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Abstract

Bone marrow is thought to be a primary hematopoietic organ. However, accumulated evidences 

demonstrate that active function and trafficking of immune cells including regulatory T cells, 

conventional T cells, B cells, dendritic cells, NKT cells, Neutrophils, myeloid-derived suppressor 

cells and mesenchymal stem cells are observed in the bone marrow. Furthermore, bone marrow is 

a predetermined metastatic location for multiple human tumors. In this review, we discuss the 

immune network in the bone marrow. We suggest that bone marrow is an immune regulatory 

organ capable of fine tuning immunity and may be a potential therapeutic target for 

immunotherapy and immune vaccination.

Keywords

Bone marrow; immunity; memory T cell; regulatory T cell; tumor

Introduction

Bone marrow is the tissue comprising the center and the epiphysis of bones, which is the 

place where new blood cells are produced. Bone marrow has been long thought to be a 
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hematopoietic organ. However, it is well known that B cells are produced and matured in the 

bone marrow. Antigen specific antibody producing, long-term lived plasma cells are largely 

found in the bone marrow. Thus, bone marrow contributes to humoral immune responses. 

Although normal bone marrow lacks the organized T cell and B cell areas, bone marrow is a 

nest for function, migration and selective retainment of innate and adaptive immune cells. In 

this review, we discuss the immune networks in the bone marrow. We suggest that bone 

marrow is an immune regulatory organ capable of fine tuning immunity and may be a 

potential therapeutic target for immunotherapy and immune vaccination.

Bone marrow structure

Bone is an organ composed of cortical and trabecular bone, cartilage, haemopoetic and 

connective tissues. Spongy or trabecular bone is composed of a lattice of fine bone plates 

filled with hematopoietic marrow, fat containing marrow, or blood vessels. Arterial vessels 

enter the marrow through foramina nutricia and then divide into several arterioles. Small 

arterioles and capillaries from these vessels span throughout the bone marrow and supply 

sinusoids, which are interconnected by intersinusoidal capillaries (Figure 1, 2).1 The bone 

marrow cavity in trabecular bone is subdivided into four regions: endosteal, subendosteal, 

central and peri-sinusoidal. Bone marrow consists of a hematopoietic component 

(parenchyma) and a vascular component (stroma) (Figure 1). The parenchyma includes 

hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) (Figure 1), 

which are not randomly distributed in the bone marrow but rather are localized close to the 

endosteum of the bone and more around blood vessels (Figure 2).

Bone marrow stroma contains multipotential nonhematopoietic progenitor cells (Figure 1C) 

capable of differentiating into various tissues of mesenchymal origin, including osteoblasts, 

endothelial cells, reticular cells, fibroblasts and adipocytes. The bone marrow's 

microvasculature with a single layer endothelium forms sinusoid (Figure 1B), which 

radically distributes around the draining central sinus. The vasculature provides the barrier 

between the bone marrow compartment as a functional and spatial entity from 

extralymphoid organ and the peripheral circulation.1

The stromal cells including endothelial cells provide signals for migration of individual 

leukocytes into and out of the bone marrow, involving in rolling/extravasations along the 

vascular endothelium. Compared with other organ-specific endothelial cells, bone marrow-

derived endothelial cells (BMECs) constitutively express certain cytokines and adhesion 

molecules like vascular cell adhesion molecule 1 (VCAM-1 or CD106) and E-selectin 

(Figure 3). Additionally, organ regeneration relies on the presence of endothelial precursors 

among the grafted cell population, which improves vascularization of damaged tissues or by 

secretion of proangiopoietic factors by the infused cells.2 Therefore, it not only implies a 

role of bone marrow microvasculature system in stem cell mobilization and development, 

but also indicates that they play key roles in migration and maintenance of leukocyte 

function in bone marrow environment.
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Immune cells in the bone marrow

Immune system is functionally compartmentalized into primary lymphoid organs and 

secondary lymphoid tissues where immune responses are initiated and maintained. T-cell 

areas of secondary lymphoid organs (SLOs) have a unique architecture and cellular 

composition which is thought to be a prerequisite for primary T-cell responses.3 Bone 

marrow displays structural and functional features resembling a SLO, contains follicle-like 

structures similar to lymph nodes or spleen, although it lacks the organized T- and B-cell 

areas (Figure 1D). Bone marrow microenvironment provides appropriate support for T cells 

to develop in the absence of the thymus.4 Lymphoid follicles in the bone marrow are 

increased during infections, inflammation and autoimmunity.

