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Abstract
Motor learning changes the activity of cortical motor and subcortical areas of the brain, but does
learning affect sensory systems as well? We examined in humans the effects of motor learning
using fMRI measures of functional connectivity under resting conditions, and found persistent
changes in networks involving both motor and somatosensory areas of the brain. We developed a
technique that allows us to distinguish changes in functional connectivity that can be attributed to
motor learning from those that are related to perceptual changes that occur in conjunction with
learning. Using this technique, we identified a new network in motor learning involving second
somatosensory cortex, ventral premotor cortex and supplementary motor cortex whose activation
is specifically related to perceptual changes that occur in conjunction with motor learning. We also
found changes in a network comprising cerebellar cortex, primary motor and dorsal premotor
cortex that were linked to the motor aspects of learning. In each network, we observed highly
reliable linear relationships between neuroplastic changes and behavioral measures of either motor
learning or perceptual function. Motor learning thus results in functionally specific changes to
distinct resting-state networks in the brain.

Introduction
Neural plasticity at a systems level is reflected in the brain’s ability to alter its functional
organization as a result of experience. In work on motor learning, studies of plasticity have
largely focused on motor function and motor areas of the brain. The extent to which motor
learning affects sensory systems has received less attention. Recent behavioral work has
shown that motor learning results in systematic perceptual changes both to the sensed
position of the limb (Haith et al., 2008; Cressman and Henriques, 2009; Ostry et al., 2010)
and to perceptual acuity (Wong et al., 2011). These changes appear to play a functional role
in the learning process in that after learning, movements follow trajectories that are aligned
with shifted perceptual boundaries. The effects of learning on perceptual function are not
limited to limb movement. In other work it has been shown that changes in the perception of
speech sounds accompany speech motor learning (Nasir and Ostry, 2009; Shiller et al.,
2009).

Previous studies have reported changes in activation in sensory areas in conjunction with
motor learning (Lotze et al., 2003; Pleger et al., 2003; Hlustik et al., 2004; Floyer-Lea and
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Matthews, 2005). These studies as a group share a problem in interpretation. There is a
confound such that differences in activation that are observed following learning may
simply reflect changes in motor performance between pre-learning and post-learning
measures. Here we eliminate this problem by using resting-state functional magnetic
resonance imaging (fMRI) to assess changes in the functional connectivity of brain areas
following motor learning. Scanning during resting state conditions enables us to rule out the
possibility that differences in activation that are observed following learning are due to
differences in how the task is performed in pre-learning versus post-learning scans.

One previous study has reported changes in resting-state functional connectivity in
association with motor learning (Albert et al., 2009). Effects are observed in a fronto-
parietal network and a cerebellar network. The extent to which these changes are related to
behavioral indices of learning is unknown as is whether the changes reflect adaptation in
sensory or motor systems or the two in combination. In the present paper we introduce a
technique for incorporating behavioral measures into resting-state connectivity analyses.
The method allows us to identify networks whose connectivity changes with learning and
specifically to dissociate changes in connectivity that are related to motor learning from
those related to perceptual changes that occur in conjunction with learning. The power of
this technique lies in its ability to distinguish changes in neural function that are directly
related to behavioral measures in both motor and sensory domains.

We find that changes in brain networks that occur in combination with motor learning can
be partitioned into those that are primarily motor in nature and those that reflect the
perceptual changes that arise during motor learning. The sensory networks that are
strengthened in conjunction with learning are the same as those involved in somatosensory
perceptual learning and decision-making (Romo et al., 2002; de Lafuente and Romo, 2006).
Thus, the process of motor learning appears to engage the perceptual learning network.

Methods
We studied learning by having subjects reach straight ahead to a single visual target while a
robot applied forces to the arm in a lateral direction in proportion to movement velocity.
Vision of the arm was blocked throughout the training procedure. Measures of BOLD
activation under resting state conditions were obtained about one hour after training trials in
the absence of load and again on the following day about one hour after force-field learning.
On each day, subject’s perception of limb position was assessed using an adaptive staircase
technique (Taylor and Creelman, 1967).

Subjects
Thirteen right-handed volunteers of either sex between the ages of 21 and 44 participated in
this study. The McGill University Research Ethics Board approved all experimental
procedures.

Experimental setup
A two-degree of freedom planar robotic arm (In Motion 2, Interactive Motion Technologies
Inc.) was used for psychophysical parts of study. Subjects were seated in front of the robot
and held the handle with their right hand. They performed reaching movements in a
horizontal plane. The start position, target and a cursor that represented the position of the
subject’s hand were all projected on a semi-silvered mirror that was placed horizontally just
above the subject’s arm. The visual feedback appeared in the same plane as the arm. Two
white circles, 20 mm in diameter, represented the start and target positions; a 12 mm yellow
circle indicated the subject’s hand position. Subjects were not able to see their hand or arm
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and all experiments were done under conditions of low ambient light. The seat height was
adjusted for each subject individually, to give an 80° abduction angle at the shoulder. The
position of the robot handle was recorded by means of optical encoders at the robot joints
(Gurley precision Instruments).

