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Abstract
So far, two familial melanoma genes have been identified, accounting for a minority of genetic
risk in families. Mutations in CDKN2A account for approximately 40% of familial cases1, and
predisposing mutations in CDK4 have been reported in a very small number of melanoma
kindreds2. To identify other familial melanoma genes, here we conducted whole-genome
sequencing of probands from several melanoma families, identifying one individual carrying a
novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K;
rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription
factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the
family, linkage analysis of 31 families subsequently identified to carry the variant generated a log
odds ratio (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate
risk variant. Consistent with this, the E318K variant was significantly associated with melanoma
in a large Australian case–control sample. Likewise, it was similarly associated in an independent
case–control sample from the United Kingdom. In the Australian sample, the variant allele was
significantly over-represented in cases with a family history of melanoma, multiple primary
melanomas, or both. The variant allele was also associated with increased naevus count and non-
blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele
had impaired sumoylation and differentially regulated several MITF targets. These data indicate
that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome
sequencing to identify novel rare variants associated with disease susceptibility.

Cutaneous malignant melanoma is predominantly a disease of fair-skinned individuals.
Aetiology is complex, with environmental (mainly ultraviolet radiation exposure) and
genetic factors affecting disease risk. Phenotypic risk factors, which are largely heritable,
include pigmentation (fair skin, blue or green eyes, blonde or red hair), sun sensitivity, an
inability to tan3–6, high number of melanocytic naevi7,8, or the presence of clinically
atypical naevi7. Candidate-gene studies and genome-wide association studies (GWAS) for
melanoma and these melanoma-associated phenotypes have identified several variants
associated with melanoma risk in the general population9–13. Family studies, on the other
hand, have identified only two high-penetrance melanoma genes, CDKN2A (ref. 1) and
CDK4 (ref. 2), accounting for a minority of genetic risk in melanoma families.

As part of a larger sequencing effort to identify novel melanoma risk genes, we sequenced
the genome of an affected individual from an eight-case melanoma family negative for
alterations in CDKN2A or CDK4 (Fig. 1, FAM1) using a nanoarray-based short-read
sequencing-by-ligation strategy14. From among the 410 novel variants predicted to affect
protein structure, we prioritized for follow-up a single nucleotide polymorphism (SNP)
resulting in a glutamic acid to lysine substitution in MITF (E318K, codon numbering based
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on the melanocyte-specific MITF-M isoform; c.G1075A, NCBI accession NM_000248.3;
p.E318K, NCBI accession NP_000239.1; rs149617956). Although linkage15 and GWAS
studies9,10 have not provided evidence implicating MITF in either predisposition to
melanoma or the melanoma-associated phenotypes of pigmentation and
naevogenesis11,12,16–19, MITF is known to regulate a broad repertoire of genes whose
functions in melanocytes range from development, differentiation, survival, cell-cycle
regulation and pigment production. MITF is somatically amplified20,21 or mutated22 in a
subset of melanomas, and strongly overexpressed in others20, making it an attractive
candidate despite the lack of prior evidence for involvement in germline risk.

We evaluated whether MITF E318K is a high-penetrance melanoma susceptibility variant in
Family 1 by genotyping the remaining affected individuals available for study. The MITF
variant allele was found in 3/7 melanoma cases assessed in this family (Fig. 1), consistent
with it being a medium-penetrance melanoma risk variant. To assess further this possibility,
we genotyped two large Australian melanoma case–control samples for MITF E318K. The
variant was found in 14/1,953 controls (carrier frequency = 0.0072) and thus represents a
rare population variant (Table 1). We observed a significantly higher frequency (34/2,059)
in cases (carrier frequency = 0.0165) than controls (Fisher exact P = 0.008, odds ratio (OR)
2.33, 95% confidence interval (CI) 1.21–4.70), indicating that the variant correlates with
increased melanoma risk in the general population. The effect size for E318K is larger than
those reported for variants from melanoma GWAS9,10 and similar to that observed for red-
hair-colour-associated variants of the melanocortin 1 receptor (MC1R) gene (OR for most
populations ~2.4)23. Among cases, the MITF E318K variant was enriched in those with
multiple primary melanomas (OR 4.22, 95% CI 1.52–10.91), a family history of melanoma
(OR 2.95, 95% CI 1.23–6.92), or both (OR 8.37, 95% CI 2.58–23.80), but not in cases with
earlier age of onset (comparing diagnosis before age 40 versus after 40 years) (Table 2).

