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Abstract
Synchronized low-frequency BOLD fluctuations are observed in dissociable large-scale,
distributed networks with functional specialization. Two such networks, referred to as the task-
positive network (TPN) and the task-negative network (TNN) because they tend to be active or
inactive during cognitively demanding tasks, show reproducible anticorrelation of resting BOLD
fluctuations after removal of the global brain signal. Because global signal regression mandates
that anticorrelated regions to a given seed region must exist, it is unclear whether such
anticorrelations are an artifact of global regression or an intrinsic property of neural activity. In
this study, we demonstrate from simulated data that spurious anticorrelations are introduced
during global regression for any two networks as a linear function of their size. Using actual
resting state data, we also show that both the TPN and TNN become anticorrelated with the orbits
when soft tissues are included in the global regression algorithm. Finally, we propose a technique
using phase-shifted soft tissue regression (PSTCor) that allows improved correction of global
physiological artifacts without global regression that shows improved anatomic specificity to
global regression but does not show significant network anticorrelations. These results imply that
observed anticorrelations between TNN and TPN may be largely or entirely artifactual in the
resting state. These results also imply that differences in network anticorrelations attributed to
pathophysiological or behavioral states may be due to differences in network size or recruitment
rather than actual anticorrelations.
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INTRODUCTION
The discovery of correlated spontaneous BOLD fMRI fluctuations in functionally related
brain regions(Biswal, et al. 1995) has subsequently led to the observation of distributed
networks of synchronized BOLD signal(Damoiseaux, et al. 2006; Fox and Raichle 2007).
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Seed-based correlation and independent component analysis techniques have allowed
dissociation of dorsal and ventral attentional(Fox, et al. 2006), default mode(Greicius, et al.
2003; Greicius and Menon 2004; Greicius, et al. 2008; Raichle, et al. 2001), visual(Golland,
et al. 2007; Nir, et al. 2006), sensorimotor(Biswal, et al. 1995; Cordes, et al. 2001; Cordes,
et al. 2000), subcortical(Di Martino, et al. 2008), memory(Vincent, et al. 2006),
salience(Seeley, et al. 2007), and executive control networks(Seeley, et al. 2007; Sridharan,
et al. 2008). Such networks show consistent anatomical boundaries correlated with measures
of structural connectivity(Greicius, et al. 2008; Hagmann, et al. 2008; Honey, et al. 2009)
and task-related activation(Smith, et al. 2009).

Studies of higher-level cerebral network architecture have suggested a modular organization
of the brain into 5 primary modules corresponding to default mode or task-negative network
(TNN), attentional or task-positive network (TPN), occipital/visual, sensorimotor/auditory,
and limbic/paralimbic networks(He, et al. 2009), with reproducible cortical hubs of
connectivity in heteromodal association cortex(Buckner, et al. 2009). Of these functional
connectivity networks, the TNN(Fair, et al. 2008; Fox and Raichle 2007; Fransson 2006;
Greicius, et al. 2003; Raichle, et al. 2001; Raichle and Snyder 2007) and TPN(Fox, et al.
2006; Fox, et al. 2005; Golland, et al. 2007; Seeley, et al. 2007; Tian, et al. 2007) have
received greatest attention.

The TNN, consisting of regions in the posterior cingulate/precuneus, temporoparietal
junction, medial prefrontal, hippocampi, and anterior middle temporal gyrus, reproducibly
shows decreases in activity across a wide array of attentionally-demanding tasks(Gusnard
and Raichle 2001; McKiernan, et al. 2003). The TPN typically shows increased activity for
similar demanding tasks and includes frontal eye fields, dorsolateral prefrontal cortex,
intraparietal sulcus, lateral parietal, frontoinsular, anterior cingulate, and lateral occipital
regions(Corbetta and Shulman 2002; Fox, et al. 2006). Independent observations suggest
that these networks not only show opposite task-associated activity, but may also show
anticorrelated fluctuations at rest(Fox, et al. 2005; Fransson 2005). Such anticorrelations,
however, were masked by a strong global signal resulting in high correlation of BOLD
fluctuations in nearly all brain regions(Macey, et al. 2004).

This global signal represents a fundamental problem in elucidating functional connectivity
networks in that physiological artifacts such as heart rate, respiration, and scanner noise that
are seen throughout the brain artificially obscure synchronous correlations between brain
regions. This global signal results in most areas of the brain showing significant correlation
with each other, and a method for removing this signal is necessary to improve anatomic
specificity of connectivity networks. By removing this global signal through a technique
such as global regression or related strategy, TPN and TNN anticorrelations have been
observed. Also using this kind of technique, others have studied network anticorrelations as
a tool to understand high-level neural architecture(Kelly, et al. 2008; Tian, et al. 2007;
Uddin, et al. 2008) and as a probe for neuropathology(Bluhm, et al. 2007; Wang, et al. 2007;
Williamson 2007).

However, the validity of global signal regression has been questioned as a preprocessing
technique(Murphy, et al. 2009). Global regression mathematically requires some brain
regions to become anticorrelated(Fox, et al. 2009; Murphy, et al. 2009), allowing for the
possibility that such anticorrelations may be artifactual. Simulations indicated that pure
noise voxels may become anticorrelated with a fluctuation of interest, and the effect
increased as the size of the network containing the fluctuation increased(Murphy, et al.
2009). Therefore, areas that may be anticorrelated after global regression simply reflect
areas that are uncorrelated or least correlated before global regression(Murphy, et al. 2009).
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Subsequently, it has been argued that although such spurious anticorrelations are possible, a
neural basis for network anticorrelations is likely(Fox, et al. 2009). Fox and colleagues
proposed three primary arguments for the validity of observed network anticorrelations.
First, they observe that the global signal is not preferentially seen in areas that become
anticorrelated after global regression, and argue that the characteristic spatial distribution of
observed anticorrelations requires a biological basis. Second, they demonstrate that
improved anatomic specificity is seen in connectivity maps following global regression,
suggesting that the technique improves detection of neural-based connectivity. Finally, they
demonstrate that anticorrelations are seen even in the presence of a modified regression
algorithm using as little as 5% of the global signal as a regressor(Fox, et al. 2009).

