and these animals showed more
neurofibrillary pathology than the double transgenic Tg2X mice [47, 48]. However, to date,
the data from human conditions apparently do not support the amyloid cascade hypothesis
— (1) some of the normal aged individuals show similar level and topography of compact
Aβ plaques as typical cases of AD, except that the plaques in the former lack dystrophic
neurites with neurofibrillary pathology; (2) the plaques and neurofibrillary tangles are seen
in disproportionate numbers in AD, especially in the plaque-dominant and tangle-dominant
AD subgroups; (3) typically, a considerably higher brain Aβ burden is seen in hereditary
cerebral haemorrhage with amyloidosis, Dutch type (HCHWA-D) but without any
accompanying neurofibrillary degeneration [49], and (4) the tauopathies, such as FTDP-17,
Pick disease, corticobasal degeneration, supranuclear palsy, dementia pugilistica and Guam
Parkinsonism dementia complex, are characterized by dementia associated with
neurofibrillary degeneration of abnormally hyperphosphorylated tau in the absence of β-
amyloid plaques. Furthermore, recent studies have shown that PS-1 not only promotes or
acts as a γ-secretase activity (the cleavage of APP which produces Aβ), but also activates the
phosphatidylinositol 3-kinase (PI3K), which downstream through protein kinase B (Akt)
inhibits the GSK-3, a major tau kinase. Some of the AD-causing mutations in PS-1 result in
loss of its ability to activate PI3K pathway, resulting in a sustained activity of GSK-3 and,
consequently, abnormal hyperphosphorylation of tau [50]. Finally, several of the AD-
causing PS-1 mutations have been reported to produce no change to a decrease in Aβ
generation in cultured cells [51]. In our view, AD may be caused by a number of different
factors and the amyloid cascade hypothesis is too simplistic and narrow to explain this
multi-factorial disease. We have proposed [26] that different signal transduction and
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metabolic factors, through different disease mechanisms, apparently lead to the same two
disease characteristic lesions - neurofibrillary degeneration of abnormally
hyperphosphorylated tau and β-amyloidosis (Fig. 1).

Mechanism by which abnormal hyperphosphorylation of tau leads to
neurofibrillary degeneration

Microtubule associated protein tau is highly hydrophilic and is, thus, highly soluble and heat
stable. To date, not only in AD but also in every known human tauopathy, the tau pathology
is made up of the abnormally hyperphosphorylated protein. While conformational changes
[52–54] and truncation of tau [55–57] have been reported in AD, the most established and
the most compelling cause of dysfunctional tau in AD and related tauopathies is the
abnormal hyperphosphorylation of this protein [5, 6, 23]. Tau, a phosphoprotein which
normally contains 2–3 mol. of phosphate/mol. of the protein [58], is abnormally
hyperphosphorylated in AD brain [6] and, in this state, is the major protein subunit of the
paired helical filaments/neurofibrillary tangles [4, 5, 59, 60]. Two major known functions of
tau are its ability to promote assembly and to maintain structure of microtubules [61]. These
functions of tau are regulated by its degree of phosphorylation [23, 62–64]. In AD brain
there is as much normal tau as in age-matched control human brain, but, in addition, the
diseased brain contains 4–8-fold of abnormally hyperphosphorylated tau [65, 66]. As much
as 40% of the abnormally hyperphosphorylated tau is present in the cytosol and not
polymerized into paired helical filaments/neurofibrillary tangles [58].

The tau polymerized into neurofibrillary tangles is apparently inert and neither binds to
tubulin nor promotes its assembly into microtubules [63, 64, 67]. In contrast, the AD
cytosolic abnormally hyperphosphorylated tau (AD P-tau) not only is unable to bind to
tubulin and promote microtubule assembly, but also inhibits assembly and disrupts
microtubules [23, 68]. This toxic property of the pathological tau involves the sequestration
of normal tau by the diseased protein [22, 23]. The AD P-tau also sequesters the other two
major neuronal microtubule associated proteins MAP1 A/B and MAP2 [69]. This toxic
behavior of the AD P-tau appears to be solely due to its abnormal hyperphosphorylation
because dephosphorylation of diseased tau converts it into a normal-like protein [23, 68, 70,
71]. Furthermore, in vitro dephosphorylation of neurofibrillary tangles disaggregates
filaments and, as a result, the tau released behaves like normal protein in promoting
microtubule assembly [70]. Thus, two characteristics of AD abnormally
hyperphosphorylated tau are (1) that it sequesters normal MAPs and disrupts microtubules
and (2) that it self-assembles into paired helical and or straight filaments.

