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Abstract
Technological advances in electrode construction and digital signal processing now allow
recording simultaneous extracellular action potential discharges from many single neurons, with
the potential to revolutionize understanding of the neural codes for sensory, motor and cognitive
variables. Such studies have revealed the importance of ensemble neural codes, encoding
information in the dynamic relationships amongst the action potential spike trains of multiple
single neurons. Although the success of this research depends on the accurate classification of
extracellular action potentials to individual neurons, there are no widely used quantitative methods
for assessing the quality of the classifications. Here we describe information theoretic measures of
action potential waveform isolation applicable to any dataset, that have an intuitive, universal
interpretation, and that are not dependent on the methods or choice of parameters for single unit
isolation, and that have been validated using a dataset of simultaneous intra- and extracellular
neuronal recordings from Sprague-Dawley rats.
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Introduction
As we begin decoding spikes to understand brain function, it is critical to reliably identify
distinct action potential trains from many neurons simultaneously (Wilson and McNaughton
1993; Csicsvari et al., 2003; Buzsaki 2004; Hampson et al., 2001; Harris et al., 2003; Hill
2011). “Spike sorting” utilizes features of multiple simultaneously-recorded action potential
waveforms to divide signals into isolated categories, each corresponding to the discharge of
an individual neuron.
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Spike sorting remains difficult, perhaps more art than science. Currently, the quality of
waveform isolation in most studies is unknown, a matter of trusting a particular laboratory
or user. Identification uncertainty is problematic because conclusions about information
processing mechanisms in the brain depend on the quality of action potential isolation
(Quirk and Wilson 1999; Schmitzer-Torbert et al., 2005; Fenton et al., 2008). Lack of a
consistent method to determine single-unit isolation quality impedes progress in
understanding how coordination of neuronal discharge produces behaviors and cognition, or
how failure of coordination produces pathology. A quantitative method could validate
experiments in different laboratories and would be useful for developing waveform-isolation
algorithms.

During spike sorting, features of extracellular waveforms, such as peak amplitude and
energy, are extracted and placed in feature vectors. An expert user then uses subjective
notions of spike-waveform isolation to create boundaries around clusters in 2- or 3-
dimensional (2-D or 3-D) scatter plots of these high-dimensional feature vectors. Cluster
separation quality varies with operator expertise, choice of features, and visual assessment
of cluster boundaries (Harris et al., 2000; Wood et al., 2004).

Although several measures of isolation quality were developed, they have not gained
widespread use, generally only working on particular types of data sets, or favoring
particular isolation methods and parameters used by one research group. For example,
Isolation-distance (IsoD) and LRatio are two related measures of isolation quality
(Schmitzer-Torbert et al., 2005). Although definable using any waveform parameter set, to
make comparisons across datasets, it was necessary to use identical parameters for
waveform isolation in each dataset. Therefore, that study proposed a standardization using
only two waveform features: energy and the first principle component coefficient of the
energy normalized waveform. In our experience, those two features alone rarely provide
good waveform isolation, a process that generally requires a large number of features.

We sought a measure that can be interpreted consistently across data sets using feature
spaces that differ in both the identities and number of features. We present an information
theoretic approach to quantify the quality of extracellular waveform isolation. We provide a
quality measure that can be compared across recordings and laboratories, without constraint
as to the type of electrode, the data acquisition method, or the particular set of parameters
used for waveform isolation. By providing a method allowing each study to utilize whatever
set of parameters provides optimal isolation, we expect these measures can begin to provide
a standard for ensemble recording studies. These quality measures will also provide the
quantitative basis needed to evaluate and compare the effectiveness of automated waveform-
isolation methods extant or in development.

Materials and Methods
Electrophysiology

The data described here, that we used for this study, was previously recorded from male,
Long-Evans rats, from Taconic Farms. The methods have been described in detail (Fenton et
al., 2008; Park et al., 2011). All procedures received IACUC approval and were in
accordance with institutional and NIH guidelines. Briefly, tetrodes (O'Keefe and Recce
1993; Gray et al., 1995) made by twisting 4 strands of 25-μm nichrome, were used to aid
unitary waveform discrimination. For the recordings from freely-moving rats (male, Taconic
Farms), eight tetrodes were loaded into a custom machined microdrive assembly (Bio-Signal
Group Corp, Brooklyn). The assembly was surgically implanted under pentobarbital
anesthesia (50 mg/kg) to position the tetrodes above the pyramidal cell layer in the dorsal
hippocampus (centered at AP: 3.8 mm, L: 2.5 mm, DV: 2 mm relative to bregma; Paxinos
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and Watson 2007). The rats were allowed to recover for at least one week before the tetrodes
were individually advanced in < 50 μm steps during the course of 1-2 weeks. The goal was
to position as many of the eight tetrodes in the CA1, CA3, or dentate gyrus principal cell
layer at the same time. A data set of tetrode recordings from the hippocampus and medial
prefrontal cortex of urethane-anesthetized Long-Evans rats (male, Taconic Farms) was also
studied. These recordings were made using the methods described in Olypher et al., 2006.

Extracellular potentials were buffered by unitary gain amplifiers plugged into the microdrive
connector on the rat's head. The buffered signals were transmitted to main amplifiers along
wires. Action potential (300-10000 Hz) band-pass filtered signals were amplified
(5000-10000 times), digitized (32 or 48 kHz) time-stamped (100 μs resolution) and 2 ms
tetrode waveforms were recorded using custom software (AcX, A.A. Fenton) or a
commercial system (dacqUSB, Axona Ltd., St. Albans, U.K.). Whenever an action potential
voltage exceeded a threshold voltage the voltages on all 4 wires of the tetrode were
collected. The recorded action potential waveforms were aligned with the voltage at the
threshold crossing set to the sample at 250 μs. This alignment produced a time-axis origin
for measuring time-dependent waveform features, such as the waveform voltage at a
particular time point relative to the threshold crossing at t = 250 μs.

Single-unit waveform isolation was done manually using custom software (WClust A.A.
Fenton, S.A. Neymotin) that allows the user to define unitary waveform parameter clusters
by drawing convex polygon boundaries in 2-dimensional (2-D) slices of waveform
parameter space, as described in the Results. The waveform parameters included the positive
and negative peak amplitudes on each tetrode wire, determined from a cubic spline (Press et
al. 1992) of the digitized waveform; the principal components computed either from the
waveform on each tetrode wire separately, or computed from the concatenation of the four
tetrode waveforms; the waveform energy between a user-selected pair of time points

(defined in units of voltage as , where xi is the waveform value of
sample i and n1, n2 are the starting, ending sample indices respectively); the waveform
voltage or slope at a user-selected time point; the waveform voltage on each tetrode wire at
the time of the peak voltage on the largest waveform in the tetrode event.