We replicated these findings in two independent population-based case–control samples
from the United Kingdom. In the combined UK sample, the variant allele frequency was
also significantly higher in cases (carrier frequency = 0.0176) than controls (carrier
frequency = 0.0085, P = 0.012, OR 2.09, 95% CI 1.14–3.94, Table 1). The association with
melanoma in the pooled UK and Australian data was highly significant (combined P =
0.0003, OR 2.19, 95% CI 1.41–3.45). In the UK cases there were also trends towards family
history, earlier age of onset, and the occurrence of more than one primary melanoma in
variant carriers (Table 2).

To extend assessment of the MITF variant in melanoma-prone families, we screened for
E318K in 182 UK families with at least two melanoma cases and 88 Australian families
with at least three cases, all of which are negative for mutations in CDKN2A or CDK4. Six
families (2.2%) were found to carry the variant. In the UK, E318K was enriched in the more
melanoma-dense families; 4/54 (7.4%) families with at least three melanoma cases versus
1/128 (0.8%) families with two melanoma cases (Fisher’s exact P = 0.013). We
subsequently evaluated whether MITF E318K co-segregated with melanoma in these as well
as additional multiple-case families identified from the case–control sample. In total, we
identified 31 unrelated cases carrying MITF E318K from Australia and the UK with at least
one first- or second-degree relative diagnosed with melanoma (listed in Supplementary
Table 1; Supplementary Fig. 3), 22 of which had DNA available from additional affected
family members for genotyping. In 9/31 families (five three-case and four two-case families)
the variant was found in all affected individuals (Supplementary Fig. 3a; non-segregating
families shown in Supplementary Fig. 3b), whereas in 12 additional families, the variant co-
segregated with melanoma in the available cases, but DNA from all cases was not available
for screening (Supplementary Fig. 3c). To test more formally for linkage of melanoma with
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MITF E318K in these families, we calculated a lod score of 2.7 under a dominant model,
again consistent with an incompletely penetrant medium risk variant.

To assess whether the MITF variant is related to known melanoma-associated risk
phenotypes of pigmentation and naevus count, we tested for association both in cases and
controls from the Australian and British populations. The MITF variant allele is significantly
associated with increased naevus count (combined P = 0.002, OR 2.54, 95% CI 1.42–4.55;
Supplementary Table 2) and non-blue eye colour (combined P = 0.018, OR 2.01, 95% CI
1.11–3.81; Supplementary Table 3). It was not associated with skin colour, hair colour, or
freckling (Supplementary Table 4). Reassessing the case–control analysis accounting for
naevus count and eye colour gave a slightly reduced effect size for association of the variant
with melanoma (OR 1.82, 95% CI 0.85–3.92), suggesting that the risk of melanoma
attributable to MITF E318K may be mediated at least in part via one or both of these
phenotypes, but that there is a substantial residual risk conferred by the variant through an as
yet undetermined mechanism.

We next sought to evaluate whether the E318K mutation alters MITF function. The E318K
variant is located within one of two IKXE consensus sites on MITF previously shown to be
post-translationally modified by the addition of the small ubiquitin-like-modifier SUMO24.
Mutation of the residue to which SUMO is covalently attached in this motif (K316R) has
previously been shown to abrogate MITF sumoylation and significantly increase MITF
transcriptional activity in vitro24,25. We thus hypothesized that E318K would similarly alter
sumoylation and transcriptional activity of MITF. To test this we constructed a cDNA
encoding His-tagged MITF carrying the E318K mutation. We evaluated the effects of
E318K on sumoylation in comparison to the wild type and previously characterized
synthetic mutations of the two known MITF sumoylation sites (K316R and K182R) by co-
transfecting with haemagglutinin (HA)-tagged SUMO1 in COS-7 cells (Fig. 2a). Wild-type
MITF shows two SUMO1-modified forms, whereas MITF mutants K182R or K316R each
show only one modified form (Fig. 2a). Similar to the synthetic K316R and K182R mutants,
E318K abrogates sumoylation, resulting in complete loss of the doubly sumoylated form of
MITF and reducing the mono-sumoylated form. When the second site is mutated (K182R)
simultaneously with E318K, MITF sumoylation is completely abolished.
Immunoprecipitation of endogenously expressed MITF E318K from melanoma cells
homozygous for E318K (NAE) when transfected with SUMO similarly revealed only bands
corresponding to mono- and non-sumoylated isoforms of MITF on western blot (Fig. 2b).

