
Gene co-expression networks in human brain identify epigenetic
modifications in alcohol dependence

Igor Ponomarev*,
Waggoner Center for Alcohol and Addiction Research and the College of Pharmacy, University of
Texas at Austin, Austin, Texas 78712.

Shi Wang*,
Waggoner Center for Alcohol and Addiction Research and the College of Pharmacy, University of
Texas at Austin, Austin, Texas 78712.

Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean
University of China, Qingdao 266003, China

Lingling Zhang,
Waggoner Center for Alcohol and Addiction Research and the College of Pharmacy, University of
Texas at Austin, Austin, Texas 78712.

Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean
University of China, Qingdao 266003, China

R Adron Harris, and
Waggoner Center for Alcohol and Addiction Research and the College of Pharmacy, University of
Texas at Austin, Austin, Texas 78712.

R Dayne Mayfield
Waggoner Center for Alcohol and Addiction Research and the College of Pharmacy, University of
Texas at Austin, Austin, Texas 78712.

Abstract
Alcohol abuse causes widespread changes in gene expression in human brain, some of which
contribute to alcohol dependence. Previous microarray studies identified individual genes as
candidates for alcohol phenotypes, but efforts to generate an integrated view of molecular and
cellular changes underlying alcohol addiction are lacking. Here, we applied a novel systems
approach to transcriptome profiling in postmortem human brains and generated a systemic view of
brain alterations associated with alcohol abuse. We identified critical cellular components and
previously unrecognized epigenetic determinants of gene co-expression relationships and
discovered novel markers of chromatin modifications in alcoholic brain. Higher expression levels
of endogenous retroviruses and genes with high GC content in alcoholics were associated with
DNA hypomethylation and increased histone H3K4 tri-methylation, suggesting a critical role of
epigenetic mechanisms in alcohol addiction. Analysis of cell type – specific transcriptomes
revealed remarkable consistency between molecular profiles and cellular abnormalities in
alcoholic brain. Based on evidence from this study and others, we generated a systems hypothesis
for the central role of chromatin modifications in alcohol dependence that integrates epigenetic
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regulation of gene expression with pathophysiological and neuroadaptive changes in alcoholic
brain. Our results offer implications for epigenetic therapeutics in alcohol and drug addiction.

Introduction
Brain gene expression is a critical determinant of brain function, including brain disease.
Since the introduction of microarray technology, numerous studies have used transcriptome
profiling to investigate the mechanisms underlying brain plasticity and brain pathology
(Geschwind and Konopka, 2009). Alcohol and other drugs of abuse cause widespread
changes in gene expression in human brain (Mayfield et al., 2008; Zhou et al., 2011), some
of which contribute to the development and maintenance of drug dependence. Microarray
studies in humans and animal models identified individual genes as mechanistic candidates
for addiction phenotypes (Mayfield et al., 2008; Maze et al., 2011; Zhou et al., 2011), but an
integrated view of molecular and cellular changes underlying alcohol and drug addiction is
lacking. Most genomic studies to date focused on individual genes with the highest
statistical significance, limiting their discoveries to a handful of candidates. In some cases
this strategy resulted in mechanistic discoveries, but the bias towards most significantly
regulated genes often lacks the functional foundation and contextual information for
generating scientifically sound hypotheses.

Recent developments in statistical genomics and gene annotations provide a foundation for a
shift from gene-centric to network- or module-centric systems approaches in data analysis.
This shift is warranted by three key findings from recent literature on brain transcriptomes:
1) individual populations of neurons and glia are characterized by unique transcriptional
signatures that reflect current functional state of these cells, 2) transcriptomes from complex
tissues, such as whole brain, are organized into networks or modules of co-expressed
(correlated) genes and 3) these modules of co-expressed genes often reflect functional and
structural organization of brain tissue and can be explained by known biological categories,
such as cell type, cell organelles and synaptic functions (Sugino et al., 2006; Lein et al.,
2007; Cahoy et al., 2008; Doyle et al., 2008; Miller et al., 2008; Oldham et al., 2008;
Ponomarev et al., 2010; Day and Sweatt, 2011). These discoveries advanced our
understanding of organizational principles of brain transcriptomes and provided a
biologically relevant context for interpreting differential expression of individual genes
associated with CNS plasticity and pathology, offering critical insight into the mechanisms
of Alzheimer's disease (Miller et al., 2010), schizophrenia (Torkamani et al., 2010) and post-
traumatic stress disorder (Ponomarev et al., 2010).