Tau mutations, which cause FTDP-17, result either in increase in 4-repeat:3-repeat tau ratio
or in missense mutations in the protein. Both 4-repeat tau and the mutated protein are more
easily abnormally hyperphosphorylated than the normal wild-type protein [42, 72]. Thus,
inhibition of the abnormal hyperphosphorylation of tau is likely to inhibit neurofibrillary
degeneration and consequently the diseases characterized by this lesion.

Signal transduction pathways involved
Tau kinases

The state of phosphorylation of a phosphoprotein is a function of the balance between the
activities of the protein kinases and the PPs that regulate its phosphorylation. Tau, which is
phosphorylated at over 38 serine/threonine residues in AD [73, 74], is a substrate for several
protein kinases [75, 76]. Among these kinases, GSK-3, cyclin dependent protein kinase-5
(cdk5), casein kinase-1 (CK-1), protein kinase A (PKA), calcium and calmodulin-dependent
protein kinase-II (CaMKII), casein kinase-1 (CK-1), MAP kinase ERK 1/2 and stress-
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activated protein kinases have been most implicated in the abnormal hyperphosphorylation
of tau [77, 78]. A large number of the abnormally hyperphosphorylated sites in tau are
proline-directed, that is serine/threonine followed by proline which are canonical sites of
proline-directed protein kinases (PDPKs).

GSK-3β and cdk5 phosphorylate tau at a large number of sites, most of which are common
to the two enzymes [79, 80]. The expressions of GSK-3β and cdk5 are high in the brain [81–
83] and both enzymes have been shown to be associated with all stages of neurofibrillary
pathology in AD [84, 85]. Overexpression of GSK-3β in cultured cells and in transgenic
mice results in hyperphosphorylation of tau at several of the same sites seen in AD and
inhibition of this enzyme by lithium chloride attenuates phosphorylation in these models
[86–93].

Cdk5 requires for its activity interaction with p39 or p35 or, better, their proteolytic products
p29 or p25, respectively, which are generated in post mitotic neurons by digestion with
calpains [94, 95]. Overexpression of p25 in transgenic mice, which results in an increase in
the activity of this enzyme, also produces hyperphosphorylation of tau [96, 97].

The MAP kinase family, which includes ERK1, ERK2, p70S6 kinase and the stress-
activated kinases JNK and p38 kinase, have been shown to phosphorylate tau at several of
the same sites as the abnormally hyperphosphorylated tau and so has been the association of
these enzymes with the progression of neurofibrillary degeneration in AD [78, 98–103].

Unlike the PDPKs, the non-PDPKs have been shown to phosphorylate tau at only a few of
the sites. CaM Kinase II phosphorylates tau at Ser-262/356 and at Ser-416 [104–107]. Both
PKA and MARK kinase have also been shown to phosphorylate tau at Ser-262 [16, 108,
109]. However, phosphorylation of tau by these non-PDPKs markedly increases the
phosphorylation of tau by PDPKs, GSK-3β and cdk5 [79, 110–112]. The priming of tau by
PKA appears to be sufficient to promote the abnormal hyperphosphorylation of tau by the
basal level of GSK-3β activity in normal adult rat brain and leads to an impairment of spatial
memory in these animals [113]. Although, to date, the activities of these protein kinases,
except GSK-3β, have not been reproducibly shown to be up-regulated in AD brain, transient
stimulation of these enzymes, especially the priming kinases such as PKA or CaMKII, might
be sufficient to result in the abnormal hyperphosphorylation of tau.