To evaluate these interpretations of the validity of global regression and network
anticorrelations, we performed simulations by varying the size and noise of two separate
networks of interest to determine under what conditions uncorrelated networks will become
anticorrelated following global regression. These results can explain why anticorrelations
are observed in a reproducible spatial distribution. Using actual resting state data, we also
evaluated the effect of introducing soft tissue voxels of the face, calvarium, and scalp to the
global regression analysis and propose that similarly induced anticorrelations in the soft
tissues are a model for introduction of spurious anticorrelations. Finally, we propose an
alternate method for correction of the global signal that makes use of physiological
waveforms as well as regressors obtained from subject motion parameters, white matter,
CSF, and soft tissues of the face and calvarium (PSTCor) that shows improved anatomic
specificity to global regression, but does not exhibit significant network anticorrelations.

MATERIALS AND METHODS
Simulated Whole-brain BOLD Time Series (Figure 1)

In order to evaluate the conditions under which global signal regression may artifactually
induce network anticorrelations, it is helpful to have a system where the actual relationship
of the networks in question are known. We therefore devised a simulation in which
artificially generated BOLD data could be analyzed to observe the effects of global
regression. The simulated datasets included a noise signal that varied from voxel to voxel, a
superimposed global signal shared between all voxels, and signal from two internally
correlated networks, analogous to the task-positive and task-negative networks.

Brain noise was included in the simulation because it is present in actual BOLD data, and
because components of the noise may be correlated or anticorrelated by chance to a signal of
interest, making noise an important parameter in understanding the behavior of correlated
networks. To best approximate actual noise in the brain, we modeled the frequency
distribution of the noise after the frequency content of spontaneous BOLD
fluctuations(Anderson 2008; Cordes, et al. 2001), which is comprised of frequencies ranging
from approximately 0.005 Hz to 0.1 Hz, with a 1/frequency distribution (“pink noise”). For
each voxel in an in-brain mask (brainmask.nii from SPM8, resampled at 3×3×3 mm voxels),
we generated 3 sine waves of equal amplitude, with frequency selected from the interval
[0.005 0.1] with probability weighting of 1/frequency. Phase for each of the components
was randomly selected. The resulting time series was sampled every 2 seconds, to produce
240 volumes, similar to the actual BOLD data we describe below.

To simulate the global signal, we added an additional sine wave of equal amplitude to the
noise signal to every voxel’s time series. This “global” signal had frequency of 0.375/2π
(0.06 Hz). To simulate the effects of correlated networks, four spherical regions of interest
were selected to represent the TNN (MNI coordinates: precuneus 0,−52,40; left parietal
−48,−61,34; right parietal 42,−58, 34; medial prefrontal −3, 56,−5). A 10 mm diameter
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region of interest around each of these coordinates was identified and to these voxels were
added a sine wave of frequency 0.25/2π (0.04 Hz). An additional 4 regions of interest were
selected to represent the TPN, also 10 mm diameter spherical regions. To these 4 regions, a
sine wave of frequency 0.5/2π (0.08 Hz) was added. Frequencies were selected to create
uncorrelated (orthogonal) signals between the TPN and TNN, and between both networks
and the global signal. The amplitude of the TPN and TNN signals were equal to the global
signal.

After adding each of the component signals to the simulated BOLD images, the images were
spatially smoothed (FWHM 8×8×8 mm) and a correlation analysis was performed to a
posterior cingulate seed region. Pearson correlation coefficients were obtained between each
voxel’s time series and the seed region’s time series, and an image of correlation values was
obtained.

Global regression was then performed on the simulated dataset by obtaining the mean time
series from a single whole-brain ROI. For each voxel, a general linear model was performed
to estimate the optimal component of this whole-brain time series present in the voxel’s time
series, and this component was subtracted from the voxel’s time series(Fox, et al. 2009;
Murphy, et al. 2009). Correlation analysis was then repeated on the global regression dataset
to a posterior cingulate seed region, and an image of correlation values was obtained.

Simulated Whole-brain BOLD Time Series Using Actual TPN/TNN Boundaries (Figure 2)
An analogous, but more realistic simulation was then performed, using actual boundaries of
the TPN and TNN. This simulation was identical to that described above, except that instead
of 4 small ROI’s selected to introduce a simulated TPN and TNN, voxels belonging to the
TPN and TNN were selected based on actual resting state data. The resting state BOLD
acquisition and postprocessing is described below. Briefly, voxels showing significant
correlation to a posterior cingulate seed region after global regression (p<0.05, FDR) were
selected for the TNN and voxels showing significant anticorrelation to a posterior cingulate
seed with statistical threshold of p<0.05, False Discovery Rate (FDR) were selected for the
TPN.

Otherwise, noise, global, TPN, and TNN were introduced into simulated BOLD data as
above. An image of each voxel’s correlation to a posterior cingulate seed ROI was obtained
before and after global regression procedure on the simulated dataset as above.

Simplified Simulation to Model Effects of Network Size, Noise, and Anticorrelations (Figure
3)

A simplified model analogous to the simulations above was performed to allow
computationally tractable repetition of the simulation while varying three parameters: size of
the TPN and TNN, amplitude of the noise signal, and actual anticorrelations of the TPN and
TNN.

For this simulation, instead of using whole brain datasets, only 100 voxels were included.
The size of the TPN and TNN was studied by allowing each network to comprise a fixed
number of voxels ranging from 2 voxels each to 50 voxels each (the entire dataset). For all
simulations, TPN and TNN had the same size. The amplitude of the noise signal was varied
logarithmically higher and lower relative to the global signal to study effects of noise on
network correlations. Finally, an inverted (anticorrelated) version of the TNN signal was
added to the TPN with systematically varied amplitude to represent true anticorrelations of
varying magnitude.
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Correlation values were obtained between each of the 100 voxels in the dataset and a single
voxel belonging to the TNN. Global regression was performed as above by estimating for
each voxel’s time series the best fit to the mean time series of all 100 voxels using general
linear model, and subtracting this component from each voxel’s time series. Then,
correlation values between each of the 100 voxels and a single voxel belonging to the TNN
was repeated.