Bone marrow is vascularized by blood (Figure 1B), not by lymphatic vessels, and could 

represent a major part of the lymphocyte recirculation network, with billions of lymphocytes 

recirculating through it per day. It has been shown that bone marrow contains various 

immune cells (Table 1). Approximately 8–20% of bone marrow mononuclear cells are 

lymphocytes, with a T cell and B cell ratio of 5:1.5, 6 Bone marrow lymphocytes are 

distributed throughout stroma and parenchyma, and condensed in lymphoid follicles. 

Approximately 1% of the bone marrow mononuclear population represents plasma cells, 

which can produce antibodies. Mouse bone marrow contains 1–5% CD3+ T cells in 

mononuclear cells.6, 7 Among T cells, there are about 1.5% CD4+ T cells and 2.0-2.5% 

CD8+ T cells.8-11 Interestingly, approximately 1/3 of CD4+ T cells are CD4+CD25+ 

regulatory T (Treg) cells,12 and the CD4:CD8 ratio in the bone marrow is 1:2, which is 

inverted as compared to both peripheral lymph nodes and the blood.8, 10 Two-thirds of bone 

marrow T cells express surface markers indicative of antigen experience, such as CD44hi 

and CD122+, whereas most T cells in spleen and peripheral lymph nodes exhibit naïve 

phenotypes.8 In addition to T cells, there are 1–2% CD11c+ dendritic cells6, 7, 13 and 0.4-4% 

natural killer T cells in bone marrow.14-16 Therefore, bone marrow contains substantial 

amount of immune cells. Altogether, the evidences suggest that bone marrow is a lymphoid 

organ which may play a key role in immunity.

CD4+ T cell

Bone marrow contains a high proportion of CD4+ T cells displaying a memory phenotype, 

which express high levels of CD44 in mice and low levels of CD45RA in humans (Figure 2, 

3).8, 11 Similar to the CD8+ T cells, basal homeostatic proliferation and survival of CD4+ 

memory T cells are regulated by IL-7, identified as the dominant cytokine, and IL-15, an 

accessory cytokine.17 Although human CD4+ memory T cells proliferate in vitro in response 

to IL-7 and IL-15,18 studies in mice showed that acute homeostatic proliferation of 

“memory-phenotype” CD4+ T cells is independent of IL-7 and IL-15.19 Both cytokines were 

also ruled out to participate in CD4+ memory T cell survival, because CD4+ memory T cells 

deficient for CD132 (γc-chain, jointly used by IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 

receptors) are effectively maintained in vivo, but other work demonstrated that IL-7 is 

actually required for survival of both memory phenotype and T cell receptor transgenic 

CD4+ memory T cells.20
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Treg cell

Naturally occurring CD4+CD25+ Treg cells represent 5-10% of the CD4+ T cells. However, 

our group has reported that 30% of CD4+ T cells are functional Treg cells in bone marrow.12 

In patients with prostate cancer bone marrow metastasis, bone marrow Treg cells are further 

increased (Zou et al, unpublished data). It suggests that bone marrow is a preferential site for 

migration, or selective retainment and function of Treg cells.12, 21, 22 Furthermore, we have 

demonstrated that CXCR4/CXCL12 (CXC chemokine ligand 12, stromal cell-derived 

factor-1 (SDF-1) signaling mediates Treg cell trafficking to bone marrow (Figure 2, 3).12 

Mouse Treg cells are known to reduce the severity of graft-versus-host disease (GVHD).6, 23 

Granulocyte colony-stimulating factor (G-CSF) decreases bone marrow CXCL12, and in 

turn mobilizes bone marrow Treg cells. These findings may help explain why G-CSF 

administration reduces the severity and mortality in acute GVHD.13, 24

Given that high levels of Treg cells are found in the bone marrow, bone marrow 

transplantation may result in increased numbers of Treg cells and in turn lead to a reduction 

of autoantibody production and protection from lethality caused by severe GVHD.25 

Additionally, antigen presentation by bone marrow dendritic cells can induce the expansion 

of CD4+CD25+ T cells while simultaneously activating their ability to suppress cytokine 

secretion by effector T cells. Therefore, agents that mobilize Treg cells from bone marrow 

would be therapeutically beneficial in some clinical settings.