Tau phosphatases
The activities of PP-2A and PP-1 are compromised by ~ 20% in AD brain [19, 114], and the
phosphorylation of tau that suppresses its microtubule binding and assembly activities in
adult mammalian brain is regulated by PP-2A and not by PP-2B [107, 115] and PP-2A
accounts for over 70% of all phosphoseryl/-phosphothreonyl activity in human brain [116].
PP-2A also regulates the activities of several tau kinases in brain. Inhibition of PP-2A
activity by okadaic acid in cultured cells and in metabolically active rat brain slices results in
abnormal hyperphosphorylation of tau at several of the same sites as in AD, not only
directly by a decrease in dephosphorylation but also indirectly by promoting the activities of
CaM Kinase II [107], PKA [117, 118], MAP kinase kinase (MEK1/2), extracellular
regulated kinase (ERK 1/2) and P70S6 kinase [78, 102]. Thus, barring the fact that tau is not
the only neuronal substrate of these protein kinases and phosphatases, it should be possible
to inhibit the abnormal hyperphosphorylation of tau by inhibiting the activity of one or more
tau kinases and or restoring or up-regulating the activity of PP-2A.

Although the brain has several tau phosphatase activities [119, 120], PP-2A and PP-1 make
more than 90% of the serine/threonine PP activity in mammalian cells [121]. The
intracellular activities of these enzymes are regulated by endogenous inhibitors. PP-1
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activity is regulated mainly by a 18.7 kDa heat stable protein called inhibitor-1 (I-1) [122,
123]. In addition, a structurally related protein, DARPP-32 (dopamine and cAMP-regulated
phosphoprotein of apparent molecular weight 32,000) is expressed predominantly in the
brain [124]. I-1 and DARPP-32 are activated on phosphorylation by protein kinase A and
inactivated by calcineurin, and at basal calcium level by PP-2A [125]. Thus, inhibition of
PP-2A activity would keep I-1, DARPP-32 in active form and there-by result in a decrease
in PP-1 activity. In AD brain a reduction in PP-2A activity might have decreased the PP-1
activity by allowing the up-regulation of the I-1/DARPP-32 activity. In the subgroup of AD
cases and or at moderate to severe stages of the disease, when there is a persistent
excitotoxicity and increase in the intraneuronal calcium, DARPP-32 is probably mainly
dephosphorylated and thereby inactivated as PP-1 inhibitor by calcineurin.

PP-2A inhibitors
PP-2A is inhibited in the mammalian tissue by two heat-stable proteins: (i) the I1 PP2A, a 30
kDa cytosolic protein [126] that inhibits PP-2A with a Ki of 30 nM and (ii) the I2

PP2A, a 39
kDa nuclear protein that inhibits PP-2A with a Ki of 23 nM [126]. Both I1 PP2A and I2 PP2A

have been cloned from human kidney [127, 128] and brain [129]. I1 PP2A has been found to
be the same protein as the putative histocompatibility leukocyte antigen class II-associated
protein-1 (PHAP-1). This protein, which has also been described as mapmodulin, pp32 and
LANP [130] is 249 amino acids long and has apparent molecular weight of 30 kDa on SDS-
PAGE. I2 PP2A, which is the same as TAF-1β or PHAPII, is a nuclear protein that is a
homologue of the human SETα protein [131]. In AD brain there is a shift from nuclear to
cytoplasmic localization of I2 PP2A [132]. Both I1 PP2A and I2 PP2A interact with the catalytic
subunit of PP2A [133]. The level of I1 PP2A is ~ 20% increased in AD brains as compared
with age-matched control brains which probably is a cause of the decrease in PP-2A activity
in AD brain.

