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Abstract
Mathematical models have substantially improved our ability to predict the response of a complex
biological system to perturbation, but their use is typically limited by difficulties in specifying
model topology and parameter values. Additionally, incorporating entities across different
biological scales ranging from molecular to organismal in the same model is not trivial. Here, we
present a framework called ‘querying quantitative logic models’ (Q2LM) for building and asking
questions of constrained fuzzy logic (cFL) models. CFL is a recently developed modeling
formalism that uses logic gates to describe influences among entities, with transfer functions to
describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters
of the transfer functions, and it permits straight-forward incorporation of entities at multiple
biological scales. The Q2LM framework can be employed to ask questions such as: Which
therapeutic perturbations accomplish a designated goal, and under what environmental conditions
will these perturbations be effective? We demonstrate the utility of this framework for generating
testable hypotheses in two examples: (a) a intracellular signaling network model; and (b) a model
for pharmacokinetics and pharmacodynamics of cell/cytokine interactions; in the latter, we
validate hypotheses concerning molecular design of granulocyte colony stimulating factor.
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1 Introduction
Based on current understanding of a biological system, bioengineers predict how the system
will respond to designed perturbations. One important manifestation of this process is
predicting whether exposing a patient to a drug with a pre-defined target will result in a
favorable clinical outcome. This approach works well when few relevant components of the
system are considered. However, it is more difficult to propagate possible effects through a
complex system using intuition alone, which hinders the capability for reliable prediction.

To aid intuition, a broad spectrum of mathematical and computational models have been
developed [1, 2]. For example, “theory-driven” differential equations (DEs) based on

Corresponding Author: Douglas A. Lauffenburger, lauffen@mit.edu, 77 Massachusetts Ave. 16-343, Cambridge, MA 02138.
Conflict of Interest Statement
The authors declare no conflict of interest.

NIH Public Access
Author Manuscript
Biotechnol J. Author manuscript; available in PMC 2013 March 1.

Published in final edited form as:
Biotechnol J. 2012 March ; 7(3): 374–386. doi:10.1002/biot.201100222.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



physico-chemical mechanisms have been used to model and make predictions in biological
systems ranging from virus population dynamics in a host organism [3] to receptor
trafficking through cellular compartments [4] to enzymatic phosphorylation cascades [5]; at
the other end of the spectrum, “data-driven” algebraic and statistical algorithms have been
used to understand the integrated influence of multiple signaling pathways on cell
phenotypic outcomes [6, 7]. While these approaches have proven useful in biological and
pharmaceutical contexts, their ability to make reliable predictions depends heavily on a large
amount of appropriate experimental data for determining relationships, topologies, and
parameter values. This critical dependence creates a high barrier-to-entry for using
mathematical models to guide scientific decisions on a day-to-day basis. Furthermore, using
these methods to describe relationships between different biological scales, such as the
exchange of a molecule from tissues to individual cells and subsequent molecular
interactions within the cell, is a significant challenge and an active area of research [8–10].

Logic-based models are an attractive alternative because they are readily derivable from
either a theory-driven or data-driven foundation [11] and have been successfully used to
predict the response of a biological system to perturbation (e.g. [12, 13]). In discrete (e.g.
Boolean) logic models, all species are found categorically in one of a few levels of activity.
However, this description is often too simple to adequately describe biological systems, and
feedback in these models can result in oscillations which convolute interpretation of their
results. Recently, some have proposed transforming discrete logic models into either
ordinary or piecewise linear differential equations [14–16]. While some software tools for
building and simulating models of these types exist (reviewed in [11]), changes to
parameters of such models affect the differential equations governing each species, and it is
not immediately evident how such changes affect the quantitative relationships among the
species in the system. Moreover, use of these tools to determine the effect of perturbations to
species or parameters requires familiarity with the particular software and is not
straightforward.

To alleviate these difficulties, we present a new analysis framework for asking questions of
logic-based models, which we term ‘querying quantitative logic models’ (Q2LM). We use
the constrained fuzzy logic (cFL) formalism recently developed for training a logic model to
data [17], but here demonstrate the ability to make predictions with models based solely on
prior knowledge of the biological system. Additionally, we introduce a simulation procedure
that is able to solve for the steady state of a system even when feedback results in oscillatory
behavior. This logic formalism allows species in a biological system to be modeled with a
continuous range between zero and one using mathematical functions that directly relate
input and output species (transfer functions). Importantly, the Q2LM approach facilitates
querying these models for efficient prediction of the behavior of biological systems in
response to perturbation. Q2LM is a MATLAB toolbox freely available at
http://sites.google.com/site/saezrodriguez/software.