It is well known that Treg cells are implicated in the pathogenesis of autoimmune diseases, 

tumors, and organ transplantation.26-29 Our unpublished data indicates that Treg cells may 

regulate bone biology. For example, Treg cells can suppress osteoclastogenesis and 

ameliorate osteolytic bone resorption and destruction. The levels of bone marrow Treg cells 

are much higher in patients with prostate cancer. Patients with prostate cancer often have 

bone metastases with bone precipitation as a pathological characteristic. It is assumed that 

bone marrow Treg cells may contribute to bone pathology in patients with prostate cancer. 

The studies in our laboratory will address this possibility. Nonetheless, bone marrow Treg 

cells might be a novel therapeutic strategy for clinical diseases and transplantation.30, 31

IL-17+CD4+ T (Th17) cells

Interleukin-17 (IL-17; originally termed CTLA8, also known as IL-17A) belongs to a family 

of six members and has been of great interest recently owing to the discovery that the 

production of IL-17 characterizes a subset of CD4+ helper T cells (Th17 cells).32 The 

development of Th17 cells is coupled to signal transducer and activator of transcription 3 

(STAT3) and the transcription factor RORγt and depends on IL-6 and TGF-β, which is 

shared by regulatory T cells for development and function.33 Th17 cells are characterized by 

the production of a distinct profile of effector cytokines, including IL-17 (or IL-17A), 

IL-17F, IL-21 and IL-22.34-36 Th17 cells play an important role in inflammation, 

autoimmune disease and tumor.37-39

Th17 cells are induced and elevated in multiple myeloma (MM) by the elevated cytokine 

production of IL-6, IL-1β and TGF-β in bone marrow microenvironment.33 IL-17 in turn 

promotes myeloma cell growth and suppresses immune function in MM.33 It is also reported 

Zhao et al. Page 4

Cell Mol Immunol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that elevated Th17 cells mediate bone resorption and destruction by inducing osteoclast 

(OC) formation in MM patients.40 Bone marrow mesenchymal stem cells (MSCs) inhibit the 

differentiation and function of Th17 cells and ameliorate multiple sclerosis (MS) in an 

Experimental autoimmune encephalomyelitis (EAE) model.41, 42 Administration of bone 

marrow stromal cells ameliorates experimental autoimmune myasthenia gravis (EAMG) by 

reducing Th17 cells.43 Several groups have shown that Th17 cells contribute to GVHD after 

bone marrow transplantation.44, 45 There is evidence showing increased Th17 cells in low 

risk myelodysplastic syndrome (MDS).46 Thus Th17 cells play an important role in bone 

marrow-mediated immunity and may serve as a therapeutic target for bone marrow-related 

diseases.

CD8+ T cell

Bone marrow is the preferred site for proliferation of memory CD8+ T cells.47 Antigen 

specific memory CD8+ T cells receive proliferative signals by IL-7 and/or IL-15 in the bone 

marrow. It suggests that the bone marrow is a “niche” for the antigen-independent 

proliferation of memory CD8+ T cells. Memory CD8+ T lymphocyte populations in bone 

marrow display a phenotype with CD44 positive and the higher percentage of HLA-DR 

molecule, which suggests that CD8+ T cells in bone marrow are in an activated state. High 

numbers of tumor-associated antigen (TAA)-specific CD8+ T cells were shown to persist in 

the bone marrow for several months after acute infection or tumor development.48, 49 

Adoptive transfer of bone marrow cells from lymphochoriomeningitis virus (LCMV)-

immunized mice to immunodeficient recipients provides antiviral protection.9 Thus memory 