Subject Characteristics – Actual BOLD Data
Twenty-seven normal healthy adult participants were examined after informed consent, in
accordance with procedures approved by the University of Utah Institutional Review Board.
Subjects ranged in age from 17 to 54 (mean 23.7 +/− 7.7 s.d., 14 male, 13 female). Healthy
subjects had no DSM-IV Axis I diagnoses based on diagnostic semi-structured psychiatric
interview. All participants underwent psychiatric screening via the Structured Clinical
Interview for DSM-IV Patient Version (SCID-P), which is a widely used diagnostic
instrument to reliably determine Axis I disorders in clinical populations(First, et al. 1996).
All subjects were screened for anxiety by Hamilton Anxiety Rating Scale(Hamilton 1969)
and depression by Hamilton Depression Rating Scale(Hamilton 1960) immediately prior to
MRI scanning. Exclusion criteria for all subjects included: major sensorimotor handicaps;
full scale IQ <70, learning disability, history of claustrophobia, head trauma, loss of
consciousness, autism, schizophrenia, anorexia or bulimia nervosa, alcohol or drug
dependence/abuse based on DSM-IV criteria (during two months prior to scan, or total past
history of ≥12 months), electroconvulsive therapy; active medical or neurological disease;
metal fragments or implants; and current pregnancy or lactation. Data from two additional
subjects were discarded prior to analysis due to excessive patient motion.

Data Acquisition
Images were acquired on Siemens 3 Tesla Trio scanner with 12-channel head coil. The
scanning protocol consisted of initial 1 mm isotropic MPRAGE acquisition for an anatomic
template. BOLD echoplanar images (TR= 2.0 s, TE = 28 ms, GRAPPA parallel acquisition
with acceleration factor = 2, 40 slices at 3 mm slice thickness, 64 × 64 matrix) were obtained
during the resting state, where subjects were instructed to “Keep your eyes open and remain
awake and try to let thoughts pass through your mind without focusing on any particular
mental activity.” Prospective motion correction was performed during BOLD imaging with
PACE sequence. An 8-minute scan (240 volumes) was obtained for each subject. An
additional field map scan was obtained for each subject for the purposes of distortion
correction.

For each subject, an additional BOLD fMRI scan was obtained of 4-minute duration (125
volumes) using identical parameters to the resting BOLD data during a bilateral finger
movement task. The task consisted of a block design with the word “TASK” or “REST”
alternately displayed via LCD projector on a screen within the bore of the scanner every 20
seconds. During “TASK” blocks, subjects were instructed to alternately touch their thumbs
to each of the other 4 fingers of each hand in succession throughout the task period. During
“REST” blocks, subjects were instructed to stop all movement of their fingers.

For all BOLD sequences, simultaneous plethysmograph (pulse oximeter) and chest
excursion (respiratory belt) waveforms were recorded for offline analysis. Waveforms were
recorded directly on the scanning computer, allowing synchronization of images with
physiological waveforms. Stimulus computer was synchronized to the onset of the first
BOLD image via fiber optic pulse emitted by the scanner.
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fMRI Post-processing
The following sequence was used for image post-processing of all BOLD image datasets.

1. RETROICOR(Glover, et al. 2000) was performed using AFNI software
package(Cox 1996) for initial correction of signal components due to respiratory
and cardiac artifacts.

2. Slice timing correction was performed in SPM8 software (Wellcome Trust,
London) for Matlab (Mathworks, Natick MA) to correct for timing differences
attributable to interleaved MRI acquisition and slice acquisition timing within each
TR.

3. Realign and unwarp procedure (SPM8) was used for distortion correction and
concurrent motion correction of all BOLD images using field map sequence to
create voxel displacement map. Motion parameters were stored for later use in
regression analysis.

4. Coregistration (SPM8) of BOLD images to MPRAGE anatomic image for each
subject.

5. Segmentation (SPM8, thorough clean) of gray matter, white matter, and CSF
components for each subject’s MPRAGE image.

6. Normalization (SPM8) by registering MPRAGE scans to the MNI template brain
(T1.nii) in SPM8 allowing additional registration of coregistered gray matter, white
matter, CSF, and BOLD images to MNI space. Gray matter, white matter, CSF, and
BOLD images were sampled at 3×3×3 mm resolution in this step corresponding to
acquisition resolution of BOLD images.

Global Regression
Resting BOLD images for each subject were then subjected to a global signal regression
analysis(Fox, et al. 2009; Murphy, et al. 2009) using in-house software written in Matlab.
For each subject, an in-brain binary mask was used to extract the mean value of in-brain
voxels (brainmask.nii in SPM8 toolbox) for each image in the time series. This mean time
series was then used as a regressor in a general linear model (glmfit.m in Matlab Statistics
Toolbox) for the time series at each voxel in the brain, and the best fit was subtracted from
the voxel’s time series data, producing the global signal corrected time series images. Prior
to regression, each voxel’s time series was bandpass filtered with a frequency window of
0.005 Hz to 0.1 Hz(Cordes, et al. 2001) and linearly detrended to correct for scanner drift.
These images were used for subsequent analysis.

Components for PSTCor
An alternate procedure (PSTCor) to global regression was performed using 12 signal
components instead of the global signal for general linear model regression analysis. These
components were:

1 White matter time series obtained from the mean time series of voxels within 2
regions of interest in the bilateral centrum semiovale (MNI coordinates: left: x=
−27, y=−7, z=30; right: x=27,y=−7, z= 30, each ROI had 10 mm radius).
Before extracting time series, an exclusive mask was performed with the gray
matter segmented image from each subject to eliminate voxels containing gray
matter.