Because we use a simple logic-based framework, Q2LM is flexible enough to concomitantly
incorporate multiple scales of biology—from molecular species to whole organisms. We
illustrate the use of Q2LM to build and query a logic model with a simple example
intracellular signaling model. Subsequently, we investigate a logic model of multiscale
pharmacokinetics and pharmacodynamics of granulocyte colony stimulating factor (G-CSF)
with the objective of predicting the molecular-level alterations that would best stimulate
maturation of precursor neutrophils.
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2 Methods
2.1 What is a constrained fuzzy logic model?

In a constrained fuzzy logic (cFL) model, the relationship between species is described by
logic gates with transfer functions, from “upstream” parent node(s) to a “downstream” child
node. In the simplest logic gate, one input parent species activates an output species,
designated by an arrow between the two (Figure 1A). In cFL, this activating relationship is
represented with a transfer function, which is simply a mathematical function used to
evaluate the value of the output species given the value of the input species (Figure 1B).

In the current implementation, each transfer function is a normalized Hill function with a
gain, where the gain, g, is a constant between zero and one, n is the Hill Coefficient, and k is
the parameter that determines the EC50 of the function. If the input species inhibits the
output species (a NOT gate in traditional logic modeling, Figure 1A), the transfer function is
subtracted from one, effectively inverting it. We have found this transfer function form to be
useful because it is simple yet flexible enough to accommodate a variety of biologically
relevant functional relationships including linear, sigmoidal, and digital. Furthermore, each
parameter of the transfer function determines a specific aspect of the function shape: g
determines the maximum value of the output species given maximal input species value; k
determines the EC50 (value of input species necessary for the output to reach activation at
half of its maximum), and n determines whether the shape is linear or sigmoidal. Thus,
changing any of these parameters changes the transfer function shape in a predictable
manner (Figure 1B).

Transfer functions are specified for every relationship between species and provide the basis
for all quantitative relationships between species in a cFL model. If an output species has
more than one input species, multiple transfer functions are evaluated for each input-output
relationship, resulting in multiple possible values for the output species. The final value for
the output species is then determined based on these possible values as well as the logic of
the interactions. For example, if an output species has two inputs species, both could be
necessary to affect the output species (an AND gate) or they could affect the output species
independently of one another (an OR gate). If both AND and OR gates are used to relate
inputs species to an output species, AND gates are evaluated before the OR gates (i.e. the
sum-of-products formalism, Figure 1A).

2.2 Building a cFL model
To build a logic-based model, one must first identify the species in the biological system of
interest to be included in the model. These species might be intra- or extra-cellular
molecules, specific cell types, or the “state” of a molecule or cell; thus, within the model a
single entity can be represented by several species (e.g. ligand-bound and unbound cell
receptors; differentiated or undifferentiated hematopoietic cells), where the name of the
species is used to distinguish among various states of a single entity. Assigning specific
names to species of any type of entity enables logic models to concomitantly incorporate
processes at multiple biological scales.

The next step for building a logic model is to specify the interactions between species both
in terms of the species that interact as well as whether the interaction is activating or
inhibitory. Knowledge of these interactions can come from a variety of sources. An expert
may have accumulated enough knowledge to build such a model using intuition alone.
Additionally, a wealth of databases exists that contain such interactions [18]. It is important
to document sources used during the model building process so that, if discrepancies arise
between the model simulations and what is known about the system, the knowledge basis of
the model can easily be revisited.
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The most challenging aspect of building a logic model is specifying AND or OR logic gates
for species with more than one input parent species. In previous work we used the CellNOpt
software to train logic gates to dedicated experimental data [17, 19]. Here, we rely on prior
knowledge to determine the logic of the relationships. An AND gate should be used if the
input species “work together” to affect the output. Alternatively, one can identify an AND
gate by asking “Should the output be affected with only that input, or are other species
necessary?” If other species are necessary, an AND gate should be used. Otherwise, it is an
OR gate. For example, a molecular binding event is represented with an AND gate because
both binding partners are necessary to form the bound species.