CD8+ T cells in the bone marrow are able to mount an effective secondary response. A long 

time after priming, memory CD8+ T cells proliferate more extensively in the bone marrow 

than they do in either secondary lymphoid or extra-lymphoid organs and undergo basal 

proliferation in the bone marrow.47, 50 Indeed, bone marrow-resident T cells are functionally 

distinct from those in other compartments.10 Compared to their blood counterparts, bone 

marrow-derived CD8+ T cells induce milder GVHD and possess higher anti-tumor activity.6

Bone marrow also functions as a site of recruitment and retention for central memory T cells 

by providing specific recruitment signals that mediate the recruitment of central memory T 

cells from the blood.8 Central memory T cells constitute the largest endogenous subset of 

CD8+ T cells in murine bone marrow and are also prominent in human bone marrow. There 

are also naïve CD8+ T cells and effector memory CD8+ T cells in bone marrow, but these 

populations are smaller (at least in mice) than naive T cells in SLOs or effector memory T 

cells in spleen, liver, and lung.51 Accordingly, adoptively transferred central memory T cells 

from immunized mice accumulated and colonized in recipient bone marrow more effectively 

than effector T cells and naive T cells. Overall, the bone marrow may be an important organ 

for CD8+ T cell-mediated immunity.

Natural killer T cell

Natural killer T (NKT) cells are defined as T cells bearing the common NK cell marker such 

as NK1.1 (NKR-P1C) in mice or CD161 (NKR-P1A) in humans, expressing IL-2Rβ 

(CD122), Ly49 family receptors and TCR.52, 53 In normal adult mice, NKT cells are found 

in thymus, bone marrow, liver and spleen at a level of 0.5 to 1.5 million cells per organ. 
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NKT cells are rare in lymph nodes and virtually absent from gut intraepithelial lymphocytes 

(IEL). Besides thymus and liver, NKT cells can be generated in bone marrow of nude 

mice.14, 54 Reconstitution of adult thymectomized irradiated mice with syngeneic bone 

marrow cells gives rise to NKT cells in the recipient organs,55, 56 suggesting that NKT cells 

can develop extrathymically from the bone marrow. Peripheral NKT cells are rapidly 

deleted upon activation and replaced by NKT cells that have been generated by de novo 

proliferation in bone marrow. Thus, bone marrow plays a major role in restoring NKT cell 

homeostasis.

Bone marrow NKT cells may play immune stimulatory and inhibitory roles in the regulation 

of bone marrow transplantation immunity15, 57, 58 and tumor immunity.59, 60 Adoptive 

transfer of donor NKT cells significantly ameliorates GVHD in a murine model of bone 

marrow transplantation.58 The relative protection against GVHD was contributed to, to 

some extent, the population of NKT cells in bone marrow.58, 61 NKT cells are also believed 

to be among the most important anti-cancer cell populations in the mouse, causing rejection 

of malignant cells in vivo.59, 60 Thus, bone marrow NKT cells could differentially regulate 

immune responses in different settings.

B cell

Bone marrow is major organ for the development and maturation of B cells. B cells are 

generated from HSCs and developed in bone marrow before they egress into peripheral 

blood to reach peripheral lymphoid organs. Specific cellular niches for B cell development 

include CXCL12-expressing cells and IL-7-expressing cells.62 Immature B cells, like pro-B 

and pre-B stage cells, are regulated by extrinsic signals from the bone marrow during their 

development.63 B cell precursors and plasma cells reside in the specific niches and move 

between the niches as development proceeds.62

Majority of serum antibody is produced by terminally differentiated plasma cells. These 

nondividing cells differ from memory B cells in typical B cell markers, including major 

histocompatibility (MHC) class II and surface immunoglobulin. The main function of 

plasma cells is to continuously secrete large quantities of specific antibody. In contrast, 

memory B cells do not spontaneously secrete antibody. These cells proliferate and 

differentiate into antibody-secreting cells (ASC) following appropriate stimulation. 