2 CSF time series obtained from the lateral ventricles. This was obtained from
selecting voxels from the CSF segmented image for each subject within the
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bounding box defined by MNI coordinates: −35 < x< 35, −60 < y < 30, 0 < z <
30.

3 Soft tissue time series. The soft tissue restriction mask was created by averaging
normalized MPRAGE scans for all 27 subjects and thresholding to obtain a
binary image consisting of the face, calvarium, and brain. From this brain and
soft tissue binary mask, the in-brain mask (brainmask.nii in SPM8) was
subtracted to obtain a soft tissue only mask. From this mask, the top 5 slices
were zeroed out because these slices showed small variations in coregistration
across subjects near the vertex where the calvarium slopes in rapidly on axial
slices. The same soft tissue mask was used for all subjects to obtain soft tissue
time series.

4 Respiration volume per time convolved with respiration response function
(RVT/RRF). Details are obtained from previous reports(Birn, et al. 2008b;
Chang, et al. 2009). Briefly, maxima and minima were determined from a
respiratory belt measurement. These maxima and minima were interpolated to
the imaging TR. Respiration period was obtained as the difference between
successive maxima, and time series of respiration period was interpolated to the
imaging TR. RVT was calculated by subtracting the maxima and minima and
dividing by the period for each time point(Birn, et al. 2006). This time series
was then convolved with respiration response function(Birn, et al. 2008b):

and the convolved time series was used as a regressor.

5 Respiratory belt measurement, integrated over each TR to obtain average
position of chest during each imaging volume.

6 Pulse oximeter, integrated over each TR.

7-12 Time series of motion parameters from automated realignment procedure
(realign and unwarp step from post-processing, above).

Phase Shifting
For the first six components above, the time series were phase shifted to achieve optimal
correlation with the mean gray matter signal. Several of these components, most notably the
soft tissue component, exhibited peak correlation with the gray matter signal at a time offset
other than zero lag. For the soft tissue component, this may represent differences in timing
between perfusion from the external carotid and internal carotid circulations, or changes in
the speed at which perfusion occurs in the microvasculature due to alterations in vascular
resistance between intracranial and extracranial circulation.

Each of these first six components was shifted by obtaining a cross-correlogram:

for time series xi and yi and time lag m corresponding to the time series of interest and the
mean time series of gray matter voxels obtained from segmented gray matter image for each
subject. This correlogram reduces to the Pearson correlation coefficient at zero lag.
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Correlograms were computed for time lags between −16 and +16 seconds. The 16 second
time window was chosen based on a prior report that respiratory fluctuations were
maximally correlated with the BOLD signal within within a 15 second lag time frame(Birn,
et al. 2006).

The peak correlation (positive or negative) was identified for each cross-correlogram. We
then phase-shifted the time series of the soft tissue, CSF, white matter, and physiological
waveforms in time by the measured lag to obtain time series for each regressor of optimal
synchrony with the gray matter signal. The first 8 volumes and last 8 volumes of each
BOLD run were discarded to ensure that regressor time series overlapped with remaining
BOLD images. No phase shifting was performed for motion parameters because these are
measured at zero lag from image data.

PSTCor
Once the 12 component time series were computed for each subject, and WM, CSF, soft
tissue, and physiological signals were phase-shifted for optimal correlation, a general linear
model was used with these 12 time series as regressors to compute for each voxel’s time
series the optimal contribution of each of the components. Prior to this analysis, a linear
detrend operation was performed on each time series. Best fits for each component were
then subtracted from the voxel’s time series and resulting PSTCor-adjusted images were
used for subsequent analysis.

Correlation Images
Correlation images were computed for each of four different post-processed datasets, all of
which were processed with RETROICOR, slice timing correction, motion and distortion
correction, coregistration, and spatial normalization:

• No regression (RETROICOR only)

• Global Regression

• Global + Soft Tissue Regression (Figure 4), identical to global regression but
including both soft tissue and in-brain masks in global time series

• PSTCor

For these four sets of images, correlation images were computed to the following seed
regions

• Precuneus / Posterior Cingulate (MNI: x=−5, y=−52, z=40). (Fox, et al. 2005)

• Left Intraparietal Sulcus (MNI: x=−50, y=−41, z=52). (Fox, et al. 2005)

• Right Primary Visual Cortex (MNI: x=9, y=−91, z=−8). These coordinates were
obtained from peak activation to visual checkerboard stimuli(Anderson 2008).

• Left Primary Auditory Cortex (MNI: x=−57, y=−16, z=1). These coordinates were
obtained from peak activation from an auditory language task(Anderson, et al.
2010).

• Left Primary Motor Cortex (MNI: x=−48, y=−24, z=60). These coordinates were
obtained from peak activation from bilateral finger movement task obtained as part
of this study.

• Prefrontal Cortex. Seed mask was obtained from Brodmann areas 8,9, and 10
obtained from SPM8 Anatomy Toolbox(Eickhoff, et al. 2005), masked to include
only gray matter regions within these regions using SPM8 gray matter mask
(grey.nii)
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• Soft tissue Mask. The same mask was used as described above for PSTCor.
Correlation to this mask was compared to correlation to other seeds for improved
anatomic specificity.

Correlation images were calculated by computing Pearson correlation coefficients (zero lag)
between mean time series of voxels within the seed region with time series of every voxel in
the brain. Except for prefrontal cortex, all other seed time series were obtained from 5 mm
radius ROI. Correlation values were converted into Z-scores by Fisher Transformation by
taking the hyperbolic arctangent at each voxel(Fox, et al. 2009; Murphy, et al. 2009). Group-
level analysis was performed in SPM8 on the Z-score images to obtain significance maps of
correlation and anticorrelation with the seed regions.

Smoothing was performed on Z-score maps with full-width half-maximum parameter of 8 ×
8 × 8 mm to reduce pixelated noise in images and improve intersubject registration of
functional data prior to group analyses.