We then looked for differences between mutant and wild-type MITF transcriptional activity
using a reporter construct containing the MITF-responsive TRPM1 promoter25. At two
concentrations tested, the E318K mutant exhibited 1.34–1.40 fold induction of the TRPM1
luciferase reporter relative to wild-type MITF (Fig. 2c). This fold induction is similar to that
observed previously on multiple MITF target promoters using single or double artificial
sumoylation-site MITF mutants24,25 and suggests that the E318K variant found in
melanoma changes the transcriptional potency of MITF. To study this in greater detail, we
determined the effect of the E318K mutation on global MITF target gene transcription. We
developed a tetracycline-inducible system for expression of wild-type MITF or the E318K
variant in melanoma cell lines with constitutively low or undetectable levels of endogenous
MITF (HT144 and C32, respectively26, Fig. 2d). At the phenotypic level, induction of wild-
type or E318K MITF led to increased proliferation compared to uninduced controls for each
of the cell lines, although there was no significant difference in growth rate between the
cells expressing the different isoforms (data not shown). We examined whole-genome
expression profiles in these cells following induction of either wild-type or E318K MITF for
48 h. Of the 37 genes commonly regulated by wild-type and E318K MITF in both cell lines
(Supplementary Fig. 1a, b; see Methods for analysis details), 28 (76%) had previously been
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identified as MITF target genes (Supplementary Table 5)27,28, and 17 showed ≥1.25-fold
differences in expression between the wild-type and E318K isoforms (Supplementary Fig.
1b). We also identified two gene products that were uniquely differentially regulated
compared to uninduced cells by the induction of wild-type MITF but not MITF E318K in
both parental cell lines, and 16 gene products after induction of MITF E318K but not wild-
type MITF (Supplementary Table 6). Of these, 61% (11/18) have previously been reported
as MITF targets (Supplementary Table 6)27,28. Collectively, these data indicate that the
MITF E318K mutant exhibits differential transcriptional activity against some, although not
all, target genes. In agreement with the reporter assays (Fig. 2c), we identified
transcriptional differences in gene products known to be involved in pigmentation (DCT,
MLANA), in which the differences were more marked with expression of the E318K variant
in comparison to wild-type MITF. These were validated by quantitative polymerase chain
reaction with reverse transcription (qRT–PCR) in the cell lines used for microarray analysis
(Fig. 2e), as well as in an additional melanoma cell line constitutively expressing wild-type
or E318K mutant MITF (Fig. 2f and Supplementary Fig. 2). In keeping with the increase in
expression of these pigmentation genes, we detected a 22% increase in melanin content in
HT-144 melanoma cells 72 h after induction of MITF E318K compared to wild-type MITF
(data not shown). This is also consistent with our observation that carriers are more likely to
have darker (that is, non-blue) eye colour (Supplementary Table 3) but, notably, these data
contrast with other previously reported ‘fair-skin-associated’ melanoma risk variants, such
as those in MC1R or TYR. It is uncertain whether the enhanced expression of pigment genes
may contribute to melanomagenesis, perhaps by increasing oxidative stress and an increase
in oxidative DNA damage29, or alternatively may simply reflect increased MITF activity,
which (separately) promotes tumorigenesis, as MITF is a previously recognized amplified
melanoma oncogene20.

We adopted the approach of whole-genome sequencing of patients from melanoma families
and identified a novel germline mutation of MITF. This mutation was found to be present in
numerous melanoma families, as well as the general population, in which its association
with melanoma has an effect size similar to red-hair-causing variants of MC1R23. The
melanoma susceptibility genes discovered through GWAS so far account for only a minority
of inherited disease risk. A proportion of this ‘missing heritability’ may be due to rare
sequence variants, which are poorly detected by GWAS using SNP arrays. The new MITF
variant reported here shows reasonably strong linkage to melanoma (lod score 2.7) but
crucially not a high enough signal to be clearly visible in previous genome-wide linkage
scans. We also provide in vitro data supporting a functional mechanism by which this
mutation may mediate melanoma risk, specifically abrogation of MITF sumoylation and
differential transcription of select MITF target genes. Although the individual changes in
transcription induced by the mutant E318K MITF in comparison to wild-type MITF are
modest, the orchestrated change in the levels of multiple MITF target genes is likely to be
biologically important, especially over the lifetime of a person. This study offers a rare
glimpse of a complex functionality whereby a risk-conferring SNP affects the post-
translational processing of a crucial lineage-specific survival and differentiation gene. This
study demonstrates the utility of performing whole-genome and exome resequencing in
appropriate affected individuals to identify such novel rare disease-specific variants and
functionally characterize variants associated with complex disease not otherwise detectable
via GWAS or linkage approaches.