Interestingly, some plasma cells are long-lived. Most importantly, the long-lived plasma 

cells are found in the bone marrow. The bone marrow is a reservoir for long-lived plasma 

cells and is involved in the maintenance of long immunity.64, 65 Antigen specific bone 

marrow plasma cells have been detected for more than 300 days post viral infection.64 The 

persistence of plasma cells within the bone marrow might be supported by soluble factors 

and/or cell–cell contact in the bone marrow microenvironment, in which one critical element 

is the bone marrow reticular stromal cells. Stromal cells provide growth factors as well as 

cell contact-dependent signals, such as IL-6 and cell contact–mediated signals (e.g., VLA-4) 

(Figure 2).66 In addition to stromal elements, plasma cells could interact with various other 

bone marrow resident cells, including developing lymphoid and myeloid lineage cells. 

Therefore, bone marrow plasma cells are not intrinsically long-lived. Bone marrow stromal 

cells provide survival factors to them. The plasmablasts can migrate to the bone marrow67-69 
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and differentiate into memory plasma cells after docking with CXCL12-expressing stromal 

cells.62, 69 The overall impact of these interactions supports the longevity of the plasma cells 

in bone marrow. Therefore bone marrow contributes to humoral immune responses.

Neutrophil

Neutrophils are an essential component of innate immune system and may represent a 

critical link between the innate and adaptive immune system.70 They are differentiated from 

stem cells in the bone marrow by a process termed granulopoiesis.71 Neutrophils are 

generated at a rate of 1 to 2×1011 cells per day in a normal adult human under normal 

condition.72 Several myeloid transcription factors are essential for granulopoiesis, including 

CCAAT enhanced binding protein α (C/EBPα) PU.1 and growth factor independent-1 

(GFI-1).73 PU.1 is an ETS family transcription factor encoded by spleen focus forming virus 

(SFFV) proviral integration oncogene (SPI1) in human74 and absolutely required for 

myeloid lineage commitment.75, 76 The balance between PU.1 and C/EBPα determines the 

commitment of granulocytes and monocytes.77-79 High expression of PU.1 drives monocytic 

differentiation and C/EBPα promotes granulocytopoiesis.72, 80 GFI-1 is also necessary for 

neutrophil differentiation and it is upregulated during granulocytic lineage 

commitment.81, 82 G-CSF is critical in regulating granulopoiesis at several stages. G-CSF 

directs the commitment of multipotent progenitor cells down to the myeloid lineage 

stimulates proliferation of granulocytic precursors and reduces the transit time of neutrophils 

through granulocytic compartment.83, 84

Bone marrow is a large pool for the mature neutrophils.85 There are 1-2% of mature 

neutrophils in the circulation in mice.86 The majority of neutrophils are reserved in the bone 

marrow. A large amount of neutrophils can be mobilized rapidly in response to infection and 

stress, which suggests that the bone marrow reserve is critical for host defense. CXCR4/

CXCL12 signaling pathway plays a crucial role for maintaining neutrophils in bone marrow 

(Figure 3).87, 88 It is reported that administration of G-CSF reduces the expression of 

CXCR4 on bone marrow neutrophils and Treg cells, and the levels of bone marrow 

CXCL12.12 This explains why G-CSF administration mobilizes neutrophils from bone 

marrow to peripheral circulation.89, 90

Once released from the bone marrow, neutrophils circulate in the peripheral blood and have 

a relatively short half-life (about 6-8 hours).71, 91 Bone marrow serves as an important site 

for neutrophil clearance under homeostatic conditions. Senescent neutrophils home back to 

bone marrow depending on Gαi subunit of the heterotrimeric G-protein.92 Senescent 

neutrophils high express CXCR493 and may home back to bone marrow via the CXCR4/

CXCL12 chemokine axis.88 Once senescent neutrophils return to bone marrow, they are 

phagocytosed and destroyed by resident stromal macrophages in bone marrow, which in turn 

stimulates the production of G-CSF by bone marrow macrophages after uptake of apoptotic 

neutrophils and subsequently G-CSF acts as a positive feedback to promote granulopoiesis 

and regulate neutrophils release.91, 92 Thus, bone marrow plays an important role in the 

homeostasis of neutrophils.
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Dendritic cell

Dendritic cells (DCs) play a key role in linking innate and adaptive immune responses.13, 94 