Bilateral Finger Movement Task Activation
Activation maps to bilateral finger movement task described above were computed using
block design with general linear model in SPM8. Activation maps were obtained for each
subject, and contrast images were used for second-level group analysis with statistical
thresholding at p<0.05, False Discovery Rate (FDR) correction for multiple comparisons.

RESULTS
Simulated data was constructed to evaluate under what circumstances network
anticorrelations could arise in uncorrelated networks. Data consisted of 240 whole-brain
images, where time series for individual voxels were constructed from a superposition 4
signals: a noise signal unique to each voxel, a shared global signal common to all voxels, a
task-positive network signal (only in voxels designated as TPN) and a task-negative network
signal (only in voxels designated as TNN). The global, TPN, and TNN components were
constructed from sine waves of differing frequencies such as to be mutually orthogonal or
uncorrelated. The noise signal, equal in amplitude to the other components, was constructed
from three sine waves with frequency selected from a 1/frequency distribution that mirrors
frequency content in actual resting state BOLD fluctuations(Anderson 2008; Cordes, et al.
2001).

Anticorrelations Arise in Largest Networks, not Least Correlated Networks
The regions comprising the TPN and TNN are shown in Figure 1A, before global regression
was performed. There is strong global correlation with a posterior cingulate seed region,
highest among voxels in the TNN, and lowest among voxels in the TPN. Following global
regression, a similar correlation analysis with the posterior cingulate seed region was
performed on the simulated data (Figure 1B). The TNN remains highly correlated, but there
is a spatially heterogeneous pattern of correlation and anticorrelation among remaining brain
voxels with no relationship to the TPN.

This data shows that simply being uncorrelated or least correlated with the TNN is not
sufficient to induce anticorrelations in the TPN. In the presence of even small amounts of
noise (tested at 1% of the global signal amplitude), many brain voxels have small
components that by chance are slightly anticorrelated with the TNN signal, and it is these
voxels that become strongly anticorrelated, rather than the orthogonal TPN signal, following
global regression. The TPN regions, by contrast, showed correlation values close to zero
with the TNN following global regression.
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A very different result was obtained when the size of the networks in the simulation was
increased. Instead of using small regions of interest to simulate the TPN and TNN, actual
boundaries obtained from resting state data from 27 subjects, shown in Figure 6A, were used
in the simulation. Noise and global signal were identical to the simulation in Figure 1. In this
case, shown in Figure 2, the areas that became anticorrelated following global regression
matched precisely the boundaries of the TPN and TNN, with anticorrelated regions
exclusively within the TPN. Moreover, the heterogeneous pattern of noise observed in the
prior simulation was not seen. Rather, the strong anticorrelations induced in the TPN
showed only minimal fluctuation from voxel to voxel.

Effect of Network Size on Induced Anticorrelations
To systematically examine the effect of network size on induced anticorrelations from
global regression, a simplified simulation consisted only of 100 voxels, with the size of the
TPN and TNN varying from 2 voxels each to 50 voxels each. Thus, at their largest size, the
two networks occupy the entire volume of the dataset, while at the lower limit of size,
occupy only 4% of the volume. Global, noise, and orthogonal TPN and TNN signals were
otherwise identical to the prior simulations. Noise amplitude was varied at 10%, 100%, and
500% of the global signal amplitude.

Results for this simulation are shown in Figure 3A. As the size of the networks increases,
there is a linear trend in induced anticorrelations between the TPN and TNN that becomes
completely anticorrelated when the networks consume all the voxels in the simulation.
Increasing noise decreases these induced anticorrelations, and decreasing noise approaches a
straight line where the anticorrelation between the two networks is exclusively determined
by the size of the networks. In contrast, network size has almost no effect on correlation
within the TNN.

When true anticorrelations exist prior to global regression, a similar pattern is seen (Figure
3B). In this case, where an inverted TNN signal was added to the TPN of 10% amplitude of
the global signal, the anticorrelations of the networks starts below zero, and shows a linear
increasing trend with increased network size as before. Higher levels of true anticorrelation
shifted the baseline anticorrelation down when the networks were small, but similarly
showed a linear trend toward higher anticorrelation as network size increased.

Anticorrelations can be Induced in Soft Tissues by Global Regression
As a further illustration of this process, we included soft tissues in the global regression
algorithm by taking the mean of all in-brain and soft tissue voxels as the global regressor for
all 27 subjects and performed a correlation analysis to the TPN using a left intraparietal
sulcus seed. Results are shown in Figure 4A. In this case, there is a large cluster of voxels in
the orbits including extraocular muscles, globes, and vitreous that exhibit anticorrelations.
Within the brain parenchyma, anticorrelated TPN and TNN boundaries are similar to those
seen without including the soft tissues in the global signal (Figure 6A).

Anticorrelations within the orbits were highly significant across the 27 subjects, with FDR-
corrected p-value of 0.00027. When a posterior cingulate seed was used, a similar region in
the globes was also anticorrelated to the TNN. (FDR, p<6.8 E-06, Figure 4B). Thus global
regression induced anticorrelations in the orbits to both the TPN and TNN. No significant
anticorrelations with either seed were observed prior to global regression.

Given that no brain voxels are within this anticorrelated cluster in the orbits, it is
biologically implausible to interpret these tissues as having a time course that is actually
anticorrelated to the neural-based fluctuations giving rise to both the TPN and TNN time
series. A much more likely explanation is that the orbits constitute a self-correlated group of
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voxels with time series related to eye movements during the scan. Because this “network” is
of sufficient size, it contributes to the global signal used in the regression analysis. When
components of the global signal are subtracted from brain voxels in the TPN or TNN during
the regression analysis, a component of this signal attributable to the orbits is also
subtracted, resulting in anticorrelations between the TPN and TNN with the orbits. We
propose that a similar mechanism contributes substantially to the anticorrelations seen
between the TPN and TNN after global regression.