The final step is to write the model in a form readable by the software. For Q2LM, this
involves making a spreadsheet that specifies the interactions and parameters of the transfer
functions used to evaluate the effect.

2.3 Simulating a cFL model
Q2LM simulates a cFL model with synchronous updating. The initial values of all non-
stimuli species are designated as Not-a-Number (NaN) and ignored until their values have
been specified by an upstream interacting species. At each simulation step, species’ values
are calculated based on the values of their input species at the previous step. Species that
have been designated as ‘stimuli’ are maintained at the stimulated value or, if its input
species specify it to be a larger value during simulation, it is assigned the maximum of the
stimulated and calculated values. The value of an inhibited species is multiplied by the
percent inhibition at each simulation step. The simulation terminates when either the values
of all species stabilize (the so-called “logic steady-state”). If any species value does not
stabilize due to oscillations, the simulation will terminate after a pre-defined maximum
number of steps has been reached. The value of the oscillating species can be set as a NaN,
the average of several simulation steps, or calculated by solving the system of equations
specifying the network.

2.4 Querying a cFL model
Q2LM poses the following questions: 1) What perturbations to species in the system result
in a desired outcome? and 2) In what environmental conditions are these perturbations
effective? To answer these questions, one must provide environmental conditions (the
“environment”), the perturbations (“experiments”) and the desired outcome (the “criteria”).
Environmental conditions are considered invariant while experimental perturbations are
varied and their effects within each environmental condition evaluated. Perturbation effects
are then compared to the criteria to reveal if the perturbation ‘met’ the criteria. Strictly
speaking, only an environment is required to simulate the model while experiments and
criteria are used to address a specific query.

2.5 in vivo validation of model prediction
Mice were treated with 150 mg/kg 5FU for 24 hours prior to treatment with either wildtype
or mutant colony stimulating factor for 9 days. Control mice were either treated with vehicle
PBS or 150 mg/kg 5FU alone. Five mice were treated for each condition. Animals were
sacrificed and blood collected by cardiac puncture. After hemolysing red blood cells using a
lysis solution, white blood cells were concentrated and cell count performed with a Coulter
counter. Experiments using animals we performed under the permission of MIT Committee
on Animal Care protocol #0904-063-07.
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3 Results
3.1 Logic-based model of an intracellular signaling network

We first exemplify the use of Q2LM with a highly simplified network that models potential
crosstalk between TNF-α- and TGF-α-induced signaling pathways. We previously observed
that both TNF-α and TGF-α stimulation of HepG2 cells activated the JNK/c-Jun pathway
while only TGF-α stimulation activated the MEK/ERK pathway and only TNF-α stimulation
activated the NF-κB pathway [17]. These pathways activate a variety of transcriptional
programs; here, we focused on AP1 transcription factor activation, which involves the
oligomerization of c-Jun and Fos. We postulated from literature evidence that ERK
phosphorylates Fos, which facilitates its dimerization with c-Jun, thus forming AP1
heterodimers. Alternatively, c-Jun can be phosphorylated via the JNK pathway and dimerize
to form AP1 homodimers [20–22]. To demonstrate Q2LM analysis, we question whether
inhibiting the activation of MEK, ERK, or JNK would increase the amount of AP1
homodimers.

From our understanding of this simple biological system, we specified the interactions
between species in the network (Figure 2A). In most cases, increasing the value of the input
species increased the value, or activity, of the output species. However, there were a few
cases of inhibitory interactions: IκB sequesters and inhibits the activity of NF-κB, and
increased activity of IκK decreases the ability of IκB to sequester NF-κB. For this example,
we also assumed that there was limited c-Jun available in the system which resulted in
stoichiometry-driven inhibitory relationships between AP1 hetero- and homo-dimers
because the presence of one dimer form indicated that there was less c-Jun available to form
the other.

To convert these interactions into a logic model (Figure 2B), we considered species with
more than one parent input species for possible AND logic relating the species. Two parent
inputs (TGF-α and TNF-α) activated JNK, but they did so independently of one another.
Thus, this gate was an OR (not an AND gate). The AP1 heterdimers species also had more
than one parent input species (c-Jun, Fos, and NOT AP1 homodimers). Because a
heterodimer consists of both c-Jun and Fos, both were necessary to increase the amount of
heterodimer, and an AND gate was used to model their logic. The presence of AP1
homodimer limits the amount of AP1 heterodimer, but only when c-Jun and Fos are present
to make a heterodimer. Thus, it was also a parent input for the AND gate.