Circulating DCs migrate to the bone marrow where they are retained better than in spleen, 

liver, and lung tissues.95 Homing of DCs to the bone marrow depends on constitutively 

expressed VCAM-1 and endothelial selectins in bone marrow microvessels (Figure 3). The 

migration of DCs to nonlymphoid organs might be advantageous for ‘boosting’ memory 

responses to previously antigen-experienced T cells.96 Bone marrow DCs are able to trigger 

TCMs-mediated responses with antigen-dependent contacts. Bone marrow-derived dendritic 

cells (BMDCs) are distinct from counterpart DCs in extralymphoid tissue, and are essential 

for innate immunity to intracellular infection. BMDCs are able to uptake the blood-derived 

cell-associated TAA, process them and induce antigen-specific systemic protective T cells-

mediated immunity.5 Thus, bone marrow DCs are functionally important in adaptive 

immunity.

Myeloid-derived cell

Myeloid derived cells are a heterogeneous population of cells consisting of myeloid 

progenitors, immature myeloid cells (IMCs) and macrophages.97 IMCs that generated in 

bone marrow differentiate into mature myeloid cells under normal condition. But under 

pathological conditions (e.g. tumor), IMCs are expanded and activated, and become myeloid 

derived suppressor cells (MDSCs), and acquire immunosuppressive activity by producing 

immune suppressive factors such as arginase I or inducible nitric oxidase synthase (iNOS) or 

TGFβ.97, 98 MDSCs express Gr-1 and CD11b, the surface marker for myeloid cell lineage in 

mice.99 In healthy mice, 20-30% of whole bone marrow cells express Gr-1+CD11b+ 

phenotype.100 Based on the two different epitopes of Gr-1 antibodies, Ly6G and Ly6C, 

mouse MDSCs are subdivided into granulocytic MDSCs (CD11b+Ly6G+Ly6Clow) and 

monocytic MDSCs (CD11b+Ly6G-Ly6Chi).101, 102 MDSCs may be defined as cells with 

CD14-CD11b+HLA-DRdim phenotype in human.103, 104 MDSCs are shown to have the 

ability to induce the development and differentiation of Treg cells through cytokine 

production or cell-cell interaction,105, 106 which indicates that MDSCs and Treg cells might 

cooperate to regulate immune response.97 Adoptive transfer of MDSCs inhibits T cell 

alloresponses, prevents GVHD and prolongs the survival of mice.107, 108 MDSC–T cell 

interactions play an important role in protective anti-tumor immunity, infection, 

inflammation and GVHD.107 Bone marrow MDSCs may be an important regulator of 

immune response and may serve as a potential therapeutic target for several clinical 

diseases.

Mesenchymal stem cell

In adult life, stem cells of mesenchymal lineage (MSCs), which compromise 0.01%-0.1% of 

total adult bone marrow cells, are mainly confined to the bone marrow,109 where they are 

multipotential nonhematopoietic progenitor cells capable of differentiating into various 

tissues of mesenchymal origin. Human MSCs express human leukocyte antigen (HLA) class 

I but not HLA class II110 or costimulatory molecules CD80 (B7.1), CD86 (B7.2) or 

CD40.111 MSCs produce cytokines and growth factors for hematopoiesis and may attract 

infused HSCs to the bone marrow by inducing expression of homing receptors.112, 113
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In the bone marrow, MSCs display a great potential role in immunoregulatory activity, 

which comes from the observation that MSCs from various species can exert profound 

immunosuppression by inhibiting T cell proliferation in responses to polyclonal stimuli and 

to their cognate peptide in a MHC-independent manner.24, 114-116 Although the conflicting 

results about MSC-mediated immunosuppression have produced with different methods and 

species, overall data suggests that some soluble factors and mechanisms of cell-cell 

interaction might contribute to the inhibition of MSCs.24, 115, 116 It is reported that MSCs 

could inhibit naive and memory T cell responses to their cognate antigens but it does not 

appear to be antigen specific.24 MSCs also induce T cell anergy117 or T cell apoptosis,118 

suppress T cell IFN-γ production and increase IL-4 secretion, and enhance Treg cell 

compartment.119 MSCs selectively targets antigen-experienced T cell responses in the 

contact with APCs in a noncognate fashion, sparing those that have not been activated by 

TCR engagement.116 Moreover, MSCs appear to discriminate between cellular responses to 

alloantigens and recall antigens.120 The expression of early activation markers such as CD25 

and CD69 on T cell is unaffected in the presence of MSCs, but IFN-γ production is reduced. 