Involvement of more than one kinase and phosphorylation site in abnormal
hyperphosphorylation of tau

Hyperphosphorylation promotes the assembly of tau into PHF/SF [134]. In vitro studies
have demonstrated that phosphorylation of tau to ~4-6 moles/mole of the protein converts it
into an ADP-tau-like state, that is, where instead of promoting it inhibits microtubule
assembly by sequestering normal tau and other MAPs. On further hyperphosphorylation to
~9-12 moles phosphate/mole of the protein, tau self-assembles into PHF/SF. The FTDP-17
mutated taus are more readily hyperphosphorylated than the normal/wild-type human brain
tau, become inhibitory and self-assemble into PHF/SF at a lower stoichiometry of
phosphorylation than the corresponding wild-type protein [42].

Abnormally hyperphosphorylated tau from AD brain cytosol, the AD P-tau, self-assembles
into bundles of PHF/SF [134, 135]. On treatment with PP-2A, which dephosphorylates most
of the known abnormally hyperphosphorylated sites, including Thr231 and Ser262, the AD
P-tau loses its ability to both inhibit microtubule assembly and to self-assemble into PHF/SF
[135]. Re-phosphorylation of the PP-2A de-phosphorylated AD P-tau, the PP2A-AD-P-tau,
by PKA followed by CaMKinase-II and GSK-3β, or cdk5, or cdk5 followed by GSK-3β,
results in phosphorylation of Thr231 and Ser262 among several other sites, and restores its
ability to inhibit microtubule assembly and self-assemble into PHF/SF. The bundles of
filaments formed under these conditions are congophilic and very reminiscent of
neurofibrillary tangles seen in AD brain. Re-phosphorylation of PP-2A-AD P-tau by none of
the above kinases individually, however, phosphorylates at both Thr231 and Ser262 and
restores its self-assembly into PHF/SF. Thus, these studies [135] revealed that more than one
specific combination of kinases are involved in converting normal tau into an AD P-tau-like
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state, and that PP-2A can alone convert the pathological state of the protein to a normal-like
state.

Role of decreased brain glucose metabolism in neurofibrillary degeneration
In addition to abnormal hyperphosphorylation, tau is also abnormally glycosylated and the
latter appears to precede the former in AD brain [136, 137]. In vitro studies indicate that the
abnormal glycosylation promotes tau phosphorylation with PKA, GSK-3β and ckd5, and
inhibits dephosphorylation of tau with PP2A and PP5 [138, 139]. In addition, like some
other neuronal phosphoproteins, tau is also O-GlcNAcylated [140, 141]. In contrast to
classical N- or O-glycosylation, O-GlcNAcylation which involves the addition of a single
sugar at serine/threonine residues of a protein, dynamically post-translationally modifies
cytoplasmic and nuclear proteins in a manner analogous to protein phosphorylation [142].
O-GlcNAcylation and phosphorylation reciprocally regulate each other. In AD, probably
due to impaired glucose uptake/metabolism, there is a global decrease in O-GlcNAcylation.
Including that of tau. Decreased glucose metabolism in cultured cells and in mice, which
decreases the O-GlcNAcylation of tau, produces abnormal hyperphosphorylation of this
protein [143]. Thus, inhibition of O-GlcNAcylase, the enzyme which hydrolyses the
removal of this sugar moiety from proteins, is a promising therapeutic target for AD and
related tauopathies. Inhibition of O-GlcNAcylase with PUGNac or NAG-AE inhibits
hyperphosphorylation of tau by increasing its O-GlcNAcylation.

Subgroups of AD
Given the multi-factorial nature of AD, identification of different disease subgroups which
might represent different etiopathogenic mechanisms will not only improve the accuracy of
the diagnosis but also help develop and measure the efficacy of different therapeutic drugs
towards these disease subgroups. Because of clinical heterogeneity, the diagnosis of AD
remains probable till postmortem histopathological examination, and is made primarily by
exclusion of other causes of dementia [144]. AD histopathology shows considerable
qualitative and quantitative heterogeneity. AD can be neocortical type, limbic type and
plaque-dominant type, and it may present with numerous neurofibrillary tangles exclusively
confined to the hippocampus and entorhinal cortex [145]. The two most common
confounding diagnoses are cerebral vascular disease (multi-infarct dementia) and dementia
with Lewy bodies.