Finally, we wrote our logic model in a spreadsheet compatible with Q2LM (Figure 2C). For
most model parameters, we were uncertain of their values, so reasonable defaults were
chosen. However, from our initial dataset, we knew that TGF-α did not activate the JNK
pathway as strongly as TNF-α in HepG2 cells [17], but since we were not certain of the
relative activating potentials we made several models, each with a different gain parameter
for this interaction. This was indicated in the spreadsheet by including an array of gain
parameters in the corresponding entry (Figure 2C). Additionally, we added normally
distributed noise to each parameter when the model was loaded to simulate biological noise.

We queried our intracellular signaling model to determine if inhibiting MEK, ERK, and
JNK alone or in combination would increase AP1 homodimers in specific environments
composed of varying levels of TNF-α and TGF-α alone or in combination (Figure 2D). We
simulated these environments with partial or complete inhibition of MEK, ERK, and JNK
and then compared the resulting levels of AP1 homodimers with the levels that resulted
without inhibition. This information was encoded in two input files: (1) the ‘Scenario’ file
included the environments and species to perturb with inhibition (Figure 3A) and (2) the
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‘Criteria’ file specified that the software should return experimental conditions that increase
AP1 homodimers (Figure 3B).

Q2LM results revealed perturbations that met our criteria of increased values of AP1
homodimers (Figure 3C). We found that partially or completely inhibitting ERK and/or
MEK increased AP1 homodimers in environments featuring high values of TGF-α
stimulation, but had minimal effect in those with low values of TGF-α stimulation. Because
this example served only to illustrate the use of Q2LM, a test of this hypothesis was out of
the scope of this paper. However, we note that because the software asked questions of the
model in a manner analogous to experimental queries, experimental tests are easy to specify.
For this example, a follow-up experiment to test this hypothesis would be to stimulate cells
with low and high concentrations of TGF-α in the presence or absence of ERK or MEK
inhibition and to measure the resulting AP1 homodimer levels.

We next investigated how the system evolved during model simulation (Figure 4A). It was
apparent that the values of the AP1 homo- and hetero-dimers oscillated in several inhibition
conditions. This is a common occurrence in models with feedback that have been simulated
with discrete updating [14]. However, Q2LM offers a novel treatment for such cases in
which the system of equations specifying the network is solved for the steady state solution
of environment/perturbation combinations that exhibit oscillations (Supporting Text). In this
case, we observe that AP1 homo- and hetero-dimers oscillated due to the negative feedback
between them in the absence of perturbation (Figure 4B). However, the steady state solution
of these was calculated to 0.5 because the feedback ‘balanced out’ to an intermediate value.
In inhibitor combinations that met the designated criteria, no oscillations were observed
(Figure 4C). Instead, the values of the homo- and hetero-dimer species approached unity and
zero, respectively. Thus, these conditions increased homodimers because they were no
longer limited by negative feedback from heterodimers. By examining the system evolution,
we confirmed that the conditions met our criteria.

3.2 Logic-based modeling of pharmacokinetics of G-CSF
For our second example, we investigated whether Q2LM could be useful for multiscale
models of physiological significance by using it to address the pharmacokinetics and
pharmacodynamics of G-CSF (Figure 5A). G-CSF is administered intravenously to
stimulate the maturation of precursor neutrophils to restore neutrophil levels in situations
generating neutropenia, such as chemotherapy treatment. After binding its receptor, G-CSF
is internalized and either degraded in endosomes or recycled back into the bloodstream.
Additionally, G-CSF is cleared from the blood through non-specific clearance mechanisms,
primarily renal clearance. Sarkar et al. used a DE model of G-CSF PK/PD to predict that
when non-specific mechanisms are not the dominant mechanism of clearance, decreasing
the rate of endosomal degradation of G-CSF is more effective in stimulating neutrophil
maturation than increasing the binding affinity of G-CSF to its receptor [23]. This insight
was consistent with the effects of engineered G-CSF variants in vitro [24] but had not been
verified in vivo. Here, we examined whether a simpler cFL model would allow us to reach
comparable conclusions without the requirement of estimating model parameter value for a
complicated mechanistic DE model.