To generate an integrated view of the brain transcriptome in human alcoholism, we profiled
gene expression levels in postmortem brains of human alcoholics and matched control cases
and used a systems approach to data analysis that combined differential gene expression,
gene co-expression networks, cell type – specific transcriptomes and a wide range of gene
annotations. As a result, we identified critical epigenetic components in gene co-expression
and proposed a central role for epigenetic regulation in alcohol-induced changes in global
gene expression. Our approach allowed us to generate a unique systems hypothesis of brain
changes in human alcoholism that integrated the epigenetic regulation of gene expression
with previously reported cellular abnormalities. Our results offer implications for relevant
treatment strategies and may serve as a prototype for analysis of the wealth of existing and
emerging microarray data.
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Materials and methods
Case selection and post-mortem tissue collection

Autopsy brain samples were obtained from the Tissue Resource Center (TRC) at the
University of Sydney. The TRC is funded in part by NIAAA to provide brain tissue for
alcoholism research. Fresh-frozen sections of tissue from the central (CNA) and basolateral
nucleus (BLA) of amygdala, as well as the superior frontal cortex (CTX), were obtained
from 32 cases (17 alcoholics and 15 matched controls; 30 males and 2 females). These
regions are important substrates in the reward circuitry that is involved in the development
of alcohol dependence and alcoholism (Koob and Volkow, 2009). Cases were matched as
closely as possible by age, gender, post-mortem interval (PMI) and brain pH. Diagnoses
were confirmed by physician interviews, review of hospital medical records, questionnaires
to next-of-kin, and from pathology, radiology and neuropsychology reports. Cases were also
chosen on the basis that agonal hypoxia did not appear to have differed significantly from
the study group. Moreover, none of the brains showed evidence of hypoxic encephalopathy,
further suggesting that agonal hypoxia was minimal. We did not accept cases that suffered
prolonged agonal states. Cases with a history of polydrug abuse were excluded. Cases were
matched for smoking history. In addition, cases with concomitant diseases such as cirrhosis
of the liver, Korsakoff psychosis, or Wernicke or hepatic encephalopathies were excluded.
The concentration and quality of all RNA samples was determined, and degraded (RNA
integrity number, RIN < 4) and/or contaminated RNA samples were excluded from the
analysis. The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) diagnosis
assigned to each case was based on a detailed and standardized clinical assessment summary
created by specially trained staff with a background in psychiatry and/or psychology.

Microarray profiling and qRT-PCR validation
Total RNA was extracted and used to generate biotin-labeled cRNA using the Illumina
TotalPrep RNA Amplification Kit (Ambion, Austin, TX). Biotin-labeled cRNA was then
hybridized to Illumina HumanHT-12 whole genome expression beadchips (Illumina, San
Diego, CA). The quality of the Illumina bead summary data was assessed using the
Bioconductor package Lumi. Data preprocessing included variance stabilization and
quantile normalization. To eliminate potentially confounding effects of RNA quality on
gene expression, we calculated residuals from the regression analysis of RIN values on gene
expression and used them for statistical analysis and WGCNA network construction. We
next removed outlier values for each gene within a group using Grubbs’ test (p<0.05).
Statistical analysis comparing alcoholic and control groups was performed using the
Bioconductor package Limma to carry out a Bayesian two-tailed t-test. A false discovery
rate (FDR) for each list of significantly regulated genes with nominal P values < 0.05 was
estimated using the method of Benjamini and Hochberg (1995). Our systems approach to
prioritizing individual genes is based on integration of nominal statistical significance, gene
network information and functional relevance. Therefore, to avoid omitting true positives,
all genes with nominal P values < 0.05 were considered. After initial data processing,
microarray data from three brain regions of 15 controls and 17 alcoholics were used for
network construction.

qRT-PCR validation—Several genes were selected for technical validation using
qRTPCR. qRT-PCR was conducted using amplified RNA from the same samples used for
microarray experiments. Expression of GIPC1 and DNMT1 was examined in BLA and CTX
and expression of MBD3, MLL4 and SETD1 was examined in BLA. All real-time
TaqMan® assays are pre-designed by Applied Biosystems (Foster City, CA) and labeled
with FAM as a reporter and a non-fluorescent quencher. Detailed TaqMan® protocols are
available on the manufacturer's website: (http://www.appliedbiosystems.com/). GUSB was
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used as endogenous control and the ΔΔCt method was used to analyze data. Outlier values
for each gene within a group were then removed based on the Grubbs’ test (p<0.05) and
alcoholic and control groups were compared using a one-tailed t-test.