Experimental task
Subjects participated in three sessions on three separate days. The first day (Day 0)
familiarized subjects with the psychophysical procedure. In this session, subjects completed
three blocks of trials. In the first block, they were trained to make straight reaching
movements to the same target location that was used on subsequent days for the
experimental manipulation. In the second and third blocks, subjects practiced the perceptual
testing procedure, in which the subject’s perception of the boundary between left and right
was estimated.

The experimental manipulation was carried out in sessions two and three (experimental
Days 1 and 2), which took place at the same time on consecutive days. On each day, the
session began with a series of reaching movements to the visual target. Subjects then moved
to the Montreal Neurological Institute (MNI) imaging facility. The scanning phase took
approximately one hour. During the resting state scans subjects were instructed to rest
quietly with their eyes closed and to stay awake. Subjects then returned to the laboratory and
completed a perceptual test. On the last day of study, the perceptual test was followed by a
final block of reaching movements (Figure 1A).

Reaching movements
Subjects made straight ahead reaching movements to a single visual target that was 20 cm
from the start point in the mid-sagittal plane. The desired maximum velocity was 0.5 ± 0.04
m/s. Visual feedback of movement speed was provided as soon as subject’s hand entered the
target zone. Following the feedback, the robot returned the subject’s hand to the start
position.

The familiarization session (Day 0) started with 50 movements under null field conditions.
On Day 1 of the actual experiment subjects completed 200 reaching movements under null
field conditions. On Day 2, subjects made 200 reaching movements in a counterclockwise
force field (force field A) before they went for the resting state scan. When subjects returned
from the Day 2 scan (and after perceptual testing) they completed a final block of 100
reaching movements in a clockwise force field (force field B). The clockwise force field was
applied according to Equation 1.

(1)

In this equation, x and y are lateral and sagittal directions, fx and fy are the commanded force
to the robot and vx and vy are hand velocity in Cartesian coordinates. D defines the direction
of force field. For a clockwise field D was set to 1; in the counterclockwise condition D was
−1.

Perceptual judgments
Subject’s perception of the boundary between left and right was estimated using the PEST
procedure (Parameter Estimation by Sequential Testing), as described previously in Ostry et
al., (2010) In the current study, subjects were asked to hold their hand at the start position as
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indicated by a yellow cursor (the subjects arm was blocked from view). After a semi-random
wait time of 500 ± 500 ms, the robot was programmed to move the subjects’ hand outward
towards the target following a fork-shaped pattern (Figure 1B) under position servo control.
Subjects were instructed not to resist the action of the robot. The programmed sequence was
as follows. As soon as the hand had been moved 5 mm, both the target and the yellow circle
that indicated hand position disappeared. At 15 mm from the start, the robot gradually
shifted the hand laterally either to the left or the right over a period of 300 ms by an amount
that was updated on a trial-by-trial basis. The limb was maintained at this lateral position for
the remainder of the outward movement. Thus, at the end of each movement, the subject’s
hand was either to the left or the right of the actual target position. When robot reached its
final position, subjects were asked to indicate whether or not the hand had been moved to
the right. On each trial, magnitude of the hand’s lateral deviation was modified in an
adaptive fashion (Taylor and Creelman, 1967), until an estimate of the perceived boundary
between left and right was obtained. On each PEST run, which typically involved 8 to 16
movements, a single estimate of the perceptual boundary was obtained. On successive PEST
runs, the initial displacement direction alternated between left and right. The lateral
displacement on the first movement of each run was randomly selected from a uniform
distribution with values ranging from 20 to 30 mm (in both directions). All of our subjects
were easily able to correctly discriminate the direction of the first arm deflection. On the
next trial, the deflection was reduced by 10 mm, and this was repeated on successive trials
until the subject reported a change in the direction of lateral displacement. At this point, we
reduced the step size by half, and the next displacement was in the opposite direction. The
algorithm terminated whenever the step size for the upcoming movement fell below 1 mm.

Data analysis
Hand position and the force applied by the subject to the robot handle were both sampled at
400 Hz. The recorded signals were low pass filtered at 40 Hz using a zero phase lag
Butterworth filter. Position signals were numerically differentiated to produce velocities.
The start and end of each trial were defined at the time at which hand tangential velocity
went above or fell below 5% of peak velocity. The resulting time series was resampled in
order to have the same number of data points in each trial. For analysis purposes, we
calculated the maximum perpendicular deviation of the hand (PD) from a straight line
connecting movement start and end positions (Malfait et al., 2002). In this way, we obtained
quantitative estimates of movement straightness.