Nearest-neighbor estimates of probability with KD-Trees
The nearest neighbor Kullback-Leibler divergence (KLD; Kullback and Leibler 1951)
estimator (Wang et al., 2006) requires finding the nearest neighbors of arbitrary feature
vectors in a high-dimensional space. To reduce the search time to find nearest neighbors, we
stored the feature vectors in KD-Trees (Bentley 1975; Cormen et al., 2001), which are a
data-structure allowing for 0(log N) time lookup of nearest neighbors, where N is the size of
a distribution. Before storing the feature vectors in the KD-Trees, we normalized the values

of each dimension into the range of [0-1] by the following formula:  Here vi
is element i of vector ν and mini, maxi are the minimum, maximum values of dimension i.
This normalization allows each dimension to play an equal role in calculating nearest-
neighbor distances, regardless of magnitudes of values in the dimensions. One KD-tree was
created for each cluster's feature distribution.

Simultaneous intra- and extracellular neuronal recordings
The waveform isolation quality measures we developed were validated using publicly
available simultaneous recordings of intra- and extracellular voltages from hippocampal area
CA1 of Sprague-Dawley rats (Harris et al., 2000; Henze et al., 2000). Each recording had a
single intracellular channel and four extracellular channels. This allowed the identity of
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spikes on the extracellular channels to be correctly classified as belonging to the
intracellularly recorded neuron.

To extract action potential waveforms from the intracellular recordings, we calculated the
discrete derivative and then set a threshold for spike crossing at a threshold above the
average discrete derivative value. To extract putative spikes from the extracellular
recordings, we first performed a zero-phase distortion band-pass filter between 500 Hz-3
kHz. Any voltage level from the filtered signal that crossed a threshold indicated a spike.
The portion of the signal surrounding the threshold crossing (including 0.3 ms before and
1.8 ms after) was extracted from each channel and stored. Next, commonly used features,
including peak, energy, and principal components, were extracted from the extracellular
waveforms on the four channels and used to form feature vectors. The extracellular
waveforms were considered to originate from the intracellular neuron if the intra- and
extracellular peaks occurred within 0.4 ms (Harris et al., 2000).

To assess correlation of our quality measures with false positives and negatives, we
performed 28 increasing levels of corruption to the original intracellularly-identified clusters
(IC). For each recording, to simulate false-positives, we calculated the IC cluster's center
and added the waveform feature vectors from the background distribution that encroached
on its borders. We defined an IC cluster border as two standard deviations above the mean
from the center. To simulate false-negatives, we excluded feature vectors that were known
to belong to the IC from its outermost borders, as measured by distance to center.

Isolation distance and LRatio
Isolation distance (IsoD) and LRatio are measures developed to assess the quality of spike
feature clusters (Schmitzer-Torbert et al., 2005). Although these measures can operate on
arbitrary features we used an 8-Dimensional space in our standard implementation. This
space consisted of Energy and the 1st principal component of the Energy-normalized
waveforms, 2 dimensions for each of the 4 micro-wires of a tetrode. Both measures use a
noise distribution for each cluster consisting of all feature vectors not in the cluster. To
compute IsoD, we compute mean and covariance matrix for each cluster feature distribution
and then calculate the squared Mahalanobis distance (Mahalanobis 1936) for each feature
vector in the noise distribution from the cluster's mean. These distances are sorted in
increasing order. IsoD is the nth largest squared distance, where n is the number of spikes in
the cluster. IsoD tends to be larger for clusters that are well separated from the background.

For each cluster C, L is defined as , where i ∉ C is the set of

noise spikes not in cluster C, CDF  is the cumulative distribution function of the χ2

distribution with 8 degrees of freedom (Bulmer 1979), and  is the squared Mahalanobis
distance of i to cluster C. Noise spikes close to the center of C contribute more to this sum
than noise spikes far from the center. A low value of L indicates C is well-separated from

the surrounding noise. LRatio is then defined as , where n is the number of spikes in
cluster C. As shown, IsoD and LRatio are highly correlated (r=0.91, p<0.001) and thus
redundant. The redundancy is a result of both being functions of the squared Mahalanobis
distances of the noise spikes from the cluster center.

Software
The software for calculating the different measures of single unit isolation quality and for
extraction of waveform features was written in standard C++ and is available for download
as a package at the International Neuroinformatics Coordinating Facility (INCF) software
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center (http://software.incf.org/) and at ModelDB
https://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=141061). The software was
tested and compiled independently on Linux OS and also as part of custom single unit
isolation software for the Windows platform, WClust.

Results
Isolation information

Intuitively, the quality of a cluster is greatest when the cluster is well separated from the
background, separated from all neighboring clusters, and compact. To capture this intuition,
we propose Isolation information (IsoI), which computes a symmetrized Kullback-Leibler
divergence (KLD; Kullback and Leibler 1951) between two multi-dimensional probability
distributions of action potential waveform features. In what follows, we primarily refer to
this as a cluster or feature cluster. We refer to it as probability distribution or distribution
when discussing KLD as a general measure. KLD measures the separation between two
probability distributions, P and Q, with probability densities p and q:

(eq. 1)

, where the integral is taken over the space of waveform features. Keeping with the
information theory standard, logarithms in this paper are base 2, unless otherwise stated.

We sought a measure that increased monotonically as the uncertainty of waveform
parameters decreased. KLD had the disadvantage of not being symmetrical -- distance from
P to Q is not the same as distance from Q to P. We therefore defined our new measure,
isolation information (IsoI), to be the resistor average (Johnson and Sinanovic 2001) of
KLD(P, Q) and KLD(Q, P) to provide symmetry:

(eq. 2)

Graphing IsoI against the individual entropies of P, Q divided by the entropy of the joint
distribution of P, Q demonstrated an additional advantage of this measure: it provided an
approximately linear association with entropy reduction, upon classification of waveforms to
their respective clusters (data not shown).

Given a data set of classified action potential waveforms, we calculated two different IsoI
values: IsoI(C, BG) (IsoIBG, cluster vs. background) and IsoI(C, NN) (IsoINN, cluster vs.
nearest neighbor). IsoI(C, BG) computes a distance measure between the waveform feature
probability distribution of the isolated action potentials of a cluster of interest (C) and the
waveform feature probability distribution of all the other recorded events in the background
(BG). This quantifies how well isolated the cluster's feature vectors are from all of the other
feature vectors as well as measuring the cluster's compactness, because high probabilities in
the distribution result from tight clustering in feature-space.

IsoI(C, NN) computes the distinction between a cluster's waveform feature probability
distribution and the nearest neighbor distribution (NN):
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(eq. 3)

IsoI(C, NN) is useful because a cluster may be far from a large proportion of the other
feature vectors and hence have a large IsoI(C, BG), but be close to another cluster. In such
situations, the IsoI(C, NN) value will be reduced, and may thereby be used to more
sensitively quantify the uniqueness of the cluster.