Increased rates of ventricular volume and whole brain atrophy have been demonstrated in
AD [146]. The whole brain atrophy in AD brain results in a loss of brain mass of as much as
~2-3% per year compared with ~0.4-0.5% in age-matched control subjects [147]. A number
of animal and human studies have suggested that Aβ1-42 levels in cerebrospinal fluid (CSF)
reflect the amyloid β pathology in the brain. Reduction of Aβ1-40 and Aβ1-42 in the brain of
adult rats treated orally with γ-secretase inhibitors have been found to result in decreased
levels of Aβ in both brain and CSF [148, 149]. An inverse relation between in vivo amyloid
load and CSF levels of Aβ1-42 has been found in humans [150]. Antemortem CSF levels of
Aβ1-42, total tau and phosphotau-Thr231 have been reported to reflect the histopathological
changes observed postmortem in the brains of AD cases [151, 152]. The CSF levels of tau
have been shown to be markedly increased in patients with diffuse axonal injury in head
trauma which revert on clinical improvement [153]. Thus, bulk of the evidence supports that
CSF reflects the state of the brain protein metabolism.

Development of therapeutic drugs requires our ability to accurately diagnose the disease and
its specific subtypes, and the availability of specific outcome measures. We postulate that
more than one disease mechanism and signalling pathway are involved in producing the AD
pathology, especially the neurofibrillary degeneration of abnormally hyperphosphorylated
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tau, and that various subgroups of AD can be identified based on the CSF levels of proteins
associated with senile (neuritic) plaques and neurofibrillary tangles. Towards testing this
hypothesis, we immunoassayed the levels of tau, ubiquitin and Aβ1-42 in retrospectively
collected lumbar CSFs of 468 patients clinically diagnosed as AD (353 CSFs) and as non-
AD neurological and non-neurological cases (115 CSFs) and, based on the level of these
molecular markers, all subjects were subjected to the latent profile analysis to determine the
assignment of each subject to a particular cluster. We found that AD subdivides into at least
five subgroups based on the CSF levels of A1-42, tau and ubiquitin, and that each subgroup
presented a different clinical profile [154]; these five subgroups are:

AELO: AD with low Aβ1-42, high incidence of
APOE4, and Late Onset

ATEO: AD with low Aβ1-42, High Tau and Early
Onset

LEBALO: AD with high incidence of Lewy
Bodies, low Aβ1-42, and Late Onset

HARO: AD with High Aβ1-42 and Recent Onset

ATURO: AD with low Aβ1-42, high Tau, high
Ubiquitin and Recent Onset

Subgroups AELO, ATEO, HARO and ATURO accounted for approximately 50%, 22%, 5%
and 1%, respectively, of the AD cases studied (Fig 2). Subgroup LEBALO, which contained
a majority of AD cases with Lewy bodies, accounted for ~19% of the AD cases.

To classify diagnosed AD cases into the proposed subgroups, we sought a simple set of rules
using the level of only one indicator protein at any stage in the classification process.
Ideally, it would classify cases with a sensitivity and a specificity of no less than 90% of
each category and a comparable overall level of correct classification. The algorithm must
unambiguously categorize all cases. A decision tree based on the algorithm was derived
based on examination of cluster characteristics and experimental runs that came closest to
fulfilling those criteria (see Fig. 2). The respective sensitivities and specificities were:
AELO—90%, 92%; ATEO—90%, 95%; LEBALO—88%, 99%; HARO—100%, 99% and
ATURO—100%, 100%. This study demonstrated that CSF levels of Aβ1-42, tau and
ubiquitin could diagnose AD in five different subgroups at sensitivities and specificities of
greater than 88% and, overall, 86% of cases were classified correctly. This rate of diagnostic
accuracy not only is superior to using one of these markers individually or in combination of
twos, but also exceeds the biomarker criteria of the Consensus Report [155].