Each block of perceptual tests had six PEST runs, three starting from the right and three
from the left. We obtained an estimate of the perceptual boundary between right and left for
each subject and each experimental condition separately by fitting a logistic function to that
subject’s entire set of lateral deviations and associated binary (yes/no) responses. The 50%
point of the psychometric function was taken as the perceptual boundary. A perceptual index
(PI) was defined as the change in the perceptual boundary normalized by the mean absolute
value of the perceptual boundaries on Day 1 and Day 2.

We quantified motor learning approximately 90 minutes after learning force-field A by
measuring the extent to which to which this prior experience interfered with learning of
force-field B, which produced force in the opposite direction; greater interference indicated
greater retention of force-field A. For each subject we calculated PD averaged over the first
three trials in force-field A and over the first three trials in force-field B, with both measures
taken relative to each subject’s average PD over the last 50 null field trials (ΔPDA and
ΔPDB, respectively). We normalized for differences between subjects by dividing ΔPDB by
ΔPDA on a per subject basis. The resulting ratio, or motor learning index (MI), is given in
Equation 2. MI scores greater than 1.0 indicate interference caused by force-field A learning
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on initial performance in force-field B. The greater the value of MI the greater the learning
and also retention of force-field A.

(2)

fMRI acquisition
All data were acquired using a 1.5 Tesla Siemens Sonata MR scanner at the Montreal
Neurological Institute (MNI). The whole-brain functional data were acquired using a T2*
weighted EPI sequence (eight head-coil channels, resolution 4 mm isotropic, 32 slices, 64 ×
64 matrix; TE=50 ms and TR=3000 ms; flip angle 90°, GRAPPA acquisition with an
acceleration factor of 2). The functional images were superimposed on a T1 weighted
anatomical image (1 mm slice thickness, 256 × 256 matrix; TE=9.2 ms and TR=27 ms; flip
angle 30°). A T2 weighted structural image, aligned with the EPI images (4 mm slice
thickness, 256 × 256 matrix; 32 slices, TE=83 ms and TR=5000 ms; flip angle 180°), was
also acquired to enhance the registration transformation from the EPI to T1 weighted scan.
Each session began with two 12-minute resting-state fMRI scans, separated by an 18-minute
T2-weighted structural scan and a T1-weighted high resolution anatomical scan. A final 7-
minute scan involved arm movement in a block-design.

Image pre-processing
Data processing was carried out using FSL software packages, www.fmrib.ox.ac.uk,
FMRIB, Oxford U.K.; FSL version 4.1 (Smith et al., 2004; Woolrich et al., 2009). Image
preprocessing consisted of: (1) the removal of the first two volumes in each scan series
(volumes acquired before equilibrium magnetization was reached) (2) slice time correction
(using Fourier-space time-series phase-shifting), (3) non-brain removal using BET (Smith et
al., 2004) (4) motion correction (using a six parameter affine transformation implemented in
FLIRT (Smith et al., 2004), (5) global intensity normalization (since there may be global
intensity differences between BOLD runs multiplicative differences can be factored out by
scaling each run to a global mean). (6) spatial smoothing (Gaussian kernel of FWHM 6
mm), (7) temporal high-pass filtering (Gaussian-weighted least-squares straight line fitting
with sigma=100.0 s).

To achieve the transformation between the low-resolution functional data and standard space
(MNI152: average T1 brain image constructed from 152 normal subjects), we performed
two transformations. The first was from the T2*-weighted image to the T1-weighted
structural image (using a 6 degree of freedom (DOF) transformation), and the second was
from T1-weighted structural image to the average standard space (using a 12 DOF linear
affine transformation, voxel size=2×2×2 mm).

It has been shown that removing physiological noise (cardiac and respiratory related signals)
substantially improves the results of the functional connectivity analysis at rest (Kruger and
Glover, 2001). For physiological noise removal, we used the method reported by (Shehzad
et al., 2009). This method utilizes average signals taken over sections of white matter (WM)
and cerebro-spinal fluid (CSF), plus the global signal as nuisance regressors. To extract the
WM and CSF time series, we segmented each individual’s high-resolution structural T1
image, using an automatic segmentation program implemented in FSL (Smith et al., 2004).
The resulting segmented WM and CSF images were then thresholded to ensure 80% tissue
type probability. Each thresholded mask was then applied to that individual’s time series,
and the mean time series was calculated by averaging the time series from all voxels within
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the mask. The global signal accounts for several potential sources of physiological noise
assuming that fMRI experiments are concerned with local changes in neuronal activity and
that global signals represent uninteresting sources of noise (Desjardins et al., 2001). The
global signal was calculated by averaging the time series over all voxels in the brain. In
total, 9 nuisance regressors were used: WM, CSF, global signal and 6 motion parameters (x,
y, and z translations and rotations obtained from the motion correction step in
preprocessing). For each individual a separate multiple regression analysis was carried out
on the time series of nuisance signals using the FEAT toolbox (Beckmann et al., 2003). In
this way, the nuisance signals are modeled and the residual image represents the corrected
signal. We further applied temporal band-pass filtering (Butterworth filter with zero phase
lag) to the resulting residual image to retain frequencies in the 0.009 to 0.08 Hz band, since
in resting state fMRI we expect a neuronal activity related signal within this range (Fox et
al., 2005; Fox and Raichle, 2007).