PSTCor: an Alternative to Global Regression
If global regression can introduce large, spurious anticorrelations between networks, an
alternative technique less susceptible to these artifacts would be desirable. Alternative
techniques using signals from white matter, CSF, and physiological waveforms have been
proposed as an alternate correction technique(Fox, et al. 2009; Murphy, et al. 2009). Yet
using these signals as regressors results in poor anatomic specificity of connectivity
maps(Fox, et al. 2009), with most of the brain still exhibiting substantial positive
correlations that limit the ability to define boundaries of functional connectivity networks.

An improvement to this technique can be attained by including additional regressors to the
technique, but stopping short of using the mean brain or gray matter signals as regressors.
Improved techniques for extracting physiological noise related to cardiac and respiratory
fluctuations and aliasing could be included(Chang, et al. 2009). In addition, there is
substantial information about global artifacts within voxels in the soft tissues of the face and
calvarium that may represent a particularly useful regressor.

Soft tissue voxels do not contain neuronal elements as the brain does and thus do not
contribute to the BOLD signal components related to neural activity. Yet, these tissues are
perfused and may allow characterization of global signal contaminants related to
physiological sources, scanner drift, or other variation in time of blood oxygenation levels
not easily assessed with standard physiological monitoring techniques.

We show results from a combination regression technique (PSTCor) that uses regressors
from white matter, CSF, soft tissues, physiological waveforms, and motion parameters. The
white matter, CSF, and soft tissue masks used to extract time series for regression are shown
in Figure 5A. After RETROICOR, substantial correlation between these time series and the
global gray matter time series persists. Mean cross-correlograms for each of the parameters
above with the mean gray matter signal are shown in Figure 5B.

In addition to significant correlation with the gray matter signal from each of these
regressors (although contribution of motion parameters is very small), there are significant
phase shifts relative to the gray matter signal in several components. Respiratory belt and
pulse oximeter signals were most commonly negatively correlated with the gray matter
signal at lags between 4 and 8 seconds. Gray matter time series preceded soft tissue time
series variably between subjects at lags between 2 and 10 seconds, with secondary peak at
zero lag. Respiration volume per time after convolution with a respiratory response
function(Birn, et al. 2008a) was positively correlated with BOLD signal at close to zero lag.
CSF and WM were generally optimal at zero lag in most subjects.

To facilitate an optimal correction from these components, the phase of each component was
allowed to vary to best coincide with mean gray matter signal, except for motion parameters
which were obtained at zero lag from measured realignment parameters unlikely to be
improved by phase shifting. After regression with these components, correlation images
with various seed regions were computed and compared with the same images
postprocessed with global regression.
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Network Anticorrelations with PSTCor and Global Regression
Correlation to a posterior cingulate seed showed characteristic pattern(Fox, et al. 2005) of
significant positive correlation in the precuneus, medial prefrontal, middle temporal,
temporoparietal junction, and hippocampal regions, with significant negative correlation in
the frontal eye fields, intraparietal sulci, mid/anterior cingulate, frontoinsula, lateral
occipital, and dorsolateral prefrontal regions (Figure 6A). When averaged across subjects,
most TPN regions showed anticorrelation values to the seed exceeding −0.5.

No voxels showed significant anticorrelation in data processed with RETROICOR only
(Figure 6B) or PSTCor (Figure 6C). For additional specificity, the RETROICOR and
PSTCor correlation images were compared to correlation to the soft tissue mask. Mean
correlation values (converted to Z-scores prior to averaging and converted back to
correlation after averaging) for PSTCor processed data to posterior cingulate seed is shown
in Figure 6D. Although no significant anticorrelations were seen in this sample, a slight
trend toward anticorrelation was present in a few regions of the TPN, most notably the
bilateral frontoinsula. An additional weak trend toward anticorrelation was seen in the
atrium of the right lateral ventricle, which may represent small introduced anticorrelations in
the CSF, given its presence as a regressor in PSTCor. These anticorrelation values were
about −0.05, an order of magnitude less than those seen with global regression.

It is also noted that correlation values in PSTCor processed data in areas outside the TNN
seen with global regression did show weakly positive correlation values, generally less than
0.1. This may indicate incomplete removal of the global signal, and may suggest that
genuine anticorrelations in the TPN may exist that are underrepresented by this technique.
Yet these residual correlation values are very small, substantially smaller than the large
global correlation values of around 0.4 seen without PSTCor. Using the correction of
comparing correlation values to seed regions to correlation values to the soft tissue mask
resulted in exclusion of voxels with these weak residual correlations, as shown in Figure 6C.
This was not the case for data processed with RETROICOR only (Figure 6B), which even
after comparison to soft tissue mask correlation still showed poor anatomic specificity of
TNN regions.

When correlation images in global regression-processed data were compared to correlation
to the soft tissue mask (not shown), the result was poor identification of the TNN, with
many of the classical regions of the TNN no longer significant after multiple comparison
correction. In general, correlation T-scores were higher for both RETROICOR and PSTCor
for all regions of the TNN than with global regression.

Thalamocortical Specificity after PSTCor
The superior anatomic specificity in connectivity networks seen after global regression has
been argued as a validation of the technique(Fox, et al. 2009). We used a similar approach to
Fox et.al. to assess thalamocortical specificity of connectivity maps after PSTCor compared
to global regression. Seed masks of right primary visual cortex (V1), left primary auditory
cortex (A1), and prefrontal cortex are shown in Figure 7, left, analogous to Fox et.al. Figure
4. As in Figure 6, the PSTCor results of correlation to anatomic seeds are shown compared
to correlation to the soft tissue mask, and global regression results are not because this
additional step resulted in no detectable signal in the thalamus for global regression results
at significance levels as low as p=0.05, uncorrected. As in Fox et.al., significance levels
were allowed to vary to identify areas within the thalamus with highest correlation to the
seed.