Our recent studies have revealed that more than one signalling pathway is involved in
neurofibrillary degeneration. We have found that tau can be abnormally
hyperphosphorylated to self-assemble into bundles of paired helical filaments with more
than one combination of protein kinases and that this phosphorylation of tau can be
regulated by PPs, especially PP-2A [135]. Thus, it is likely that, in future, additional
subgroups of AD may be identified from phosphorylation patterns of CSF tau of AD
patients.

The CSF analysis not only helps identify a specific AD subgroup of a patient but also can
serve as the outcome measure of a drug treatment. We discovered that memantine inhibited
abnormal hyperphosphorylation of tau in rat hippocampal slices in culture [117], and that
this effect of the drug was through disinhibition of PP-2A activity [156] which we
previously showed to be down regulated in AD brain [19]. Based on our finding on the
restoration of the PP-2A activity by memantine, Gunnarrsson et al. [157] investigated and
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found a significant decrease in phosphotau level in the CSF of patients one year after
treatment with memantine.

Because of the involvement of different etiopathogenic mechanisms in AD, the
identification of different subgroups of this single major cause of age-associated dementia is
critical for development of potent and specific drugs that can prevent and cure this disease.
Currently, several hundred drugs for AD are under development by the pharmaceutical
industry. Stratification of the test subjects in clinical trials by disease subgroups may
increase the chance of success up to several fold. The future of therapeutic drugs for AD
may depend on recognition of different subgroups of the disease.

Therapeutic approaches to inhibit neurofibrillary degeneration
Neurofibrillary degeneration of abnormally hyperphosphorylated tau is downstream to
alterations in more than one signalling pathway, but pivotally involved in the pathogenesis
of AD and related tauopathies. Inhibition of this lesion is likely to arrest these diseases,
which are products of multiple etiopathogenic mechanisms. The most promising therapeutic
approaches to inhibit neurofibrillary degeneration and consequently AD and related
tauopathies are (1) to inhibit the abnormal hyperphosphorylation of tau, (2) to inhibit
sequestration of normal MAPs by the AD P-tau, (3) to inhibit misfolding of tau, and (4) to
directly stabilize microtubules. The inhibition of abnormal hyperphosphorylation of tau can
be carried out best apparently by inhibiting activities of both GSK-3 and cdk5, by activating
the PP-2A activity or by increasing brain glucose uptake/metabolism which could enhance
O-GlcNAcylation and consequently the inhibition of the abnormal hyperphosphorylation of
tau.

Most inhibitors of GSK-3 also inhibit cdk5 and vice versa. To overcome this problem,
several highly selective inhibitors of each of these kinases have been recently developed by
the pharmaceutical industry, and some of these compounds are at different stages of human
clinical trials for the treatment of AD. Our in vitro studies on the generation of abnormally
hyperphosphorylated tau [135] suggest that compounds which inhibit both GSK-3 and cdk5
might even be more effective than the highly selective inhibitors of one of these enzymes in
inhibiting neurofibrillary degeneration.

Memantine, a low to moderate affinity NMDA receptor antagonist, which improves mental
function and the quality of daily living of patients with moderate to severe AD [158, 159],
restores the PP-2A activity, and reduces the abnormal hyperphosphorylation of tau at
Ser-262 and the associated neurodegeneration in hippocampal slice cultures from adult rats,
and PC-12 cells in culture [117, 156]. Furthermore, the restoration of the PP-2A activity to
normal levels by memantine also results in the restoration of the expression of MAP2 in the
neuropil and a reversal of the hyperphosphorylation and the accumulation of neurofilament
H and M subunits. Memantine, however, is a positively charged molecule and probably
enters a neuron only during excitotoxicity when the NMDA receptor channels are open.
Therefore, its therapeutic benefit might be limited to only those patients and/or the advanced
states of the disease when there is a persistent excitotoxicity. Generation of cell permeable
memantine-like compounds can help develop potent therapeutic drugs for AD and related
tauopathies. The restoration of the PP-2A activity appears to be due to the binding of
memantine to I2

PP2A and disinhibition of its activity towards PP-2A [156]. The CSF level of
phosphotau is significantly reduced in AD patients after one year treatment with memantine
[157]. All these findings taken together suggest that PP-2A is a promising therapeutic target
for AD and related tauopathies.