Movement imaging analysis
After pre-processing (except for physiological noise removal which is specific to the resting
state functional data), the regressor for arm movement versus baseline was modeled with a
boxcar function, and another regressor was added to represent the temporal derivative of the
stimulation timing. The regressors were then convolved with a double-gamma hemodynamic
response function. For each participant, a first level GLM analysis was carried out using
FEAT (FMRI Expert Analysis Tool), which is part of FSL. Then the Z statistic images were
input to a group-level GLM. The group-level analysis used the FEAT mixed-effects model
with a stringent cluster thresholding (Z≥3.5, corrected, using Gaussian random field theory,
cluster significance threshold of p=0.01). Threshold activation maps were then overlaid on
the MNI standard image to define anatomical locations of activations by using the Harvard-
Oxford cortical and subcortical, and Juelich histological atlases.

ROI selection
We selected 7 regions of interest (ROI) in areas previously reported to have significant
changes in activation due to motor learning. These regions are: contralateral primary motor
cortex (M1) (Grafton et al., 1992; Steele and Penhune, 2010), dorsal premotor cortex (PMd)
(Shadmehr and Holcomb, 1997), supplementary motor area (SMA) (Padoa-Schioppa et al.,
2004), ventral premotor cortex (PMv) (Mitz et al., 1991), posterior parietal cortex BA7
(PPC) (Shadmehr and Holcomb, 1997), basal ganglia, caudate nucleus (BG) (Doyon et al.,
2009), and ipsilateral cerebellar cortex (adjacent to posterior-superior fissure) (Imamizu et
al., 2000; Pasalar et al., 2006). Since we also wished to assess sensory plasticity in
association with motor learning (Eickhoff et al., 2005), we added 2 further ROIs which are
known to play a significant role in perceptual learning: primary somatosensory cortex
(BA1/2) (Pleger et al., 2003), and second somatosensory cortex within the parietal
operculum (Romo et al., 2002; Pleger et al., 2003). Each of these areas was defined based on
the Juelich histological (cyto and myelo-architectonic) atlas (Eickhoff et al., 2005). The
caudate nucleus and cerebellar lobules were defined using the Harvard-Oxford subcortical
structural atlas (Desikan et al., 2006), and probabilistic cerebellar atlas (Diedrichsen et al.,
2009), respectively.

An arm movement task was used as a localizer to identify seed coordinates for connectivity
analyses. Specific coordinates in each of the regions of interest were selected on the basis of
activation peaks obtained from a block design analysis of arm movements, which were
recorded at the end of the scanning session. The design involved alternate blocks of
movement and rest (six 36 sec blocks of each), cued with a color-coded blinking visual
stimulus at the frequency of 1/3 Hz. The movement blocks involved slow cyclic movements
of the right arm that were approximately 15 cm in amplitude in an outward direction away
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from the body in the sagittal plane. The subjects practiced this task outside the scanner to
insure consistency of movement across subjects. The direction of movement was similar to
that using the robotic device, though at a lower speed to minimize movement artifact in the
scanner.

The pre-processing of the block design data followed the same steps as the resting state data,
except that physiological noise was not removed. In this way we made sure that the selected
seed voxel in each ROI, corresponded somatotopically to areas activated by subjects’ arm
movements. The MNI coordinates of seed voxels, the Z value of the peak activity in the
movement block and their anatomical labels are listed in Table 1. We used this same set of
seed coordinates for all individuals. We verified that Z values for individual subjects were
high (Z > 2.0) at the seed locations shown in Table 1. One exception was caudate nucleus,
where for three individuals the Z value at the group level peak was lower, between Z=1 and
Z=1.5. We obtained the average BOLD time-series of each ROI and each subject by
defining a spherical mask (radius=6 mm) around the seed in standard space. We re-sampled
this mask first to the T1 weighted structural image of each subject and from there to the low-
resolution functional space of that subject. For each subject, the average time course of the
BOLD signal within the transformed mask in the functional space was calculated.