We first converted the linguistic description of the G-CSF system above to a cFL model
(Figure 5B). Although no dedicated experimental data were used to train this model in a
traditional sense, it was derived from literature knowledge describing PK/PD of G-CSF [25,
26]. Rather than using kinetic parameters to describe intracellular trafficking and non-
specific clearance mechanisms, we use an AND gate to model these processes as limiting
the amount of G-CSF available in the bloodstream (Supporting Text). The logic description
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therefore allowed us to easily relate tissue level phenomena to cellular- and molecular-level
phenomena.

To validate that the cFL model recapitulated known system behavior, we simulated model
behavior under several conditions and plotted the species’ values at each simulation step.
We found that with decreasing clearance, the maximum value of both mature neutrophil (N)
and G-CSF in the blood (bloodGCSF) species values increased (Figure 5C). Although these
species eventually reached a value of zero due to G-CSF degradation via receptor-mediated
endocytic uptake, in some cases these decreases occurred at later simulation steps. This
result agrees with how we understand the system to behave: a decrease in rate of clearance
leads to an increase in total amount of G-CSF that reaches precursor neutrophils due to
increased half-life, but G-CSF is nevertheless eventually cleared from the system. From this
analysis, we identified two criteria to consider for assessing the impact of a perturbation on
the N and bloodGCSF species: 1) maximum value attained; and 2) the number of simulation
steps during which the nodes were at a value greater than zero.

Having established that the model was recapitulating known behavior, we explored the
effects of altering G-CSF properties on physiological effectiveness, as measured by N and
bloodGCSF levels. In particular, we calculated the above criteria under two conditions: 1)
diminished degradation modeled by multiplying the pNdegGCSF and NdegGCSF species by
a percent inhibition; or 2) enhanced binding modeled by increasing the minimal value of the
boundGCSF species. We then compared the values of criteria under these conditions to
those from simulations with no such perturbation (Figure 6A,B). Our results indicated that
when the degradation nodes (pNdegGCSF and NdegGCSF) were inhibited by more than
50% at low values of clearance, there was a substantial increase in the number of simulation
steps for the bloodGCSF species to reach zero. However, there was no effect on maximal
value of N or bloodGCSF (Figure 6A). On the other hand, increasing binding by setting the
minimum of the pNboundGCSF species to a value greater than zero resulted in no decay of
the N node (i.e., a logic steady state value greater than zero, Figure 6B). This result was
expected because the pNboundGCSF species directly activated the N species, so fixing the
minimum value of one should directly affect the value of the other. This effect was also
reflected in an increase in the maximum value that the N species attained. However, the
maximal value of the bloodGCSF species did not increase, and in fact the number of
simulation steps for the bloodGCSF species to reach zero decreased in many conditions
(Figure 6B). These results provided a first indication that inhibiting degradation was the
better strategy for increasing numbers of mature neutrophils.

As a complementary approach, we examined the effect of varying the parameters controlling
the processes of binding and degradation (Figure 6C,D). We varied the gain parameter of the
boundGCSF-to-degGCSF transfer function to represent varying the fraction of boundGCSF
that was degraded, and found that these results recapitulated those obtained when the
degradation nodes were inhibited: steps to decay of bloodGCSF and N increased with no
effect on the maximal level of these species (Figure 6C). We also decreased the EC50
parameter of bloodGCSF to pNboundGCSF to represent an increase in binding affinity. By
definition, decreasing the EC50 results in an increase in the value of pNboundGCSF for a
given value of bloodGCSF. This perturbation led to a corresponding increase in maximum
value of N while the value of bloodGCSF remained constant for intermediate values of
clearance (Figure 6D). At high or low values of clearance, this effect was not observed,
pointing to another interesting aspect of our system: at high values of clearance, bloodGCSF
never reached a value large enough to activate the pNboundGCSF and N nodes while at low
values of clearance, the N species reached a large value at the default EC50, so only minimal
effects were observed when affinity was further increased. Changing these parameter values
had no substantial effects on the number of simulation steps until decay.
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In summary, these results indicated that while increasing the binding affinity of G-CSF to its
receptor might result in an increase in N for a given level of bloodGCSF (Figure 6D), this
effect occurred in a limited range of clearance values, and an increase in bound receptor was
predicted to have the deleterious effect of decreasing the number of simulation steps
required for decay of bloodGCSF (Figure 6B). In contrast, decreasing the amount of
degradation consistently increased the number of simulation steps required for decay of
bloodGCSF (Figure 6A and 7C). We therefore concluded that decreasing degradation of G-
CSF is the superior strategy for stimulating neutrophil maturation.