Recent studies suggest inhibition of calpains as another approach for the inhibition of
neurofibrillary degeneration [160]. Calpain, the activity of which is up-regulated in AD
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brain, activates cdk5 through cleavage of its activators p39 and p35 to p29 and p25,
respectively [94, 95]. Calpain also cleaves and activates calcineurine, which regulates the
phosphorylation of CREB [160]. Thus, inhibition of calpain can be neuroprotective, both by
inhibition of cdk5 activity and by increase in CREB activity.

The abnormally hyperphosphorylated tau causes neurofibrillary degeneration by
sequestration of normal MAPs. A competitive inhibition of this sequestration by small
molecules can arrest this pathology. Though inhibition of protein–protein interaction is
generally a somewhat challenging task, there is a great advantage in developing drugs
against such specific targets.

Since O-GlcNAcylation and phosphorylation reciprocally regulate each other, an approach,
independent from modulation of tau kinases and phosphatases, is to restore the O-
GlcNAcylation of tau, which is compromised in AD [143] to normal level. This could
probably be achieved by increasing brain glucose levels through up-regulating the activity of
neuronal glucose transporters such as Glut3 and or by mediation of the activity of the O-
GlcNAcylase with PUGNec- and NAG-AE-like compounds.

The accumulation of abnormally hyperphosphorylated tau in AD and related tauopathies
indicates that either the ubiquitin-proteasome system and or the chaperones in the affected
neurons are overwhelmed. Isopeptidase activity might be increased, keeping the
hyperphosphorylated tau from polyubiquitination for degradation by the ubiquitin
proteasome pathway. Thus, isopeptidase inhibitors and drugs that promote heat-shock
protein mediated clearance of tau may also inhibit neurofibrillary degeneration. Recently,
HSP90 inhibitors have been shown to result in clearance of hyperphosphorylated tau
through increase in the expression of chaperones HSP70-interacting protein (CHIP), a tau
ubiquitin ligase, that re-folds the misfolded proteins [161, 162]. Most recently,
immunization of P301L transgenic mice with a small tau phosphopeptide has been reported
to clear the hyperphosphorylated tau [163]. Another approach to overcome the inhibitory
activity of the hyperphosphorylated tau is the use of microtubule stabilizing drugs like taxol
[118, 162, 164].

A large majority of therapeutic drugs currently under development for AD are focused on
inhibiting β-amyloid. However, there is increasing interest in developing drugs that can
inhibit tau pathology. After all, neurofibrillary degeneration of abnormally
hyperphosphorylated tau is apparently required for the clinical expression of AD and tau
pathology alone in the absence of any β-amyloid causes frontotemporal dementia and other
tauopathies. Independent of whether the amyloid cascade hypothesis proves to be true or
untrue, inhibition of neurofibrillary degeneration is likely to inhibit the clinical phonotype of
AD and related tauopathies. A polytherapy targeting both β-amyloid and neurofibrillary
degeneration might be synergistically beneficial in AD patients.

At present, a large majority of the anti-neurofibrillary degeneration drugs under
development are GSK-3 inhibitors; a few target ERK-2, tau phosphatases, and aggregation
of the hyperphosphorylated tau into filaments. In the authors’ opinion, inhibition of the
abnormal hyperphosphorylation of tau appears to be the most promising therapeutic target
for AD and related tauopathies. Inhibition of GSK-3 activity and modulation of PP-2A,
which is the major tau phosphatase and the activity of which is compromised in AD brain,
are among the most attractive approaches to inhibit the abnormal hyperphosphorylation of
tau. In the case of PP-2A, the restoration of its activity to normal level should have low risk
of any deleterious side effects. GSK-3 is involved in several important signalling pathways
and inhibiting its activity carries risks, but then, apparently there is a safe therapeutic
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window for this enzyme activity; LiCl, a GSK-3 inhibitor, has been successfully prescribed
for bipolar disorder for many years.