METHODS SUMMARY
The collection of the Australian melanoma families used for the study, as well as the
Queensland and AMFS case–control sets are described elsewhere and in Methods. Likewise
the UK studies from Leeds and Cambridge as well as the panel of melanoma cell lines.
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Whole-genome sequencing, assembly and variant calling were performed by Complete
Genomics, as described previously14. Genotyping of MITF E318K was performed using the
Sequenom MassArray system (Australian studies) or a custom TaqMan assay (UK studies),
with DNA from the affected family member in which E318K was identified included
multiple times as a positive control. Statistical analyses are described in detail in Methods.
Co-segregation analyses were performed in melanoma families via Sanger sequencing using
the primers: forward, 5′-CAGGCTCGAGCTCATGGA-3′; reverse, 5′-
TGGGGACACTATAGGCTTGG-3′. MITF sumoylation and TRPM1 reporter assays were
performed as previously described25.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Co-segregation analysis of the MITF E318K variant in the family in which it was
identified
The pedigree shows individuals that have had melanoma (shaded circles or boxes), with the
age of first melanoma diagnosis indicated in brackets and the number of melanomas that
have occurred in the individual so far (for example, × 2 indicates two primary melanomas).
If the number of melanomas is not stated, the individual has had a single melanoma. A
diagonal line through the symbol indicates that the person is deceased. The genotype for the
MITF E318K variant for individuals with an available DNA sample for testing is annotated
‘E318K’ if a carrier or wild type ‘WT’. A presumed obligate carrier is designated
‘(E318K)’. A presumed wild-type individual with melanoma is designated ‘(WT)’. Other
cancer types are also indicated with the age of first diagnosis indicated in brackets if known.
Br, breast; Mes, mesothelioma; MM, melanoma; Oes, oesophagus. The individual circled in
Family 1 (FAM1) is the melanoma case in which the MITF E318K variant was discovered
through whole-genome sequencing. See Supplementary Fig. 3 for pedigrees of all other
families identified as carrying E318K.
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Figure 2. E318K prevents MITF sumoylation and results in differential expression of MITF
target genes
a, His-tagged wild-type MITF or the indicated single or double point mutants were co-
transfected with HA–SUMO1 in COS-7 cells or b, HA–SUMO was transfected alone into
homozygous mutant E318K MITF melanoma cells (NAE). Single- and double-sumoylated
forms of MITF are indicated by a dagger and double dagger, respectively. The doublet
bands are caused by MAPK-mediated phosphorylation at serine 73 (ref. 30). c, UACC62
human melanoma cells were transfected with TRPM1-promoter constructs with indicated
amounts of expression vector encoding wild-type or mutant forms of MITF. Fold induction
is shown as the ratio to the average of no MITF transfection (0 ng). Data are mean ± s.d. of
at least four independent experiments. d, Expression of MITF in two melanoma cell lines
(HT144 and C32) engineered to inducibly express wild-type (WT) or mutant (E318K) MITF
after treatment with tetracycline for 48 h (48), as determined by qRT–PCR. Performed in
triplicate, error bars depict s.d. e, Expression of MITF target genes DCT (top left), MLANA
(top right) and THBS1 (bottom left) determined by qRT–PCR in melanoma cell lines 48 h
after induction of wild-type or E318K MITF. Gene expression is normalized to GAPDH and
shown as fold change compared to uninduced cells. Performed in triplicate, error bars denote
s.d. f, qRT–PCR analysis of total RNA isolated from UACC62 human melanoma cells,

Yokoyama et al. Page 10

Nature. Author manuscript; available in PMC 2012 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which were transfected with expression vector encoding wild-type or mutant forms of
MITF. The expression level of each target gene was normalized to MITF mRNA. Fold
induction is shown as the ratio to each mRNA expression with wild-type MITF. Data are
mean ± s.d. of at least three independent experiments. *P < 0.05, **P < 0.01.
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