These two measures quantify the isolation quality in bits (units of information) across
arbitrarily-chosen waveform features, and quantify judgments of cluster isolation quality in
terms of separation and uniqueness.

Calculating KLD
With high-dimensional feature spaces, accurately determining probabilities becomes
difficult when the size of the data set is limited due to data points being sparse in the space.
In particular, 0-probability events are often terms when calculating eq. 1, causing the KLD
to be undefined. We therefore computed the KLD between probability distributions P and Q
using a nearest neighbor divergence estimator that has been shown to converge to the exact
value of KLD with the increase of the sample size (Wang et al., 2006). To calculate the
value using this estimator, we iterate over all of the elements in P. We then find the distance
to their nearest neighbor in P, and the distance to their nearest neighbor in Q. The log of the
ratio of these distances is then summed:

(eq. 4)

, where d is the number of dimensions, |P| signifies the number of elements in distribution P,
minj(dist(Qj ∈ Q, Pi)) is the distance from element Pi to the nearest element in Q, and minj
(dist(Pj ∈ P | i ≠ j, Pi)) is the distance of element Pi to its nearest neighbor in distribution P.

Euclidean distance was used: , with n the dimensionality of the
vectors. Eq. 4 indicates that when the elements of distribution P are well clustered, their
nearest neighbors within P will be closer than their nearest neighbors in Q. In this case, the
ratio of logs will contribute a positive value. If the nearest neighbor distance to distribution
P is larger than that of Q, the ratio will contribute a negative value. This occurs for poorly
defined clusters that are not well isolated and for points near the boundary in the case of two
adjoining distributions. In summary, KLD is a summation over all elements of the ratio of
likelihoods that an element from the distribution is from that distribution and not from
outside of it.

Dimensionality reduction
To compare IsoI values across different feature spaces of arbitrary dimensionality, we
performed a dimensional reduction. For each cluster, C, we found the 8 features out of 20-40
typically used which gave the highest pairwise two-dimensional (2-D) IsoIBG, Fc. These
features are then used to compute the final 8-D IsoIBG and 8-D IsoINN. Note that, for
calculating the IsoINN of a particular cluster C, we use Fc when calculating each IsoI(C, X),
where X is any other cluster than C. The automatically chosen features in Fc maximize
cluster isolation and compactness. Although the selected features typically differ somewhat
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for each cluster, this technique allows estimation of isolation quality using the features best
suited for isolating each individual single-unit.

Although computing pair-wise 2-D divergence for each cluster comes at the cost of
increased computation time, it allows for selecting dimensions that maximize both isolation
and compactness. Using 1-D divergence to select for optimal dimensions doesn't allow
selecting for compactness because 1-D divergence will only be maximal when the
separation between the two clusters is high. The choice of 8-D for the final analysis was a
conservative choice after testing assessment at different dimensions. In any case, the final 8-
D calculation was not computationally expensive compared to the pair-wise 2-D
comparisons.

Sensitivity of Isolation Information measures to isolation errors
To measure the sensitivity of IsoI to classification error, we assessed various forms of
cluster degradations, starting with high-quality clusters defined by an expert user and
verified by our inspection. These clusters were compact and had a large separation from
each other, as well as from the background, resulting in large IsoI values, ranging from 9 to
14 bits (Fig. 1). Cluster 1 (red) and Cluster 3 (green) have the highest separation from
background, and from their nearest-neighboring clusters. This can be seen in the larger
distance of C1 and C3 from the other clusters and background spikes in Fig. 1b in slices 1, 2,
and 4, as well as 3 for C1. The other clusters, C2 (blue), C4 (purple), and C5 (light blue) are
well isolated in some slices, but not as well in others, particularly in slices 3 and 4. Although
sometimes only a single slice is used to determine separation, separability in more
dimensions does add to cluster quality. As a result, the IsoI values of C2, C4, and C5 are
lower than those for C1 and C3. Degradations were tested on various clusters both from this
data set and others. Degradation effects (Fig. 2) were assessed on the clusters from Fig. 1
after alterations to C1. Most of the alterations were performed in a single 2-D subspace (Fig.
1b3), which displays voltages at specific times on two different microwires. This 2-D slice
contained the C1 boundary that contributed the most to isolating it from the background, as
evidenced by it contributing the highest 2-D IsoIBG of any 2-D feature slice. This shows an
advantage of this method, with implications for future development of automated systems.
By allowing the use of arbitrary features, higher isolation quality may be sought by keying
in on peculiarities in waveform shape that are revealed through visual or automated
inspection of the most influential slices. As a suggestion for best practice, we typically used
standard features consisting of waveform peak amplitude, energy, principal components, and
voltage level or derivative at different times.

In the first degradation, we considered a common scenario where features of two clusters are
intermingled. While a user would always avoid the extreme case of near complete
intermingling (Fig. 2a), users commonly define what appears to be a single cluster in feature
space and subsequently, upon close inspection of the waveforms, find an additional feature
with potential to partially split the cluster in two. In this scenario, a user would first “clone”
the original cluster boundaries and then attempt to find new distinguishing features. To
simulate this, we duplicated C1 boundaries, splitting the feature vectors into two C1 clusters
shown in pink and yellow (C1′,C1″ respectively). The two derived clusters are now each
other's nearest-neighbor. Additionally, each derived cluster now has the other one as part of
its background. As a result, the IsoIBG, IsoINN values of C1′ and C1″ dropped significantly
(note that oscillatory behavior about the exact value, 0 for IsoINN here, during convergence
is a general property of the nearest neighbor divergence estimator from Wang et al., 2006).
IsoIBG values for all the other clusters remained unchanged. The IsoINN values were subject
to minor change, since nearest-neighboring clusters can be changed by modifying a single
cluster. As a result, C3 and C5 have lower IsoINN values than the originals.
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The next degradation was a less extreme example of intermingling. Here, we contaminated
C1 by creating a new cluster within its boundaries (Fig. 2b). In this instance, two clusters
C1′ and C1″ were close in feature space, but were still fairly well-separated from the
background distribution. As a result, IsoINN is lowered more significantly than IsoIBG for
these two clusters, compared to C1. The degradation again slightly lowered the IsoINN
values of clusters C3 and C5.