An advantage of targeting neurofibrillary degeneration for the development of therapeutic
drugs is that the efficacy of such neuroprotective drugs can be directly monitored by
assaying the CSF level of total tau as a marker of neurodegeneration and of various
phosphotaus as markers of inhibition of the abnormal hyperphosphorylation of tau.

A retrospective study of 2,661 autopsied brains has revealed that neurofibrillary
degeneration precedes by several years the clinical expression, that is, dementia, in AD
[165]. It will be very important to be able to detect neurofibrillary degeneration, probably by
determining the CSF levels of total tau and phosphotaus at the presymptomatic stage of the
disease. Inhibition of neurofibrillary degeneration in presymptomatic individuals can most
probably prevent AD and related tauopathies. APOE4 carriers who are at ~3.5-fold
(oneAPOE4 allele) to ~10-fold (APOE4/4) higher risk than the non-carriers of this allele for
developing late onset AD [166], individuals with Down syndrome who invariably develop
AD histopathology in the fourth decade of life, and individuals with a strong family history
of AD or related tauopathies are among others who can benefit from employing therapeutic
inhibitors of neurofibrillary degeneration as a prevention measure.

In short, neurofibrillary degeneration may result from more than one etiopathogenic
mechanism, and a large number of therapeutic approaches are available to inhibit this
pivotal lesion of AD and related tauopathies. . Inhibition of neurofibrillary degeneration is
very promising both as a treatment as well as a prevention measure for AD and related
tauopathies.
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Fig. 1.
A schematic showing different major steps of the ‘Metabolic/Signal Transduction
Hypothesis’. Alzheimer disease (AD) and other tauopathies require a genetic predisposition
and are triggered by a variety of environmental factors, affecting one or more specific signal
transduction pathways which result in a protein phosphorylation/dephosphorylation
imbalance and the abnormal hyperphosphorylation of tau that leads to neurofibrillary
degeneration and dementia. In AD, the protein phosphorylation/dephosphorylation
imbalance in the affected neurons is generated at least in part by a decrease in the activities
of tau phosphatases, that is PP-2A and PP-1; the activities of tau kinases, such as cdk5,
GSK-3, CaM kinase II and PKA might also be increased in the affected neurons. This
protein phosphorylation/dephosphorylation imbalance probably involves an alteration of a
specific signal transduction pathway(s) produced by an increase in the levels of an
extracellular signal, for example, FGF2 or an alteration in the molecular topology of the
neuronal cell membrane or both. With age, the molecular topology of the cell membranes is
altered due to a decrease in membrane fluidity. The mutations in transmembrane proteins,
such as β-APP, PS1 and PS2, increase the vulnerability of the cell membrane to alteration in
pathological signal transduction. The increased risk for AD in the carriers of APOE4 allele
as opposed to APOE2 or APOE3 alleles might also involve alteration of signal transduction
through the interaction of APOE4 with the neuronal cell membrane. Any mutation or
posttranslational modification of tau that will make it a better substrate for abnormal
hyperphosphorylation will also increase the risk for the disease. High cholesterol might be
involved in decreasing membrane fluidity. Decreased glucose metabolism/uptake might lead
to the abnormal hyperphosphorylation of tau through a decrease in its O-GlcNAcylation.
(Reproduced with permission from Iqbal and Grundke-Iqbal, Acta Neuropathologica, 2005,
109:25-31).
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Fig. 2.
Three-dimensional representation of the five Alzheimer’s disease subgroups (Clusters 1, 3,
4, 5 and 6) and the control subjects (Cluster 2). AELO = AD with low Aβ1-42, high
incidence of apolipoprotein E4 and late onset; ATEO = AD with low Aβ1-42, high tau, and
early onset; ATURO = AD with low Aβ1-42, high tau, high ubiquitin, and recent onset;
HARO = AD with high Aβ1-42 and recent onset; LEBALO = AD with high incidence of
Lewy bodies, low Aβ1-42, and late onset. (Reproduced with permission from Iqbal et al.,
Annals of Neurology, 2005, 58:748-757.)
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