Functional connectivity analysis using behavioral factors
The mean BOLD time-course of each ROI identified above was used as a predictor in a per-
subject GLM to assess the functional connectivity of that ROI with every other voxel in the
brain. We included the time derivative of each ROI’s signal as a regressor in the GLM to
account for possible time differences in the haemodynamic response function (HRF) of
different cortical areas, as well as the latency for signal propagation from one cortical area to
another (see Response latency correction). This analysis produced maps of all voxels that
were positively and negatively predicted with an ROI’s mean time-course. This was
followed by between-subjects analyses that were carried out using a mixed-effects model
(FLAME) implemented in FSL (Beckmann et al., 2003). In this analysis, we used either the
motor learning index (MI) or the perceptual index (PI) as regressors as well as regressors
modeling each subject’s overall mean across sessions and runs. Specifically, one set of
regressors modeled the common effect between days for each subject. This comprised the
overall mean of each subject across all 4 runs (2 runs from Day 1 and 2 from Day 2). The
second regressor, which is the regressor of interest, modeled the difference between days
based on the subject specific MI or PI weights. The applied regressor of interest, after
orthogonalization with respect to other regressors, comprises −MI/2 for the scans on Day 1
and +MI/2 for the scans on Day 2 (and ditto for PI). Thus, instead of using the binary
contrast, Day 2 - Day 1 as the contrast of interest in the GLM, we used a graded variable that
was based on each subject’s behavioral performance.

We ran two separate analyses involving MI and PI to identify those changes to functional
connectivity that were more strongly related to the retention of motor learning than to the
change in perception. Corrections for multiple comparisons at the cluster level were carried
out using Gaussian random field theory (min Z>2.7; cluster significance: p<0.05, corrected).
To correct for multiple ROIs we identified as statistically significant those clusters that had a
probability level of better than p = 0.05/9 (9 is the number of ROIs). This between-subjects
analysis produced thresholded Z score maps of activity associated with each ROI.

Response latency correction
In order to correct for response latency between two different brain regions into our analysis,
we used a method similar to that of Henson et al. (Henson et al., 2002). If the time course of
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an arbitrary voxel, y(t), is a scaled (by α) version of a selected ROI’s BOLD time series, r(t),
but shifted by a small amount dt, then using a first-order Taylor expansion we can write:

where r′(t) is the first derivative of r (t) with respect to t. We use r (t) and r′(t) as two basis
functions in the subject-level GLM to estimate the parameters β1 and β2, in which β1=α and
β2=α.dt. This enables us to cancel out the combined effect of the various latencies of
hemodynamic response function between two brain regions, and the signal propagation
delay between them. Since the β2 values include the effects of both factors, a separate
assessment of response latency was not possible. Accordingly the β2 values were discarded
and the analysis focused on the β1 weights that reflect instantaneous functional connectivity.

Correspondence of ΔFC and index type
Since psychophysical measures of motor learning and perceptual change, MI and PI, are
themselves correlated, the strength of some functional connections will change in
conjunction with both of these factors. To separate the dependence of each connection on
MI, PI, or both factors, we removed the portion of the total variance due to MI and PI
together and calculated the residual “mi” and “pi” which are uncorrelated with PI and MI,
respectively (see Variance decomposition). We then constructed a vector for each
connection between an ROI and target cluster whose elements were each subjects’ change in
functional connectivity from Day 1 to Day 2 (ΔFC). This vector was correlated with a vector
of associated “mi” or “pi” measures. Finally we performed paired-sample t-tests (p<0.001,
uncorrected) to assess the correspondence between neural (ΔFC) and behavioral measures
(“mi” or “pi”) for each link separately.

Variance decomposition
The variance attributable to MI can be decomposed into a part that is correlated with PI and
a residual uncorrelated component (mi). Similarly, the variance attributable to PI can be
decomposed into a mutual component (M) and a residual component which is uncorrelated
with MI:

where: M = c1 × MI + c2 × PI

The solution to the above equations is:

Results
Comparison of motor and perceptual adaptation

We examined the relationship between functional connectivity and each of motor learning
and perceptual change. Figure 1A shows the experimental sequence in which movement
training and perceptual tests are interleaved with scanning sessions in which resting-state
functional connectivity is assessed. Figure 1A also gives the maximum perpendicular
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deviation of the hand (PD) due to the force-field over the course of learning. It can be seen
that movements are straight under null field conditions. Application of the load (force-field
A) results in increases in movement curvature that approach baseline over the course of
training. When the direction of load application is reversed (force-field B) following the
second scanning session, there is a large initial deviation in the opposite direction that
likewise approaches baseline values with training. Figure 1B provides a representative
example of the perceptual testing sequence. An adaptive algorithm is used to move the limb
passively over a series of paths that quickly converge to provide an estimate of the
perceptual boundary. Figure 1C shows a reliable change in the sensed position of the limb
from the pre-learning to the post-learning perceptual tests (t(12) = 3.11, p<0.01). Moreover,
as seen in Figure 1D, the shift in the perceptual boundary is highly correlated with motor
learning as evaluated by the motor learning index measure (MI) (r=0.75, p<0.005). The
evident linear trend underscores the effect of motor learning on perceptual recalibration on a
per subject basis.