Another cause of overlap between clusters occurs when a user has difficulty determining
precise demarcations, typically due to a high density of feature vectors in the area between
two or more clusters. To replicate this situation, we expanded several of C1′s 2-D
boundaries by randomly reassigning a proportion of the points falling within this expanded
boundary from their original clusters to C1 (Fig. 2c). C1 now encroached into the territory of
the other clusters. This degradation lowered IsoIBG for cluster C1, since it was now closer to
the background distribution. Other clusters, with some of their points removed, were closer
to the background distribution, resulting in reduced IsoIBG values, most evident for C2 and
C3. In addition, the IsoINN, of C1, C2, and C3 were all significantly lowered, since their
nearest-neighboring clusters became closer. Since C3′s nearest-neighboring cluster is C1, its
IsoINN value was lowered the most. Importantly, this demonstrates that our measures are
sensitive to non-local changes. Here, IsoIBG and IsoINN both show lower values for C2 and
C3 as well as for C1 since these are clusters who have “given up” feature vectors to C1. A
different problem occurs when the density of feature vectors around a cluster is low, making
it difficult to determine where to place the border of a cluster. In this case, the user may
exclude feature vectors that should belong to the cluster. To replicate this, we contracted one
of C1′s 2-D boundaries, excluding feature vectors that lie outside the new boundary (Fig.
2d). These excluded vectors were added to the background, resulting in a lower IsoIBG
value. Contraction also produced an insignificant increase in C1′s IsoINN value since C1 is
now farther from its nearest-neighboring cluster, C3, as a result of the contraction.

Validation using simultaneous intra- and extracellular recordings
We used publicly available simultaneous intra- and extracellular neuronal recordings from
hippocampal area CA1 (see Methods) to validate the IsoI measures (Fig. 3). We also used
the same recordings and methods to compare the performance of two previously developed
measures, IsoD and LRatio (see Methods). In each recording, all extracellular feature
vectors belonging to the intracellularly-recorded neuron were set to belong to the IC cluster.
The remaining feature vectors belonged to the background distribution (BG). To calculate
correlation of IsoINN with error rates, a nearest neighboring cluster was required for each IC.
To estimate this, we performed k-means clustering on the background distribution and
selected the cluster with smallest IsoINN values as IC's nearest-neighboring cluster. For
IsoINN, false-positive and false-negative corruptions were performed using these two
clusters (IC and NN).

We correlated each cluster quality measure with false-positives and false-negatives using 28
levels of corruption to the IC clusters (Fig. 3b). Error rates were defined by the percentage
of points added to (false positives) and subtracted (false negatives) from the IC cluster. As
an example of this procedure on the simultaneous intra- and extracellular dataset for one
corruption level, Figure 3a shows a cluster (center) containing 833 spikes, with a high
IsoIBG value of 5.2 bits, and high values of IsoD (250.5) and LRatio (0.00836). We
performed false-negative corruptions by removing up to 70% of the cluster's feature vectors
(Fig. 3a left), bringing the new cluster closer to the background distribution. As a result, the
IsoIBG value dropped drastically, to 3.8 bits and the IsoD and LRatio values decreased to
45.8 and 0.87, respectively. We performed false-positive corruptions of the original cluster
(Fig. 3a right), by adding 583 feature vectors from the background distribution (70% of the
original 833 feature vectors). As a result the IsoIBG value dropped to 2.8 bits and the IsoD
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and LRatio values worsened, changing to 59.8 and 0.56, respectively. All measures had their
highest quality values at zero corruption, and dropped off sharply with the corruption,
illustrating that all the measures were able to objectively quantify cluster quality.

To calculate error rates for the measures, we performed corruptions on the four recordings.
At baseline, the (IsoIBG, IsoINN, IsoD, LRatio) values of the IC clusters from the four
recordings had the following values: (3.6, 3.3, 18.8, 0.20); (4.2, 2.0, 25.8, 0.05); (3.1, 2.0,
20.7, 0.20); and (5.2, 4.7, 42.5, 0.04). The clusters ranged in size from 172 to 833 feature
vectors, which allowed us to make significant reductions in cluster size, when performing
false-negative corruptions. For all recordings, the peak IsoIBG (Fig. 3b left) and IsoINN (Fig.
3b right) values occurred when there was no corruption to the IC clusters, verifying the
usefulness of our measures as an objective quantification of neuronal isolation quality.
Similar results were obtained for the IsoD and LRatio measures (Fig. 3c).

We defined relative cluster quality values, for each of the cluster quality measures, as the
cluster quality value at the given error rate divided by the uncorrupted IC cluster quality
value. We found that increasing levels of corruption tended to monotonically decrease the
relative quality indicated by IsoIBG and, IsoINN. Similar results were obtained with IsoD and
LRatio.

We calculated the Pearson correlation between false positive and false negative error rates
with the relative cluster quality values, for each of the measures. The overall correlation
levels between each of the measures and error rates were high and statistically significant at
the p < 0.001 level for all recordings. The IsoIBG correlation levels with false negatives
ranged from −0.71 to −0.97 and had an average of −0.87. We found that IsoIBG correlation
with false positives had similarly high values, ranging from −0.82 to −0.99 with an average
of −0.90. IsoINN correlation with false negatives ranged from −0.65 to −0.91 with an
average of −0.78 and the IsoINN correlation with false positives ranged from −0.49 to −0.97
with an average of −0.71. The strong correlation levels of both IsoI measures with
increasing error rates confirms that IsoI may be used to objectively validate the quality of
single neuronal identification from extracellular recordings. Similar results were found for
both IsoD and LRatio, which had (min,max,average) correlations with false negatives of
(0.98,1.0, 0.99) and (0.94,0.99, 0.96) for IsoD and LRatio, respectively, and
(min,max,average) correlations with false positives of (0.63, 0.89, 0.77) and (0.80, 0.99,
0.89), respectively. These results indicate the utility of these measures in quantifying single
unit isolation quality as well.

To determine whether the different measures were symmetrically sensitive to both types of
errors, we calculated the skew of the relative values of each of the measures, defined as:

, where rfp, rfn represent the relative value of the measure at the given false
positive and false negative corruption level, respectively, and N is the number of corruption
levels (28). We found that IsoIBG and IsoINN had average skews of −0.0143 and −0.0095,
respectively, across the four recordings. These low skew values suggest nearly symmetric
sensitivity to both types of errors and may be particularly useful where it is not known what
type of error will occur. Although IsoD had a low average skew of −0.015, LRatio had a
high average skew of −49.738.

Comparison of IsoI to other measures
We performed further comparisons of the IsoI measures with two published measures of
cluster quality: isolation distance (IsoD) and LRatio (see Materials and Methods), on a
dataset of 350 clusters from over 45 different recordings. In these recordings, the number of
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clusters obtained ranged from 2 to 15. Detailed analysis of the comparisons is provided
below.

The Pearson correlation coefficient was computed between each pair of cluster quality
measures, between the measures and the number of spikes in the cluster, and between the
measures and the number of clusters that were isolated from the tetrode recording (Table 1).
Before computing the correlation coefficients on IsoD and LRatio, we computed their
natural logarithms first (Schmitzer-Torbert et al., 2005).

There is a high correlation between ln(IsoD) and ln(LRatio), showing significant
redundancy. ln(IsoD) and ln(LRatio) also have high correlations with the number of spikes
in the cluster. This property of these measures is undesirable since principal cells in
hippocampus, striatum, entorhinal cortex, and other brain regions have low firing
frequencies, while interneurons have high firing rates. Low values of these measures may
wrongly exclude such cells from analysis. IsoIBG is not correlated with cluster size.