Thus far, we have used in silico logic model simulations to generate hypotheses about
optimization of G-CSF potency in living systems. This work suggested decreasing
degradation of receptor bound G-CSF is an effective strategy for improving potency in vivo.
In previous work, a mutant G-CSF with weaker receptor binding affinity at the endosomal
pH exhibited decreased degradation in vitro through increased recycling of internalized
receptor, resulting in increased potency of the molecule in vitro [24]. To examine whether
decreased degradation had any effect in an in vivo setting, we determined white blood cell
(WBC) counts in mice that were first treated with 5-Fluorouracil (5FU) for 24 hours to
inhibit haematopoiesis followed by treatment with wild-type G-CSF or mutant G-CSF
engineered for increased dissociation at an endosomal pH (mutant D113H), which reduces
its degradation through increased recycling. In accordance with the modeling prediction, the
mutant G-CSF was more effective in increasing WBC count than wild-type G-CSF (Figure
7). This result illustrated that cFL models can faithfully represent complex multi-scale
systems and that the hypotheses generated from the Q2LM analysis presented here were
relevant to both in vitro and in vivo settings.

4 Discussion
In this work we presented Q2LM as a means for generating insights from cFL models of
biological systems based on literature knowledge. We queried the models to address two
questions relevant to translational research: 1) which therapeutic perturbation of a system
will result in a pre-defined clinical goal and 2) in which environments will these
perturbations be effective? We used this software framework to explore two biological
systems of different scales. With the first, an intracellular signaling model, we illustrated use
of the software to make testable hypotheses. This model exemplified several important
features of Q2LM, including the ability to solve for steady state of oscillating species. In
order to create an appropriately simple example, we neglected several AP1 dimer forms
known to be important in physiologic response (most notably the c-Jun-ATF2 dimer [20–
22]). Thus, a more complete model should be constructed to make reliable predictions
regarding the affect of inhibition on AP1-mediated transcription. With the second, a multi-
scale model of G-CSF administration, we generated and tested hypotheses to show that a
logic model was able to recapitulate the experimentally validated results of a mechanistic
ordinary differential equation without the prerequisite of estimating a multitude of kinetic
parameters.

Building a logic model requires a significant amount of abstraction of the system to convert
a linguistic description into logic gates. For intracellular signaling networks, this process is
natural because relationships between proteins are commonly described in terms of their
influence (e.g. “Phosphorylation by JNK activates c-Jun” and “TGF-α stimulation activates
the MEK/ERK pathway”). However, for describing interactions at the tissue, cellular, and
molecular level, this process is arguably less intuitive, in part because the relationships
between these types of interactions and logic gates are less obvious (e.g. it is initially unclear
how “binding a receptor” and “intracellular degradation” can be described with logic gates;
explored Supporting Text). Nevertheless, with our logic model of G-CSF we demonstrated
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that transforming such linguistic descriptions into a logic model can provide valuable
insights into the operation of a system.

Along with abstracting the relationships between species by describing them as logic gates,
the concepts of time and amount are also abstracted in a logic model. The plots presented in
Figure 4 and 6 appear similar to time courses. However, the values of species were plotted
as a function of simulation step, not time. Thus, these plots allow one to directly ‘follow the
logic’ of environmental conditions and perturbations, which is not equivalent to examining
the value of a species as a function of time. The exact relationship between simulation steps
and time cannot be ascertained without additional information regarding the dynamic
behavior of the system. Similarly, the meaning of the values of species in relation to a
physical descriptor such as concentration is unclear without additional information.
Nevertheless, the relative values of species in simulations of the same model carry
interpretable information regarding the qualitative effect of perturbations (e.g., the value of
N is nonzero for more simulation steps when degradation is inhibited than when it is not)
that suggest a testable hypotheses (e.g., inhibiting degradation will lead to greater neutrophil
maturation).