Correspondence between neural plasticity and behavioral performance
We conducted analyses to investigate changes in the sensorimotor network in conjunction
with motor learning. These analyses enabled us to assess the possibility of changes over the
entire brain with respect to our selected ROIs. They also enabled us to test for differences in
functional connectivity from Day 1 to Day 2 that were related either to motor learning, to
perceptual change or to the two in combination. We found that in several cases, changes in
functional connectivity were dependent to varying degrees on both the extent of motor
learning and the amount of perceptual change. We consider these possibilities in turn below.

Figure 2 shows the results of the whole-brain analyses, focusing on changes in connectivity
that were most strongly related to perceptual function. Each row in the figure shows an ROI
at the left (purple dot) and, in the middle, the location of clusters whose change in functional
connectivity from Day 1 to Day 2 was correlated with the amount of perceptual change. The
right side panel shows that changes in functional connectivity were greater for subjects who
showed larger perceptual shifts. The primary changes in connectivity associated with
changes to perceptual function are seen in the connection between SII and frontal motor
areas (PMv and SMA) and between right anterior cerebellar cortex (lobule VI) and clusters
in superior parietal lobule (SPL; BA7) and prefrontal cortex (BA10). Table 2 lists the
locations of significant clusters corresponding to each ROI, the associated MNI coordinates
of peaks of activity, and their anatomical labels.

Figure 3 shows the corresponding analysis for those changes in connectivity that were only
related to motor learning. As in Figure 2, each row gives the location of the ROI (left panel,
purple dot). The middle panels show the locations of clusters whose connectivity from Day
1 to Day 2 changed in conjunction with motor learning. The right side shows that greater
changes in connectivity were observed for subjects who displayed greater motor learning.
The major change in connectivity related to motor learning was in the link between right
cerebellar cortex adjacent to posterior-superior fissure (lobule VI, Crus I) and left M1 and
SMA. There was also a reliable change in functional connectivity between right cerebellar
cortex and the superior parietal lobule. The negative correlation is consistent with the
inhibitory relationship between cerebellar cortex and cortical motor areas.

Tables 2 and 3 provide a summary of changes in functional connectivity from Day 1 to Day
2. The Z-scores on Day 1 and Day 2 correspond to the group-level correlations on Day 1 and
Day 2, respectively. For the perceptual network comprising left SII, PMv and SMA, the
general pattern of change is an elevation of a positive correlation from pre- to post-learning.
For the motor learning network, comprising right CB, left M1 and SMA, the general pattern
of change is from no (or an insignificant negative) correlation to a significant negative
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correlation. In all cases, the magnitude (absolute value) of correlation increased from pre- to
post-learning.

A number of links showed changes in functional connectivity that were statistically reliable
with respect to both motor and sensory measures, but showed stronger correlations to
sensory performance. In particular, the links between SII and PMv and between SII and
SMA showed a higher correlation across subjects (on the order of ~0.3) between the change
in functional connectivity (ΔFC) and perceptual change due to learning (PI) than between
the change in functional connectivity and the motor learning index (MI). Another difference
is that peaks in activity differed somewhat for changes in connectivity correlated with
sensory versus motor indices of learning. Specifically, with an ROI in SMA or PMv, the
peak of activity related to motor learning (MI measure) lies in the parietal ventral area (the
more rostral part of SII, also called OP4). In contrast for the same ROI, the peak in activity
related to perceptual change is located at S2 (more caudal part of SII, also known as OP1).
This difference is in line with the results of anatomical and functional brain imaging, in
which it has been shown that the parietal ventral area has more connections with frontal
motor regions than the rostral part of SII (Eickhoff et al., 2010).

As noted above, many identified links were dependent on both motor learning and
perceptual recalibration measures. To further investigate the correspondence of each link
with MI, PI, or both factors, we separated the variance in the psychometric variables, to
obtain measures of mutual variance, “M”, between the original measures of motor learning
(MI) and perceptual change (PI), and residual variance due either to motor learning (“mi”)
or perceptual change (“pi) alone, that is, uncorrelated with the other measure. Figure 4
shows the mean correlation (± SEM) between change in functional connectivity from Day 1
to Day 2 and each variance component. The change in functional connectivity is calculated
for each ROI separately over all significant voxels in a cluster. Examination of the figure
reveals two distinct patterns. For links between frontal motor areas and cerebellum (shown
at the left), the “mi” factor correctly explains the direction of change in functional
connectivity with learning. That is, changes in functional connectively are negatively
correlated with motor learning. For the four links shown at the right of the figure, (CB-PFC,
SII-PMC, SMA-SII, and PMv-SII), the “pi” factor dominates the pattern of change in
connectivity with motor learning. For the CB-SPL link both motor and sensory factors are
significantly different than zero and correctly explain the change in functional connectivity.