There is a statistically significant, but only small correlation between each of the IsoIBG,
IsoD, and LRatio measures with the number of clusters in the recording, suggesting these
measure perform well across a wide range of recording qualities. The correlation between
IsoINN and the number of clusters in a recording is not significant, indicating enhanced
robustness of this measure to the different recording conditions.

Importantly, IsoINN is not as strongly correlated with IsoIBG as LRatio is with IsoD,
demonstrating that IsoINN and IsoIBG measure different aspects of cluster quality. This was
of course our intention when designing these as complementary measures.

Comparison of IsoIBG with IsoD
The standard implementations of IsoD and LRatio operate in the 8-dimensional feature-
space consisting of the spike waveform's energy and first principal component of the energy-
normalized waveform on each micro-wire of a tetrode. Since IsoI has no such constraint, an
operator that uses other features to isolate a single-unit waveform can more accurately
evaluate the quality of isolation using IsoI than with the standard implementation of IsoD or
LRatio. The correlation of IsoIBG vs. ln(IsoD) is significant and positive (r=0.5, p<0.001,
n=350, two-tailed test), and the correlation with IsoIBG vs. ln(LRatio) is significant and
negative, though outliers are seen (Fig. 4a). We examined clusters where the measures
agreed/differed to see the strengths/weaknesses of the measures. In exemplar 2D slices of
feature space, the examined cluster is shown in red and its nearest neighbor is shown in blue.
Since IsoD and LRatio are highly correlated (r = −0.91, p<0.001, n=350, two-tailed test) we
focus on the IsoIBG and IsoD comparisons.

The first cluster examined had high ratings in both IsoIBG (11.99 bits) and IsoD (203.98)
(Fig. 4b). This cluster has good separation from the background distribution using both sets
of features. The next cluster had low ratings in both of these measures: an IsoIBG of 5.3 bits
and IsoD of 2.82 (Fig. 4c). The cluster is poorly isolated from the background, and dispersed
in both sets of features.

The next cluster examined had a low IsoD of 8.64 and a high IsoIBG of 13.12 (Fig. 4d). The
operator selected the boundaries of this cluster using the voltage at 2 different times in the
action potential waveform, which allow for good discrimination of this cluster. These
features are not measured by IsoD, and as a result, less than optimal features are used in
calculating this cluster's quality. In addition, this cluster comprises less than 0.001% of the
spikes in the recording. This makes it difficult for IsoD to give this cluster a good score,
since IsoD is proportional to the cluster size (see Methods). IsoIBG does not share these
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problems. This case illustrates how relying on IsoD may exclude valid clusters that require
non-standard parameters for isolation, or exclude low frequency firing single-units from
analysis.

The next cluster examined (Fig. 4e) had a relatively low IsoIBG of 5.28 bits and a relatively
high IsoD of 47.37. Although this cluster is not so well-isolated from the background
distribution, it comprises about 19% of the spikes in the recording. As a result, the IsoD
score is inflated, since a large distance from the center of the cluster must be traversed in
order to accumulate as many noise spikes as are in the cluster (see Materials and Methods).
IsoIBG has no such problem as reflected in the low score of 5.28 bits. This case again
illustrates the problem of using a quality measure that depends on the number of spikes in
the cluster.

Comparison of IsoINN with IsoD
IsoINN measures the separation between nearest neighboring clusters, and IsoD measures the
separation of clusters from the background distribution. The correlation between IsoINN and
IsoD is significant and positive (r=0.47, p<0.001, n=350, two-tailed test), and the correlation
between IsoINN and LRatio is significant and negative (r=−0.46, p < 0.001, n=350, two-
tailed test), with outliers visible (Fig. 5a). We examined the highlighted cases in Fig. 5a to
see where the measures agree and disagree. Again, we focus on comparing IsoINN and IsoD.

The two measures agree when a cluster is well separated from both the background and from
its nearest neighboring cluster (Fig. 5b). This is shown in Fig. 5b, where the cluster has a
high IsoINN of 14.52 bits and a high IsoD of 531.66. The two measures also agree when a
cluster is poorly separated from both the background and from its nearest neighboring
cluster. This is shown in Fig. 5c, where the cluster has an IsoINN of 5.04 bits, and IsoD of
3.29. We next examined a cluster with good separation from the nearest-neighboring cluster,
with an IsoINN of 14.47 bits, but poor separation from the background, with an IsoD of 7.73
(Fig. 5d). These measures indicate that the cluster is probably not a single unit, and needs to
be re-clustered. This demonstrates that IsoINN provides further information on the quality of
a good cluster: only when it is already known that the cluster is isolated from the
background distribution, should IsoINN be used, providing a stricter criterion of cluster
quality than either IsoD or IsoIBG alone.

The next cluster examined (Fig. 5e) has poor separation from the nearest-neighboring
cluster, with an IsoINN of 1.34 bits, but good cluster-background separation, with an IsoD of
53.62. The former can be seen in the overlap between the red and blue clusters; the latter in
the relatively large distance of the red and blue clusters to the remaining feature vectors.
This example demonstrates that a non-unique cluster, C, is only separated from the
background (high IsoD or IsoIBG), but not from its nearest neighboring cluster (low IsoINN),
NN. This may suggest that C and NN should be merged into a single, larger cluster, which
will have better isolation and uniqueness. This example illustrates that IsoD is not sensitive
to uniqueness, and that IsoINN can help point out problems of over-splitting waveform
feature clusters.

Comparison of isolation quality across electrode configurations
Although the IsoI measures were designed to work on arbitrary feature spaces, different
laboratories utilize electrode configurations that vary in the number of microwires
composing each electrode and these differences can have a substantial impact on single unit
isolation quality (Gray et al., 1995). We therefore utilized a dataset of 31 recording sessions
from hippocampal CA1, consisting of 437 single units, to measure how IsoI values change
as a function of the number of electrode microwires used.
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Initial clustering was performed by an expert, utilizing features available from all four
microwires of the tetrode. We then used the feature space derived from all four-microwires
to compute the baseline IsoI values. To allow for comparison across these feature spaces,
RelIsoI(N) was defined as the IsoI value computed when using the best 8 features available
from N (1 or 2) microwires, divided by the baseline IsoI value. We performed these
calculations both for IsoIBG and IsoINN. As expected, our calculations confirm that using
only 1 or 2 microwires degrades the isolation quality significantly (Table 2). It is noteworthy
that the degradation in quality had a larger impact on IsoINN, which confirms that a
particular benefit of using multiple microwire electrodes is in reducing the contamination
that can often occur between two or more clusters of action potential waveforms that are of
sufficiently large amplitude to be distinct from the background activity.