The inhibitory effect of MSCs is directed mainly at the level of cell proliferation without 

interfering with early T cell activation. MSCs do not preferentially target any T cell subset. 

MSCs have a role in inhibiting proliferation and affecting differentiation, antibody 

production and chemotactic behavior of B cells.117, 121 MSCs may inhibit differentiation of 

hematopoietic progenitors into DCs and promote anti-inflammatory cytokine production of 

monocyte-derived DCs.122, 123 MSCs suppress cytokine-induced proliferation and prevent 

cytokine production and cytotoxic activity of NK cells.124, 125 In the context of limited 

understanding about MHC expression on MSCs, it is difficult to ascribe specific TCR/MHC/

peptide interactions to their mechanism of immunoregulation. Notably, the inhibitory effect 

of MSCs does not require the presence of APCs and is not mediated through Treg cells.116 

MSCs have been reported to be used in clinical trials for autologous or allogeneic 

engraftment of bone marrow transplants,126 osteogenesis imperfect,127 stroke,128 

myocardial infarction (MI)129 and GVHD.130 Therefore, bone marrow MSCs have an 

important role in immune regulation and are potential candidates for clinical treatment.

Cytokines and chemokines

Bone marrow-derived cells including leukocytes, HSCs and stromal cells could secret lots of 

cytokines. Stroma cells and cells of hemopoietic lineage in the BM produce both IL-7 and 

IL-15. IL-7 is a “stromal cytokine” produced by a variety of stromal tissues including those 

in bone marrow. The production of IL-7 by bone marrow stromal cells is thought to be 

essential for early B lymphocytes development in mouse (but not in human),131-133 and 

secreted IL-7 in bone marrow is postulated to play a critical role in post-thymic T cell 

homeostasis.54, 134 IL-15 promotes basal homeostatic proliferation and survival of memory 

T cells in different experimental systems, whereas IL-7 performs an overlapping and 

complementary role during acute homeostatic proliferation in lymphopenic 

environments.135, 136 Recently, exogenous IL-15 was shown to replace exogenous IL-2 

therapy during the treatment of established, nonmanipulated poorly immunogenic tumors.137 

IL-21 plays a role in the proliferation and maturation of NK cell populations from bone 

marrow, and contributes to the proliferation of T/B cell populations and anti-tumor 

effect.138, 139
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Chemokines could also be involved in the generation and regulation of bone marrow 

immune cells. Mobilization and interactions of stromal cell/hematopoietic precursors are 

thought to be controlled by cytokines, particularly, chemokines. Among chemokines, 

CXCL12 is particularly intriguing. CXCL12-expressing cells are a small population of bone 

marrow stromal cells scattered throughout bone marrow, such as osteoblasts, marrow 

fibroblasts and endothelial cells.140 CXCL12-mediated interaction of progenitors with the 

bone marrow vascular niche allows the progenitors to relocate to a microenvironment that is 

permissive and instructive for megakaryocyte maturation and thrombopoiesis.23 It has been 

recently determined that chemokine stimulation of HSCs and BMECs by CXCL12 leads to 

an enhancement in transendothelial and stromal migration via activation of adhesion 

molecules, in addition to its well-known ability to stimulate motility.141, 142 Signals for the 

translocation of HSCs from the fetal liver to bone marrow are provided by CXCL12. In 

response to CXCL12, HSCs or lymphocytes that express its specific seven transmembrane-

span G protein-coupled CXCR4 receptor leave the fetal liver and colonize in the bone 

marrow, where they finally establish hematopoiesis.143-145 As we discussed above, CXCR4/

CXCL12 signaling also regulates the bone marrow trafficking of memory T cells, Treg cells, 

and neutrophils.12, 67, 68, 87, 88, 93

In addition to the role of chemokines in bone marrow, the adhesion molecules also regulate 

leukocytes migration to the bone marrow (Figure 3). Normal bone marrow sinusoids express 