To test the specificity of our results, we examined a number of other resting-state networks
(Fox et al., 2005). We assessed changes with motor learning in the default mode network, a
network that routinely shows decreases in activity during task performance, and the task
positive network, a network that exhibits increases in activity during cognitively demanding
tasks. We examined functional connectivity associated with three previously defined seeds
in the default mode network (medial prefrontal cortex [MNI; 1,47,4], posterior cingulate
cortex [5,49,40], and lateral parietal cortex [45,67,36]), and three seeds in the task positive
network (intraparietal sulcus [25,57,46], the frontal eye field region of the precentral sulcus
[25,13,50], and the middle temporal region [45,69,2]) (Fox et al., 2005). We conducted the
same functional connectivity analyses as described in the Methods section. Neither the task
positive nor the default mode network showed a significant change in functional
connectivity in relation to either motor or perceptual measures of learning.

We also verified that contralateral, but not ipsilateral, cerebral cortex is central to the pattern
of changes that is measured during the resting-state period following motor learning. We
examined seven seed locations in the ipsilateral cerebral cortex (right M1, PMd, PMv, SI,
SII, PPC, BG) and one seed location in contralateral cerebellum, at the same locations in the
opposite hemisphere as those given in Table 1. The only significant change in connectivity
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in this analysis in conjunction with either MI or PI was between a seed in left CB and a
cluster in right superior parietal lobule [cluster’s peak in MNI; 8,−80,38]. Thus, the only
regions that showed bilateral changes in functional connectivity in association with learning
were cerebellar cortex and superior parietal lobule. The remainder of the significant changes
in connectivity were contralateral to the limb that made the movements.

We considered the possibility that the negative correlations shown in Figure 3 may be
caused, as suggested by Murphy et al. (2009) by the removal of the global signal, a common
preprocessing step in the resting state fMRI analyses. To test for this possible confound, we
re-analyzed our data without removing the global signal as part of nuisance signal
correction. This analysis resulted in maps of change in connectivity that were very similar to
those shown in Figures 2 and 3. Our finding is consistent with the conclusion that removal
of the global signal does not introduce any major confound in group-level results (Fox et al.,
2009).

Discussion
This study showed that functionally specific changes to both sensory and motor areas of the
brain can be obtained under resting-state conditions one hour following force-field learning.
These effects were observed at a time at which plastic changes were ongoing (Brashers-
Krug et al., 1996). The measures of neural plasticity were highly correlated with both
sensory and motor indices of learning, such that subjects who learned more also showed
greater changes in functional connectivity. We were able to attribute differences in the
observed patterns of connectivity to either motor learning or perceptual change. We found
that changes in connectivity between right cerebellar cortex (Lobule VI and Crus I; adjacent
to the posterior-superior fissure) and left frontal motor areas (M1 and SMA) depended only
motor learning. In contrast, the connections between left SII and both left PMv and SMA
were more strongly dependent on perceptual change (Figures 2 and 3). We found that the
connection between CB and SPL was equally dependent on both sensory and motor indices.
This latter finding is consistent with the results of recent anatomical studies that show a link
between CB and posterior parietal cortex and hypothesize its role in perceptual processing
(Strick et al., 2009). This distributed pattern of cerebellar-frontal-parietal changes is
consistent with the idea that a distributed pattern of sensory and motor plasticity
accompanies motor learning.

At a behavioral level, we found that across subjects the magnitude of perceptual change
varied with the degree of motor adaptation (Figure 1D). We were able to detect this
correlation by using a new measure of motor learning that involved the use of a force-field
that was opposite in direction to that experienced over the course of the initial training. In so
doing, the final block of force-field trials acted, in effect, as an assistive load that amplified
the after-effect of limb displacement due to the initial learning. This increased our sensitivity
to detect the amount of retention from the initial force-field by measuring the amount of
negative transfer (Brashers-Krug et al., 1996).

We observed changes in perceptual function following motor learning that involve second
somatosensory cortex, supplementary motor area (SMA) and ventral premotor cortex. Romo
and colleagues have shown that perceptual decision-making and the transformation of
sensory information into action take place in a distributed fashion in these same areas
(Romo et al., 2002; Romo and Salinas, 2003; de Lafuente and Romo, 2006). Second
somatosensory cortex has also been implicated in somatosensory perceptual learning in
humans (Pleger et al., 2003; Hodzic et al., 2004). Motor learning may thus result in changes
to the perceptual learning and decision-making circuitry. The observation that perceptual-
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related plasticity involves changes in higher order somatosensory areas such as SII and PPC,
but not low-level centers such as the subdivisions of SI is consistent with this conclusion.