One of the main results of this work is a “seamless” approach to multi-scale modeling,
exemplified by our logic model of G-CSF administration that integrates ligand/receptor
binding and endocytic trafficking at the molecular level, the transition between
differentiation states at the cellular level, and systemic pharmacokinetics at the tissue level.
The insights from this model were validated both in vitro and in vivo. Thus, the relevance of
this model to the therapeutic administration of other receptor agonists should be considered.
Because intracellular trafficking is important for cellular responses to other stimulatory
ligands such as EGF and IL-2 [27], it is likely that the insights from this model will be
applicable to the administration of these molecules. More broadly, these results may be
applicable to therapeutics for which endosomal degradation is an important mechanism for
clearance, underscoring the importance of understanding intracellular trafficking when
administering receptor agonists as therapeutics [28–30].

From this work, we submit that our Q2LM framework holds promise for effective use
toward generating testable hypotheses of interest in academic and industrial settings.
Additionally, the further development of cFL will enable the prediction of perturbation
effects on a complex system without requiring a large amount of experimental data, thereby
facilitating the use of mathematical models for guiding scientific decisions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Q2LM querying quantitative logic models
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cFLC constrained fuzzy logic

5FU 5-Fluorouracil

G-CSF granulocyte colony stimulating factor

WBC white blood cell

EGF epidermal growth factor

TGF-α transforming growth factor α

TNF-α tumor necrosis factor α

MEK mitogen-activated protein kinase kinase

ERK extracellular regulated kinase

JNK c-Jun N-terminal kinase

AP1 activator protein 1

IκK IκB kinase

NF-κB nuclear factor kappa B

IL-2 Interleukin 2

NaN Not-A-Number

PK/PD pharmacokinetics and pharmacodynamics
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Figure 1. Constrained Fuzzy Logic
A: Constrained fuzzy logic describes interactions between biological species with logic
gates. The logic gates are evaluated based on the output of the transfer function (f) that
quantitatively relates the input and output species. In this example, AND gates are evaluated
with the PRODUCT operator and OR gates are evaluated with the SUM operator.
Evaluation of the AND and OR gates with the MIN and MAX operators, respectively, is
also supported by Q2LM. Note that the SUM operator is not identical to arithmetic sum, but
rather, the logical sum of two possible values is equal to the first plus the second minus the
product of the two (i.e. V1 + V2 − V1V2, where V1 is the value of one possible output and
V2 is the value of the other).
B: The quantitative relationship between any two species is specified with a transfer
function. In this paper, we use a normalized Hill function multiplied by a gain as the transfer
function, although other functional forms can easily be imagined.
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Figure 2. Converting posited interactions of intracellular signaling into a logic model
A: The relationship between species in an intracellular signaling network is depicted
graphically. Grey dashed blunted arrows indicate inhibitory interactions.
B: To convert the posited interactions in A into a logic model, we consider if the logic
describing the relationship between input and output species should include an AND gate for
species with more than one input, and find that AND gates are necessary for description of
formation of AP1 homo- and hetero-dimers. AND gates are indicated by the input species
linked to a small circle, which is further linked to the output species.
C: The logic model is recorded as a spreadsheet to be loaded into the Q2LM software. The
first three columns specify which species interact as well as the logic of these relationships.
The last three columns specify the parameters of the transfer functions of the interaction
contained in that row. D: Q2LM has been specifically designed to ask academically and
industrially relevant questions.
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Figure 3. Q2LM files for examining intracellular signaling logic model
A: Example of a scenario file that Q2LM imports to simulate experimental perturbations in a
variety of environmental conditions. A detailed description of all file types is provided in the
software’s manual. In this case, environments with partial or full stimulation of TNF-α and
TGF-α alone or in combination will be simulated with inhibition of the ‘Experimental’
species JNK, ERK, and MEK at levels listed in the ‘Values’ column alone or in
combination, where the maximum number of species to inhibit at any one time is listed in
the ‘MaxNum’ column.
B: Example of a criteria file. Simulation results from environments with perturbation are
compared to environments without perturbation and Q2LM calculates if the criteria have
been met. In this case, the criterion is that the AP1HomoDim species increase in value by at
least 0.25 with perturbation compared to without.