Weighted Gene Co-expression Network Analysis (WGCNA)
Network Construction—The general framework of WGCNA has been described in
detail (Zhang and Horvath, 2005). We constructed a signed network for each brain region.
Briefly, Pearson correlations were calculated for all pairs of genes, and then a signed
similarity (Sij) parameter was derived: Sij = (1+cor(xi,xj))/2, where gene expression profiles
xi and xj consist of the expression of genes i and j across multiple microarray samples. In the
signed network, the similarity between genes reflects the sign of the correlation of their
expression profiles. The signed similarity (Sij) was then raised to power β to represent the
connection strength (aij): aij = Sij

β. This step aims to emphasize strong correlations and
reduce the emphasis of weak correlations on an exponential scale. Here we chose a power of
β = 12 for all brain regions so that the resulting networks exhibited approximate scale-free
topology. Next, all genes were hierarchically clustered based on a dissimilarity measure of
topological overlap which measures inter-connectedness for a pair of genes (Zhang and
Horvath, 2005). The resulting gene dendrogram was used for module detection with the
Dynamic Tree Cut method (minimum module size = 100, cutting height = 0.99 and
deepSplit = True). Gene modules corresponding to the branches cut-off of the gene tree were
labeled in unique colors. Unassigned genes were labeled in grey.

Functional annotation of genes and over-representation analysis of modules
—We used several complementary approaches to characterize gene modules. DAVID
annotation: For each module, all genes in the module were submitted to the Database for
Annotation, Visualization and Integrated Discovery (DAVID, http://
david.abcc.ncifcrf.gov/). Cell type annotation: Gene sets known to be preferentially
expressed in mouse oligodendrocytes, astrocytes, and neurons were obtained from Tables
S4-S6 of Cahoy et al. (2008). We restricted our analysis to genes with at least four-fold
enrichment in a given cell type. Another set of genes preferentially expressed in microglia
was obtained from Table ST3 of Oldham et al. (2008). For each brain region, cell type
enrichment analysis was carried out for all modules using the hypergeometric test with gene
symbols as unique identifiers. TE annotation: To identify microarray probes targeting
potential transposable element (TE) regions, we first obtained genomic coordinates of all
Illumina's probes from the probe annotation file, HumanHT-12_V3_0_R2_11283641_A
(available at http://www.switchtoi.com/annotationfiles.ilmn), and those of TEs from the
UCSC Genome Bioinformatics website (http://genome.ucsc.edu, genome assembly:
NCBI36/hg18, track: RepeatMasker). Then we searched for probes targeting to TE regions
by requiring that such a probe should fall completely into an annotated TE region. For each
brain region, TE enrichment analysis was also carried out for all modules and all major TE
classes (i.e. DNA, LTR, LINE, SINE) using the hypergeometric test. GC content analysis:
GC content (GC%) values for known genes were obtained from Ensembl (http://
www.ensembl.org) using BioMart data management system. Gene GC content includes
average GC% of the whole gene including exons, introns and untranslated regions. GC% for
each 50-mer Illumina probe was calculated based on the proportion of G and C nucleotides.
Effects of gene GC content on gene co-expression was examined with a one-way ANOVA
for average gene GC% calculated for each of 72 co-expression modules across all three
brain regions.

Identification of alcohol-responsive modules—To identify potential alcohol-
responsive modules, we used an effect size - based approach and determined the direction
and magnitude of alcohol-induced changes for each co-expression module. We used the t
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statistics from the comparison of alcohol and control groups and calculated average t values
for all genes within each module. We defined a “significant” alcohol-responsive module by
requiring average | t | > 1.8 and a “suggestive” alcohol-responsive module by requiring
average | t | being in between 0.9 and 1.8. In addition, we used a hypergeometric test to
determine the degree of over-representation of differentially expressed genes in each
module. All “significant” modules and a majority of “suggestive” modules were also
significantly over-represented with genes differentially regulated between the groups.

Meta-network analysis across brain regions—Module comparison between brain
region networks was done following the approach described in Oldham et al. (2008).
Briefly, for each pair of networks, the overlap between all possible pairs of modules was
calculated, and the significance of module overlap was assessed using a one-sided
hypergeometric test. The software Cytoscape (http://www.cytoscape.org/) was used to
visualize the comparisons and create a meta-network of highly overlapping modules.

Control for confounding variables—In addition to correction for the effects of RIN by
regression as described above, we determined if confounding variables, such as age, gender,
smoking history, PMI or brain pH contributed to differential gene expression between
alcoholic and control cases. We obtained the first eigengene for each module (generated by
WGCNA) which could explain the largest portion of variance in gene expression and then
correlated these eigengenes with the confounding variables using Pearson correlation. The
resulting P values were corrected for multiple comparisons with a Bonferroni procedure.
None of the modules were significantly correlated with age, gender or smoking history. Two
modules were correlated with PMI (bla9, bla14) and three with brain pH (ctx4, ctx6, ctx16)
and genes from these modules were excluded from consideration as alcohol-related
candidate genes for future studies.