Correlation with V1 seed showed significant correlation using both techniques in the
expected location of the lateral geniculate nuclei, similar in location for both techniques
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(Figure 7A). Correlation with A1 seed showed similar localization of peak thalamic activity
in the expected location of the medial geniculate nuclei (Figure 7B). However, for the global
regression data, no correlation was seen in the thalamus after multiple comparison
correction, with thalamic correlation shown for p<0.05, uncorrected. Similarly, correlation
to a prefrontal cortex mask showed correlation in the anterior thalamus for both techniques
(Figure 7C), but this was not significant in the global regression data after multiple
comparison correction.

Correspondence of Correlation Maps to Motor Task Activation
As an additional test of anatomic specificity, correlation maps for global regression and
PSTCor data were obtained to a seed in the left primary motor cortex. This seed was chosen
as the peak activation in a bilateral finger movement task performed in the same subjects
during the same scan sessions in which the resting state data was acquired. The seed used is
shown in Figure 8A, and the activation map to the task is shown in Figure 8D.

Significant activation was seen in bilateral primary sensorimotor cortex, supplementary
motor area, bilateral basal ganglia, ventral posterior nucleus of the thalamus, posterior
middle temporal cortex, dorsolateral prefrontal cortex, and bilateral superior lateral
cerebellum regions.

Both global regression Figure 8B and PSTCor Figure 8C correlation maps showed
correlation with bilateral sensorimotor, supplementary motor area, posterior middle
temporal, and dorsolateral prefrontal cortex. Only PSTCor showed additional areas of
significant (FDR, p< 0.05) correlation in the basal ganglia, thalamus, and superior
cerebellum, in anatomic locations closely matching those seen with motor task activation.
Although only right-sided cerebellar correlation was observed in PSTCor data, this might be
expected to have stronger connectivity to left motor cortex given contralateral activation.
Bilateral activation was seen in the motor task because the task involved similar activation
of both hands. Global regression data did not show basal ganglia, thalamic, or cerebellar
correlation even when significance threshold was relaxed to p=0.05, uncorrected (shown in
Figure 8B).

DISCUSSION
We demonstrate with simulated data that two networks with uncorrelated (orthogonal)
signals will become anticorrelated following global regression as a linear function of the size
of the networks relative to brain volume. Yet global regression has no significant effect on
positive correlation values within a network defined by a seed time series. This effect is
more pronounced at lower noise levels, but is seen even at noise levels of an order of
magnitude greater than the signals of interest.

Heuristically, this can be understood in terms of signal components. When a global signal
common to all voxels is present, this signal is “contaminated” by TPN and TNN signals as a
function of the size of the network(Murphy, et al. 2009). When global regression is
performed, voxels in the TPN will have a nontrivial component of the global signal, so some
of the contaminated global signal will be subtracted from the voxel’s time series. As a result,
an inverted copy of the TNN “contamination” will be subtracted from the voxel’s time
series, inducing anticorrelations. This effect becomes very strong when the size of the
networks are nontrivial compared to total brain volume, as is the case for observed TPN and
TNN from resting state data.

This observation accounts for one of the primary objections to an artifactual explanation for
network anticorrelations(Fox, et al. 2009). Because the TPN has a shared signal component
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in the time series across the network which is preserved from subject to subject, and
comprises a relatively large brain volume, induced anticorrelations are expected in precisely
this region. Moreover, these anticorrelations would be in the same regions across subjects,
accounting for consistent location of anticorrelations in random effects analyses. Thus, it
may be expected to have strong, consistent observed anticorrelations in the TPN even if the
TPN and TNN time courses were completely uncorrelated, simply based on the size of the
network and the consistent boundaries of the TPN.

In data acquired from healthy subjects, we also show that spurious anticorrelations can arise
in precisely this manner by showing consistent anticorrelations across subjects in the orbits
to both the TPN and TNN. This is likely mediated by a shared signal component in the
orbits, presumably related to eye movements, that allows induced anticorrelations in this
region. This result also demonstrates how a shared signal comprising a region even as small
as 5% of the total brain volume is sufficient to induce significant anticorrelations, and may
explain why anticorrelations were persistently observed even after exclusion of much of the
TPN and TNN by restriction mask when calculating the global signal(Fox, et al. 2009).

As an alternative to global regression, we propose an enhanced regression procedure
(PSTCor) that includes motion parameters, white matter, CSF, soft tissues, respiration
volume per time, respiratory belt, and pulse oximeter signals. This technique showed only a
weak trend toward anticorrelations in the TPN and TNN, with nonsignificant anticorrelation
values an order of magnitude smaller than those seen with global regression.

It is possible that our combined regression procedure is simply inadequate in removing
global contaminants, and that anticorrelations are stronger than we observe. In fact, some
level of underrepresentation of anticorrelations may be suggested by small residual positive
correlation values of about 0.1 between posterior cingulate seed and white matter or areas of
the cortex not generally associated with the TNN.

Yet it seems unlikely that this weak residual correlation is masking the much larger
anticorrelations seen with global regression, particularly with a clear alternate explanation
shown in simulated data that anticorrelations are produced by global regression for networks
of this size. Nevertheless, it is well known that the TPN and TNN have an anticorrelated
relationship during execution of complex tasks(Raichle, et al. 2001). A neural architecture
where the TNN and TPN show some moment to moment anticorrelation within the resting
state is possible even given our results. Future studies, including those involving brain
electrical or magnetic activity, may help quantify the extent to which some anticorrelations
may be present in brain networks in the resting state.

If the large anticorrelations seen with global regression, however, are substantially
artifactual, this makes problematic studies using this technique for assessment of functional
network connectivity, quantitative comparison of network anticorrelations between healthy
and disease states, or inferences about neural architecture based on the magnitude of these
anticorrelations.