Comparison of isolation quality across brain areas
Firing properties, including rates and action potential features, as well as the density of
neurons, can differ significantly across different brain areas. These differences can impact
the ability of experimenters to accurately identify single units from waveform feature
distributions. We therefore tested IsoI sensitivity to differences in the extracellular
waveform characteristics of different brain areas across areas, utilizing in-vivo recordings
datasets from awake rats from multiple areas, including hippocampal CA1, CA3, and
dentate gyrus (Table 3, using data from Fenton et al., 2008; Park et al., 2011). The average
IsoI values had similar ranges from ∼6-11 bits, across regions. IsoIBG values ranged from
3.7 – 14.6, while IsoINN values had a larger range from ∼0.3 – 16.7 bits.

We examined a recording of 56005 spikes from CA3, in detail (Fig. 6a). Approximately
21% of the spikes recorded were considered noise (Fig. 6a left, gray points). The remaining
spikes formed six clusters, corresponding to putative single cells. These clusters were
characterized as follows (color, number of spikes, IsoIBG, IsoINN): red, 2358, 7.7, 6.9; blue,
2095, 5.4, 3.0; green, 33213, 4.8, 4.7; purple, 1809, 7.1, 4.4; orange, 3616, 4.3, 3.0; maroon,
1274, 4.5, 4.7. Cluster 1 (red) showed the best separation from both background (IsoIBG of
7.7 bits) and its nearest neighboring cluster (IsoINN of 6.9 bits). Cluster 4 (purple) also
showed strong background separation (IsoIBG 7.1 bits) and separation to its nearest
neighboring cluster (IsoINN of 4.4 bits). Although cluster 6 (maroon) appears to overlap
cluster 3 (green), it has both substantial background separation (IsoIBG of 4.5 bits) and
nearest neighbor separation (IsoINN of 4.7 bits), which is due to good separation in other
planes of feature-space. The other clusters had fairly high IsoIBG values, all larger than 4
bits, while their IsoINN were usually only slightly less. Although firing activity of CA3
neurons can be fairly sparse, these substantial IsoI values demonstrate that with a
sufficiently large dataset, it is possible to accurately identify single units from this brain
region.

We evaluated IsoI from recordings made in medial prefrontal cortex (mPFC) and
hippocampal CA1 from rats under urethane anesthesia (Table 4, data from manuscript under
preparation). Both of these areas showed similar average IsoIBG values of 7.6±0.3 and
7.7±0.3 for CA1 and mPFC, respectively. The IsoINN values were also similar, with
averages of 10.4±0.4 for CA1 and with a slightly higher value of 11.3±0.6 for mPFC.
Minimum and maximum values were similar to those from the awake, freely moving rats.

Next, we examined a recording of 283469 spikes recorded from mPFC, in detail (Fig. 6b).
Approximately 95% of the spikes recorded were considered noise, due to low amplitude
spikes on several channels (Fig. 6b left, gray points). The remaining ∼12,000 spikes were
isolated into six clusters. These clusters were characterized as follows (color, number of
spikes, IsoIBG, IsoINN): red, 1449, 9.0, 15.2; blue, 504, 10.2, 14.5; green, 617, 9.3, 14.3;
purple, 4370, 6.0, 9.5; orange, 3326, 7.4, 12.9; maroon, 1872, 5.6, 8.1. All of the clusters
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showed high separation from both background and their nearest neighboring clusters.
Although each of the six clusters had high IsoIBG values, ranging from 5.6 – 10.2 bits, each
cluster had a higher IsoINN value, ranging from 8.1 – 15.2 bits. The higher IsoINN values
found in these recordings were partially due to the higher level of noise present in the
recording (95% of the spikes), as compared to a hippocampal recording. However, since the
IsoIBG values were typically in the same range as those from hippocampal recordings, the
single unit isolation from background should be considered sufficiently high. The fact that
this is so demonstrates that the IsoI measures are useful for quantifying single unit isolation
in hippocampal as well as neocortical structures.

The minimum IsoI values across the datasets described was typically near ∼3 bits. We have
adopted a best practice of rejecting clusters where the IsoI values are less than 4 bits. The
similarity of IsoI values from these different brain regions demonstrates the utility of the
methods in quantifying single unit isolation quality in different recording conditions.

Comparison of computation time
We utilized a dataset of over 400 single units from 31 different recordings from
hippocampal CA1 to estimate computational costs for the different isolation quality
measures. For IsoI calculations, we started with 12 feature vectors from the action potential
Energy, Peak, and first principal component (PC1) on each of the four microwires. The

feature selection stage of, which iterates over all  pairs of 2D slices, for each cluster,
to find the best features for the final 8D IsoI calculation, was the largest bottleneck of the
IsoI calculation. This stage had a computational cost ranging from 1.24 – 35.37 seconds,
with an average of 7.28 ± 0.28 seconds (± standard error of the mean, N=440) per cluster.
IsoIBG had the next largest computational cost, ranging from 0.25 – 22.5 seconds and
averaging 2.84 ± 0.13 seconds per cluster. IsoINN had a slightly lower computational cost,
ranging from 0.01 – 27.85 seconds and averaging 1.43 ± 0.13 seconds per cluster. This
lower cost for IsoINN was due to the smaller number of comparisons between feature vectors
belonging to two distinct clusters, which are less than the large number of comparisons
needed to compare feature vectors belonging to a cluster and its complement, as is done for
IsoIBG.

IsoD and LRatio both operate in an 8-dimensional space, consisting of Energy and the first
principal component of the action potential waveform on each tetrode wire, and do not
utilize feature selection. Their lower computational costs are partly a result of these
differences. IsoD and LRatio had the following values for minimum – maximum, and
average ± standard error of the mean (in milliseconds, per cluster): (5.6 – 46.4, 18.3 ± 0.5)
and (10.0 – 82.2, 32.8 ± 0.8), respectively. Although the IsoI measures had a higher
computational cost, judicious use of KD-Trees by caching nearest neighbor values may help
reduce the cost of the calculations. In addition, parallelizing the 2D search across multiple
threads would allow for additional time-savings. Nonetheless, use of IsoI amounts to
spending approximately a minute extra to compute estimates of single unit isolation quality.
This is an insignificantly short amount of time with enormous value, given that it can take an
expert hours to select the waveform boundaries.