VCAM-1 and E-selectin. The migration of B cells, CD4+ and CD8+ T cells to bone marrow 

is impaired in conditional VCAM-1-deficient mice, resulting in reduced B cells and T cells 

in bone marrow and mild leukocytosis in peripheral blood.146 E-selectin and VCAM-1 are 

necessary for recruitment of HPCs to bone marrow.147 Neutralizing antibody to E-selectin 

attenuates CD8+ central memory T cell rolling in bone marrow.8 Thus bone marrow plays 

an important role in immune cells homeostasis via the expression of cytokines, chemokines 

and adhesion molecules.

Concluding remarks

Bone marrow is well-known as a primary hematopoietic organ. However, bone marrow 

contains high levels of multiple immune cell subsets with important and unique 

functionalities. It is evident that bone marrow can supplant the secondary lymphoid tissue 

either as a site of primary immune response or memory response. Immune regulation occurs 

in the bone marrow microenvironment in cell-cell contact manners or/and through soluble 

factors including cytokines. Thus, bone marrow is an immune regulatory organ, which may 

importantly affect systemic immunity and therapeutic efficacy of conventional and immune 

therapy/vaccination. Given that multiple human cancers including breast and prostate cancer 

preferentially metastasize to bone marrow, specific cellular and molecular niches in the bone 

marrow including high levels of Treg cells and MDSCs may impact tumor bone metastasis 

and contribute to bone pathology in cancer patients with bone marrow metastasis. Therefore, 

understanding the immune regulatory mechanisms in the bone marrow microenvironment 

will generate significant insight into human bone biology and immunology. Furthermore, 

given the unique functionalities of bone marrow memory T cells, one may expect that bone 

marrow serves as an excellent source of immune cells for adoptive immunotherapy for both 

malignancies and infectious diseases.
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Fig. 1. Bone marrow morphology and key cellular components
Bone marrow core biopsy sections were subjected to HE staining (A), anti-CD34 staining 

(B), anti-CD38 staining (C) and anti-CD20 staining (D). The stained sections were revealed 

with fast red, analyzed by conventional microscope and images were shown with 40x (A, B, 

C) and 10x (D) magnification. The positive cells were judged by positive staining (red, B, C, 

D) as well as the morphology. The control mAb staining reveals no positive cells (not 

shown).
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Fig. 2. Bone marrow structure
The bone marrow is encased by cortical bone and traversed by trabecular bone. Bone 

marrow consists of a highly organized meshwork of thin-walled capillary-venous with 

extracellaur matrix that fills the space between the bony trabeculae. The artery and the 

periosteal capillary network are the two sources of arterial blood for the bone marrow. By 

successive bifurations, small branches of the artery ultimately form the capillary-venous 

sinus network. Murine and human bone marrow harbor immune cells including Treg cells. T 

cells including Treg cells may reside in the marrow sinus.
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Fig. 3. Molecular and cellular interaction between T cells and marrow sinus
T cells including Treg cells might be in the sinus areas or/and endosteum areas. The 

organization of molecular and cellular niches is known to have a key role in regulating T 

cell immunity. Bone marrow contains a large amount of chemokines, adhesion and integrin 

molecules. These molecular signals may be important for immune cell bone marrow 

trafficking, retention and expansion. These structural and molecular niches may play a role 

in bone pathology in cancer patients with bone metastasis including prostate cancer and 

breast cancer.
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Table 1

Immune cells in the bone marrow

Immune cells Percent Reference

CD4+ T cells ~1.5% 10, 11

CD8+ T cells 2-2.5% 8, 9

Regulatory T cells (Treg) ~0.5% 10-12

CD11c+ DCs 1-2% 6, 7, 13

B cells ~1% 63

Plasma cell ~0.5% 5, 66

NKT cells 0.4-4% 10, 14-16

Mesenchymal stem cells (MSCs) 0.01-0.1% 109, 117

Myeloid-derived suppressor cells (MDSCs) 20-30% 97, 100
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