The alternative procedure, PSTCor, we demonstrate using soft tissues, white matter, CSF,
and physiological parameters as regressors additionally shows improved anatomic
specificity to global regression compared to activation results from a motor task and
comparable or better thalamocortical specificity of correlation networks. Using this
technique with the additional step of comparing seed-based correlation results to analogous
correlation to soft tissues, allows highly specific definition of functional network boundaries
without the introduction of salient artifacts in relationships between brain networks.
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Murphy et.al. note that another common technique for evaluating resting state networks,
independent component analysis, may inherently involve something analogous to global
regression in that the global signal is typically identified with one component(Murphy, et al.
2009). It is unclear the effect that size of correlated networks may have on functional
network connectivity measurements obtained with independent component analysis.

CONCLUSION
Network anticorrelations after global signal removal can be introduced even in completely
uncorrelated networks if the networks are of sufficient size. Such anticorrelations do not
necessarily arise in the least correlated regions to a given network, but rather as a linear
function of the size of the networks. Because spurious anticorrelations can be introduced
following global regression, interpretation of quantitative network anticorrelations as a
measurement of neural architecture, or assessment of anticorrelation strength between
diseased and healthy populations may be problematic. An alternate correction technique,
PSTCor, is described that shows improved anatomic specificity to global regression but does
not exhibit large network anticorrelations.
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Figure 1.
Areas of least correlation to default mode network do not necessarily become anticorrelated
after global regression. A. Location of regions of interest corresponding to simulated TNN
and TPN show highest correlation to posterior cingulate seed in TPN and lowest correlation
in TNN prior to global regression. Scale bar shows correlation values to posterior cingulate
seed. B. Following global regression, the TNN is strongly correlated, but the remaining
brain shows patchwork pattern of correlation and anticorrelation that is unrelated to presence
of uncorrelated TNN signal.
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Figure 2.
Large networks become anticorrelated after global regression. Simulation is identical to
Figure 1 except that actual boundaries of TPN and TNN were used from resting state data
obtained from 27 subjects. In this case, the TPN becomes strongly anticorrelated to the
TNN.
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Figure 3.
Network anticorrelations after global regression are a linear function of the size of the
networks. A. 100 voxel simulation with similar parameters to those above shows little effect
of increased network size on correlation within the TNN (left). But TPN and TNN (right)
become increasingly anticorrelated following global regression as network size increases. B.
Similar results are seen in simulations for which a 10% anticorrelated signal was introduced
into the TPN. The initial baseline anticorrelation is greater, but a similar linear trend towards
greater anticorrelations with network size is seen.
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Figure 4.
Global regression to combined brain and soft tissue mask induces anticorrelations between
the orbits and both task-positive and task-negative networks. Results are thresholded at
p<0.05, FDR. A. Correlation to left intraparietal sulcus seed region. B. Correlation to
posterior cingulate seed region. Images are shown in radiological format (subject left is on
image right).
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Figure 5.
Phase-shifted Soft Tissue Regression (PSTCor). A. White matter, CSF, and soft tissue
masks used as regressors for one subject. B. Average cross-correlograms of the mean gray
matter time series to the time series for white matter (WM), CSF, soft tissues, respiration
volume per time convolved with respiratory response function (RVT/RRF), chest expansion
(Respirations, integrated over 2 second epochs to correspond to each image volume), pulse
oximetry (Pulse, integrated over 2 second epochs), and 6 motion parameters from
realignment procedure. Cross-correlograms were averaged for 27 subjects, and shaded areas
show one standard error of the mean above and below the cross-correlograms.
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Figure 6.
Default mode network. A. Correlation to posterior cingulate/precuneus seed following
global regression (p<0.05, FDR). Slice locations are at z= −18, 10, 48, MNI coordinates. B.
Following RETROICOR, images show voxels with significantly greater correlation to
posterior cingulate seed than to soft tissue mask. (Paired t-test, FDR corrected, p<0.05). C.
Following RETROICOR and PSTCor, images show voxels with significantly greater
correlation to posterior cingulate seed than to soft tissue mask. (Paired t-test, FDR corrected,
p<0.05). D. Following RETROICOR and PSTCor, images show mean correlation to
posterior cingulate seed. Correlation values were converted using Fisher z-transform prior to
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averaging across subjects, then converted back to correlation values after averaging. Subject
left is on image right for all images.
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Figure 7.
Anatomic specificity of thalamocortical connectivity. Significance levels were varied to
show areas within the thalamus of greatest correlation to the seed region. A. Correlation to
right primary visual cortical seed (slice location z=−8, MNI). Center images show
correlation to V1 seed greater than correlation to soft tissue mask following RETROICOR
and PSTCor (Paired t-test, p<0.001, FDR). Right images show correlation following global
regression (p<0.05, FDR. Slice locations: z=1, y=−29, MNI.) B. Correlation to left primary
auditory cortical seed (slice location z=1, MNI). Center images show correlation to seed
greater than correlation to soft tissue mask following RETROICOR and PSTCor (Paired t-
test, p<0.01, FDR). Right images show correlation following global regression (p<0.05,
uncorrected. Slice locations: z=1, y=−20, MNI.) C. Correlation to prefrontal cortical mask
(slice location z=40). Center images show correlation to seed greater than correlation to soft
tissue mask following RETROICOR and PSTCor (Paired t-test, p<0.00001, FDR). Right
images show correlation following global regression (p<0.05, uncorrected. Slice locations:
z=1, y=−20, MNI.) All images show subject left on image right.
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Figure 8.
Anatomic specificity of connectivity compared to motor task activation. A. Seed region in
left primary motor cortex (MNI coordinates: −48 −24 60) obtained from peak activation in
bilateral finger movement task. B. Correlation to seed region following global regression
(p<0.05, uncorrected. Slice locations at z=41, z=10, z=−35, MNI.) No significant correlation
was seen in the basal ganglia, thalami, or cerebellum. C. Correlation to seed region greater
than to soft tissue mask following RETROICOR and PSTCor (p<0.05, FDR.) D. Activation
to bilateral finger movement task in the same 27 subjects (p<0.05, FDR.)
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