Discussion
We have developed and validated an information-theoretic measure for determining single-
unit isolation quality in a standardized way that generalizes across brain regions and
electrode configurations. The method, IsoI, calculates a symmetrized KLD between two sets
of waveform-feature probability distributions in two complementary ways: between a cluster
and the background (IsoIBG), and between a cluster and the nearest-neighboring cluster
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(IsoINN). These two measures respectively quantify a cluster's isolation and uniqueness. We
selected the features maximizing 2D IsoIBG, on a per-cluster basis, to calculate a final IsoI.
This approach permitted comparison of IsoI values across different feature-spaces. This is
important for comparing quality across different users, who will choose different features
given the same data set, and also for comparisons across laboratories. It is also important, as
demonstrated, that the measures permit comparisons of single-unit isolation quality across
recordings from different brain regions. In our data sets, single-unit isolation quality did not
differ for recordings from the different hippocampal subfields, nor did isolation quality
differ if recordings were made from mPFC or under anesthesia. This does not imply that it is
just as easy to isolate single units in each of these areas and conditions, but rather that
similar isolation quality standards were applied to the different data sets by the manual
operators. Indeed, we have observed a reduction of isolation quality that was captured by a
significant decrease of the IsoI measures in conditions when a larger proportion of the
recordable cells were actively discharging (Fenton et al., 2008; Park et al., 2011). The IsoI
measures were also lower for recordings that only utilized waveform information from one
or two electrodes rather than from all four electrodes of a tetrode, which simply quantified
the fact that multi-wire electrode configurations provide more information and power for
single unit isolation. There is substantial merit in the use of a single-unit isolation metric that
has general applicability (Hill et al., 2011) and we suggest that the IsoI measures described
here are well suited to quantify the quality of single-unit isolation, regardless of where the
data were recorded from, and regardless of how the units were recorded and isolated.

The isolation measures were applied to a database of clusters, and the values matched expert
judgments of isolation quality. We simulated common clustering errors and demonstrated
that IsoI reasonably quantified the degree of degradation whether changes were made locally
(only a single cluster perturbed) or globally.

To objectively validate our IsoI measures, we used publicly available, simultaneous intra-
and extracellular neuronal recordings to demonstrate that reductions in both of our IsoI
measures correlated strongly with false-positive and false-negative error rates. The strong
correlation levels indicate that our IsoI measures may be used to objectively validate the
quality of single neuronal identification from extracellular recordings.

Our new measures generally correlated well with older measures (IsoD and LRatio), but
showed additional significant advantages. One advantage is that IsoI is intuitive via its
standard information theoretic scaling, providing a consistent interpretation even when
varying features are used for isolation. Another advantage is insensitivity to cell firing rate,
particularly important when both fast-firing interneurons and slower-firing principal cells
are recorded. An additional advantage occurs with “over-splitting”, a common problem in
single-unit isolation. Over-splitting occurs when waveforms from a single-unit are
inaccurately split into two or more cluster. This occurs, for example, when higher amplitude
spikes precede low- amplitude spikes in a complex-spike burst (Quirk and Wilson 1999).
IsoINN directly detects over-splitting by identifying clusters that are excessively entangled
with their nearest neighbor. Here, as in all cases, IsoIBG remains a necessary complement,
since IsoINN is only useful to quantify uniqueness once minimal isolation quality has been
established with IsoIBG. IsoINN can of course only be used when there are at least two
single-units to compare.

Certifying students
Isolating single units from multiple extracellular electrodes is a time-sink for many
neuroscience laboratories (Buzsaki 2004). It can take ∼2-4 hours for an expert to manually
cluster a 10-minute ensemble recording. IsoI can speed up this process by identifying
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particular clusters that are not well defined. Such clusters can then be eliminated from
consideration or examined using alternative feature sets. Since IsoI is agnostic to feature
choice, it can be used as an aid in the choice of the most discriminative features that end up
producing the best clusters. Spike clustering is even more frustrating for the student, who
must also wonder when to stop refining clusters. Using the IsoI measures, the novice user
can make several different clustering attempts and identify the best outcome. The measures
also provide a laboratory with a criterion to use both while training new researchers in this
skill, and subsequently certifying the student to perform these assessments independently.

Certifying projects
Manual spike clustering includes use of subjective judgments of cluster quality: different
clusters look better or worse to different researchers depending on their levels of expertise
(Wood et al., 2004). As a result, incorrect conclusions may be drawn where clustering
quality is inconsistent, or lower than required for a particular investigation (Harris et al.,
2000). For example, accurate characterization of the ms-scale temporal interactions amongst
two or more neurons may require greater isolation quality than estimating the stability of the
receptive fields (Quirk and Wilson 1999). A standardized measure will permit data quality
to be assessed during paper review and after publication. The generality of the IsoI
measures, allowing comparison across different choices of feature sets, is a key advantage in
its use and potential adaptation by neurophysiologists using different electrode designs and
amplifier settings, and looking at different species and different brain location, factors which
require the use of different features to provide optimal discrimination.

Usefulness for long-term recordings
Until now, widespread long-term recording on the scale of days and months has not been
practical due to a variety of technical difficulties (Emondi et al., 2004). IsoI can provide a
robust method for investigating the consequences of these problems and for determining
recording periods that are stable enough for detailed analysis. In this application, the user
would first cluster a minimal N-minute period of the recording, defining cluster boundaries.
The duration of this period would then be incrementally augmented, and the IsoI measures
applied with these same cluster boundaries. With duration increase, the larger set of
waveforms will blur the clusters, resulting in lower values of the IsoI measures. With
experience, a threshold can be set that defines a distinction between “blurring” and cluster
degradation, allowing identification of a time after which we can no longer be confident that
the same units are being recorded. At this point, the user will need to re-cluster and find new
cluster boundaries. This incremental “chunk-and-cluster” procedure will allow a quantified
interpretation of whether it is reasonable to accept that individual units have been
continuously isolated for periods of minutes or possibly hours (days or weeks seem unlikely
with current technologies). Note that there will be nothing in this determination to
distinguish whether unit appearance has changed or if new units have been recorded.

Automation
The IsoI measures represent an important step towards spike-sorting automation, which has
previously been investigated by multiple groups (Lewicki 1998; Wheeler 1999; Shoham et
al., 2003; Quiroga et al., 2004). IsoI automates quality control, allowing methods to be
developed that use IsoI as a fitness function in machine learning optimization algorithms.
IsoI can also be used to determine whether and when an algorithm's output approaches or
exceeds expert efforts. Additional uses of IsoI include using the measures in a real-time
system that assigns spikes and periodically prompts the user to adjust cluster boundaries (or
re-cluster) when IsoI values fall below a threshold. Use of IsoI in such an automated fashion
would require optimizations, such as caching of values in KD-Trees and a single calculation
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of optimal dimensions. Once the KD-Trees and best dimensions are found, nearest-
neighbors can be found in logarithmic time, proportional to the number of elements in the
KD-tree. Since a nearest-neighbor lookup will be required for each element in a cluster, the
runtime will also scale in proportion to cluster size. The complexity of iterative optimization
algorithms would also be proportional to the number of iterations run. Further development
of partial or full automation methods will be a great time-savings for many labs, and also
allow for inter-laboratory exchange of data, reducing error and bias.