C: Example of portion of a Results file Q2LM outputs to indicate, for each environment, the
values of perturbation that met the criteria in 3B and in what fraction of models they were
effective. Ellipsis indicate conditions of intermediate doses that were not included. Tested
environments for which no perturbation met the criteria are not listed.
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Figure 4. Species values as a function of simulation step for intracellular signaling model
A: For each indicated species, the median value for all models at the final 19 simulation
steps is shown (Q2LM does not save all simulation steps when memory is a limitation)
along with the final value calculated by the solver, which has been copied several times for
visualization. Upper and lower error bars indicate the third and first quartile, respectively.
Simulation conditions: TGF-α = 1; TNF-α = 1; Perturbation with different combinations of
JNK, MEK, and ERK inhibition is indicated by different line color. Different line styles
represent different models.
B: Median value for AP1 homo- or hetero-dimers with no inhibitor perturbations.
C: Median value for AP1 homo- or hetero-dimers for inhibitor combinations that met criteria
of increasing the value of AP1HomDimer by at least 0.25 in at least 25% of the models.
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Figure 5. Development of logic model of G-CSF administration
A: Depiction of G-CSF pharmacokinetics at the tissue, cellular, and molecular level. adapted
from [23].
B: Logic model based on 5A. All transfer functions have default parameters g = 1; n = 3;
and EC50 = 0.5. Arrow labels indicate the following steps of the pharmacokinetics of the
molecule: (1) When G-CSF is administered intravenously (doseGCSF), it enters the
bloodstream where it is subject to (2) nonspecific clearance (clearance). (3) Precursor
neutrophils (pN) possess receptors (pNR), which (4) bind G-CSF in the blood
(pNboundGCSF). (5) Bound G-CSF can be degraded (pNdegGCSF), and (6) what is not
degraded is recycled back into the bloodstream (pNrecGCSF). (7) Bound G-CSF also
stimulates proliferation and differentiation into mature neutrophils (N). (8) Mature
neutrophils possess receptors (NR) that can (9) bind G-CSF (NboundGCSF). Bound G-CSF
is then (10) degraded (NdegGCSF) or (11) recycled (NrecGCSF). (12) Value of G-CSF in
the blood (bloodGCSF) is limited by the dose, clearance, and amount recycled. (13) An
additional species bodyGCSF represents the exchange of G-CSF from the blood to the body
cavity and is necessary in the logic model to ensure that the bloodGCSF node is also limited
by its own value.
C: The G-CSF logic model was simulated under non-limiting precursor neutrophils and dose
conditions (pN = 1 and doseGCSF = 1) with multiple levels of clearance (0, 0.1, 0.2, etc.).
Median value of the neutrophil and G-CSF levels in the blood nodes (N and bloodGCSF)
were plotted as a function of simulation step, with error bars indicating the first and third
quartile of predictions of 100 models with normally distributed noise with a standard
deviation of five percent added to the transfer function parameters. As levels of clearance
decreased, maximal values of N and bloodGCSF increased as well as the number of
simulation steps until the species values decreased to zero. Further analysis indicated adding
noise with a standard deviation of up to 25 percent led to identical conclusions for all results.
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Figure 6. Effect of perturbations to G-CSF pharmacokinetics on criteria
In all parts, perturbations to species (A,B) or model parameters (C,D) were made when the
G-CSF logic model was simulated under non-limiting precursor neutrophils and dose
conditions (i.e. pN = 1 and doseGCSF = 1) with multiple levels of clearance (0, 0.1, 0.2,
etc.), with each color and line style corresponding to a different fixed value of the clearance
species as shown in the legend in the rightmost panel for each part. Median effects are
plotted, with error bars indicating the first and third quartile of predictions of 100 models.
A: The median effect of increasing inhibition of the pNdegGCSF and NdegGCSF nodes on
each criteria.
B: The median effect of varying the minimal possible value of the pNboundGCSF node.
Because the N species was not observed to decay in these simulation, the first panel is the
increase in logic steady state value of N, instead of number of steps until decay.
C: The median effect of changing the gain of the transfer function relating pNboundGCSF to
pNdegGCSF and NboundGCSF to NdegGCSF on each criteria.
D: The effect of changing the EC50 of the bloodGCSF to pNboundGCSF interaction.
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Figure 7. in vivo increase in WBC associated with decreased G-CSF degradation
White blood cell count was higher in mice treated with a mutant G-CSF engineered for
decreased degradation via increased dissociation in the endosomal compartment (D113H)
than those treated with wildtype G-CSF. Five Animals were treated with 5FU to inhibit
haematopoiesis 24 hours prior to treatment with the colony stimulating factor. ‘Veh’ denotes
sham treatment with PBS rather than 5FU. *p < 0.001 versus vehicle-treated controls.
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