Brain areas involved in force-field learning have been studied previously by Shadmehr and
Holcomb, using positron emission tomography (Shadmehr and Holcomb, 1997) and under
resting-state conditions by Albert et al. (2009). As in Shadmehr and Holcomb, we observe
changes associated with learning involving cerebellar cortex, contralateral dorsal premotor
and posterior parietal cortex. Our findings allow us to extend these results by showing the
ways in which neural connectivity is tied to behavioral measures of learning. We find that
subjects who learned more had a greater increase in strength of the related neuronal
networks (Figures 2 and 3, right panels). Moreover, our techniques allow us to partition both
the behavioral measures and the underlying brain circuitry into changes that are primarily
sensory versus those that are motor in nature.

In the present study, all of the observed negative correlations involve cerebellar cortex.
There is a multi-synaptic inhibitory circuit from cerebellar cortex to frontal motor areas.
Purkinje cells in cerebellar cortex form inhibitory synapses with deep cerebellar nuclei,
which in turn send excitatory output to cerebral cortex through thalamus. When activity in
cerebellar cortex increases, activity in target regions in cerebral cortex decreases, and vice
versa. There are several neuroimaging studies that have reported negative correlation
between cerebellar cortex and frontal motor areas. Shehzad and colleagues (2009) reported
reliable negative connectivity under resting state conditions between cerebellar cortex and
SMA. Similarly, Yan and colleagues (2009) have observed negative correlations between
cerebellar cortex and anterior cingulate cortex. In one of the few studies that have evaluated
changes in connectivity during motor learning, Ma et al. (2010) found that effective
connectivity from cerebellum to M1 became increasingly negative during task execution
over several sessions of learning.

Christensen et al. (2007) report the results of a recent study implicating a related
sensorimotor network in movement production. They found that activation in PMv was
correlated with activity in somatosensory cortex during voluntary movement without
proprioceptive feedback. Moreover, the strength of functional connectivity between SII and
SI increased during movement without sensory feedback as compared to normal movement
(Christensen et al., 2007). The basic similarity of these results to those of the present study
may indicate that learning-related activity in PMv modulates activity in somatosensory areas
that interpret and compare sensory inflow with the memory of past experiences. However,
causality and the directionality of the modulation cannot be inferred from our functional
connectivity analysis. Other types of analysis such as effective connectivity analysis
(Bullmore et al., 2000), or functional tests using transcranial magnetic stimulation (TMS) to
modulate the activity of certain brain areas before and after learning could be useful in
deducing causality within the network responsible for sensorimotor plasticity.
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Figure 1.
A: Sequence of experimental procedures showing evolution of PD during training averaged
across subjects. B: Representative hand paths during perceptual testing starting from the left
(left panel) and right (right panel). The color code gives the trial number in the PEST
sequence. C. Motor learning results in changes to the sensed position of the limb. The figure
shows the mean perceptual boundary (± SEM) under baseline conditions and following
force-field learning (After FF). D: Subjects who show greater motor learning (Motor
Learning Index) have greater shifts in the perceptual boundary. The solid line gives the best
linear fit.
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Figure 2.
Changes in connectivity in relation to perceptual recalibration. Each row corresponds to a
specific ROI whose functional connectivity is changed in relation to perceptual learning.
Left column: location of ROIs. Middle columns: clusters showing significant change in
connectivity with the corresponding ROI. Color-coded statistical Z-score maps (corrected
p<0.05 for spatial extent) showing increases in positive correlation (coded in red to yellow)
and negative correlation (coded in dark to light blue) from Day 1 to Day 2 with respect to PI
(z-coordinates of cross-sections are reported in MNI space). The right column displays the
linear trend between individual changes in functional connectivity and associated PI values
on a per subject basis. Change in functional connectivity gives the change in functional
connectivity averaged over the significant clusters (the change in functional connectivity in
the bottom row is shown with respect to the blue-coded clusters alone). The value of r
represents the Pearson product-moment correlation coefficient.
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Figure 3.
Changes in connectivity in relation to motor learning (MI). Display conventions are as in
Figure 2.
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Figure 4.
Dependence of changes in functional connectivity on uncorrelated sensory (pi) and motor
(mi) indices of learning. Mean correlation between individual changes in functional
connectivity and exclusively motor (mi), sensory (pi) or mutual (M) components. Standard
errors are specified using red bars. The mean and standard error for a specific link is
calculated over significant voxels (Z>2.7) defined on the union of clusters associated with
MI and PI. Each color-coded link comprises a pair of regions in which the first region
represents the location of the ROI and the second region represents the area where the
activated cluster is located. Significant differences in the correlation between change in
functional connectivity with “mi” and “pi” at p<0.001 (Wilcoxon rank sum test) are
indicated by *.
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