Important for neuroscience
Improved understanding of physiological and pathophysiological brain states will require
long-term recordings that can determine how individual neurons perform computations over
time and across different experimental conditions (Thompson and Best 1990; Tolias et al.,
2007; Dickey et al., 2009). Spike-sorting methods, already widely used for cortical
recordings, will find increasing use in determining ensemble activity patterns in subcortical
areas as well (Schmitzer-Torbert and Redish 2004; Bryant et al., 2009). Furthermore, usage
can be expected to expand beyond the classical assessments of sensory and place-cell
ensembles and begin to look at the pathophysiology of ensemble discoordination and
hypercoordination seen in the dynamical brain disorders: epilepsy, Parkinson's disease, and
schizophrenia (Lytton, 2008; Olypher et al., 2006).
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Figure 1.
a. Extracellular action potential waveforms (negative up) of 5 well-defined clusters, C1-C5.
Gray waveforms (C0) are un-clustered spikes. The 4 signals recorded from each wire of the
tetrode (T1-T4) are drawn next to each other, separated by vertical black lines. Waveforms
were stored 250 μs before the upward threshold crossing and 1.75 ms afterwards. b.
Different 2-D slices of the clusters in feature-space. T1-Peak is defined as the peak voltage
on wire 1 (see methods). T1-V(0.181) is a user-defined feature defined as the voltage on
wire 1 at time 181 μs of the stored waveform. T3-V(0.307) is the voltage on wire 3 at 307
μs. These features were selected by an expert user to optimize waveform isolation, as
reflected in the well-separated clusters. Only the 5 best clusters found are highlighted here.
Voltage in units of mV. c. Top – IsoIBG of the 5 clusters shown in b. Bottom – IsoINN of the
5 clusters.
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Figure 2.
Sensitivity of IsoI measures to various cluster degradations. Left side: degradations are a
high level of random intermingling, lower level of intermingling, expansion, and
contraction. Scatter-plots of the clusters in the same 2-D projections after the various
degradations of C1 are shown in a-d. Voltage in units of mV. Right side: IsoI values before
(circle) and after (triangle) degradation. Square in a,b shows IsoI value for the additional
new cluster (color coded). Faint gray arrows pointing downward emphasize where decreases
in IsoI values occur. a. Random 50% reassignment produces substantial decrease in IsoI
values for the 2 derived clusters. Note that oscillatory behavior about the exact value, e.g., 0
for C1′s new IsoINN here, during convergence is a general property of the nearest neighbor
divergence estimator16. b. Approximate bisection of cluster C1 within a 2-D feature slice
also reduces IsoI values, despite the clear border between derived clusters. c. Expansion: C1
is brought closer to C2,C3, so IsoI values of C2,C3 also decrease. C3, nearest-neighbor to
C1, shows large decrease in IsoINN. C4,C5 are also slightly degraded. d. Contraction
primarily degrades C1 IsoIBG due to poor isolation from points that are now part of
background.
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Figure 3.
Correlation of IsoI measures with error rates. a. False-positives (right) and false-negatives
(left) were incrementally added to the known intracellularly-identified (IC) feature
distribution and the corresponding relative IsoI values were calculated. The cluster
displayed has 833 feature vectors. b. Correlation of relative IsoIBG and IsoINN values with
false-positive and false-negative error rates were found to be large and significant (p <
0.001). Peak IsoI value occurs at zero error rate. Error rates were defined by the percentage
of points added to (false positives) and subtracted (false negatives) from the IC cluster. At
high error rates variability of relative IsoI values increased, but IsoI values remained non-
negative. c. Correlation of relative IsoD and LRatio values with false-positive and false-
negative error rates were found to be significant (p < 0.001). Note that LRatio increases with
increasing error rate, indicating a drop in single unit isolation quality.
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Figure 4.
Comparison of IsoIBG with ln(IsoD), ln(LRatio) on all clusters in the 350 cluster dataset
along with several case studies. a. Plot of IsoIBG vs. ln(IsoD) and ln(LRatio). Larger, labeled
points represent clusters discussed in text. These clusters are shown in parts b-e. In b-e, the
red cluster is the cluster of interest (highlighted point from part a) and the blue cluster is its
nearest neighbor. The gray points are the remaining spikes. The left column of b-e shows the
slices of the feature space used by IsoIBG, and the right column shows slices of the feature
space used by IsoD. Voltage in units of mV. b. A well-isolated cluster according to both
measures. c. A poorly-isolated cluster according to both measures. d. A well-isolated cluster
according to IsoIBG, poorly-isolated cluster according to IsoD/LRatio. e. Poorly-isolated
cluster according to IsoIBG, well-isolated cluster according to IsoD/LRatio.
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Figure 5.
Comparison of IsoINN and ln(IsoD), ln(LRatio) on all clusters in the dataset along with
several case studies. a. Plot of IsoINN vs. ln(IsoD) and ln(LRatio). Larger, labeled points
represent clusters discussed in text. These clusters are shown in parts b-e. b-e. The red
cluster is the cluster of interest, and the blue is its nearest-neighboring cluster. The gray
points are the remaining unassigned spikes. The left column of b-e shows the slices of the
feature space used by IsoINN, and the right column shows slices of the feature-space used by
IsoD. Voltage in units of mV. b. A well-isolated cluster according to both measures. c. A
poorly-isolated cluster according to both measures. d. A well-isolated cluster from its
nearest-neighbor cluster, but poorly-isolated from background. This example illustrates that
neither IsoD nor LRatio is sensitive to separation between clusters. e. A cluster with poor
separation from its nearest-neighbor cluster but good cluster-background separation. The
overlap between the red and blue clusters indicates they may need to be merged into a single
cluster or discarded.

Neymotin et al. Page 23

J Neurosci. Author manuscript; available in PMC 2012 May 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Comparison of single-unit isolation quality in CA3 (a) and medial prefrontal cortex (mPFC,
b). Left) Scatter-plots of feature vectors from six different clusters. Features displayed are
microwire voltages normalized to be between 0 and 1. Gray points represent feature vectors
in the noise distribution. Note that T1-V(0.407) is a user-defined feature defined as the
voltage on wire 1 at time 407 μs of the stored waveform. Center and right panels display
bar-plots of the IsoI values, color-coded to match the clusters in the scatterplots.
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Table 2

Average ± standard error of the mean of the RelIsoI values calculated using 1 or 2 microwires.

RelIsoI(1)BG 0.698 ± 0.183

RelIsoI(2)BG 0.550 ± 0.020

RelIsoI(1)NN 0.165 ± 0.014

RelIsoI(2)NN 0.430 ± 0.027
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Table 4

IsoI values from recordings from rats under urethane anesthesia. Ave, SEM, Min, Max, and N denote average,
standard error of the mean, minimum, maximum, and number of recordings used, respectively. mPFC denotes
medial prefrontal cortex.

IsoIBG IsoINN

CA1 Ave 7.64 10.41

SEM 0.26 0.40

Min 4.34 4.06

Max 13.61 20.69

N 67 67

mPFC Ave 7.69 11.32

SEM 0.27 0.59

Min 4.44 4.2

Max 15.18 25.05

N 58 58
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