Chromatin assays
Quantification of global H3K4 histone methylation—Total histone extracts were
prepared from frontal cortex tissues of 6 alcoholics and 6 controls using the EpiQuik™ Total
Histone Extraction Kit (Epigentek, NY) according to the manufacturer's instructions. For
global histone methylation quantification, mono-, di-, and tri-methylations of H3K4 were
measured using the EpiQuik™ Global Pan-Methyl Histone Quantification Kits (colorimetric
assay) (Epigentek, NY). For each sample, 1.5μg of histone extracts was used in each assay.

DNA methylation analysis of LTR retrotransposons—Genomic DNA was extracted
from frontal cortex tissues of 6 alcoholics and 6 controls using the DNeasy Blood & Tissue
kit (Qiagen, CA). In a total volume of 80μL, 80ng of genomic DNA was digested with 30U
McrBC (New England Biolabs, MA) at 37°C for 3 hours. The same reaction was set up for
the mock digestion without adding of McrBC. Then digested and undigested DNA was
subjected to real-time PCR quantification using primers for specific LTRs. MLT2A1 (F: 5'-
GAGAGGCAGACCCACCCTTA-3', R: 5'-CACGATCACAAGGTCCCACAA-3'), LTR8
(F: 5'-CAAGCTGTCCTTGTTCATTCCT-3', R: 5'-CTGCTTTGGGAAAGGGCTGTT-3'),
THE1B (F: 5'-TCATCTTGAATTGTAGCTCCCAT-3', R: 5'-
TCCCCTTTATAAAACCATCAGAT-3'). Primers were designed based on the consensus
LTR sequences retrieved from the RepBase 14.04. Real-time PCR amplification was set up
in triplicate in a 20μL volume composed of 5ng of digested or undigested DNA, 0.2μM of
each primer, 1×Power SYBR Green PCR Master Mix (Applied Biosystems, CA) in the
7900HT Fast Real-Time PCR System (Applied Biosystems, CA). All cycling began with an
initial denaturation at 95°C for 10min, followed by 40 cycles of 95°C for 15s, and 60°C for
1min. The “mock-digestion” control was used to normalize the McrBC-qPCR data. Fold
change was calculated by dividing the normalized data by the mean of the control group.
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Chromatin immunoprecipitation (ChIP) assay—ChIP assays were performed for 5
alcoholics and 5 controls using the EpiQuik™ Tissue Methyl-Histone H3-K4 ChIP kit
(Epigentek, NY). The ChIP-grade antibody, anti-trimethyl-H3K4 was purchased from the
same company. The normal IgG served as a negative control in the ChIP assay. The
manufacturer's ChIP protocol was followed with minor changes. Briefly, for each sample
~10mg of frontal cortex tissue was smashed and cross-linked in the presence of 1%
formaldehyde for 15min at room temperature. The cross-linking was then stopped by adding
1/10 volume of 1.25M glycine solution. After being washed by 1mL of ice-cold 1×PBS,
tissue was homogenized using a motorized pestle (VWR, PA), and pelleted through
centrifugation at 10,000rpm for 5min at 4°C. Tissue pellet was then re-suspended in a lysis
buffer containing protease inhibitor cocktail. Chromatin was sheared by sonication on ice for
10min in total (20sec ON, 40sec OFF) at level 2 using the Fisher Model 60 Sonic
Dismembrator (Fisher Scientific, MA). The length of sheared DNA was checked by agarose
gel electrophoresis, which is usually between 200-1000bp. Next, following the
manufacturer's protocol, 100μL of sheared chromatin was used for immunoprecipitation
with anti-trimethyl-H3K4. For input-DNA preparation, 2μL of proteinase K was first added
into 100μL of sheared chromatin, and incubated at 65°C for 15min. Then 4μL of 5M NaCl
was added into the input-DNA solution, and incubated at 65°C for 2 hours. After reversal of
cross-linked DNA, IP- and input-DNA were purified through fast-spin columns. IP- and
input-DNA were subjected to real-time quantitative PCR using primers specific to the
promoter regions of one of 6 genes: GIPC1 (F: 5'-CCCCAGAGATTGAATGCATCTT-3',
R: 5'-GATTCGAACTTCCGACGTCCA-3'), BCL2L1 (F: 5'-
TGAACCCCATTGAGAAGTCCCT-3', R: 5'-ACTGGGAGCCAGGAGTACTCT-3'),
UBE1 (F: 5'-CTTGACAGCCTGGCTGCAACA-3', R: 5'-
TGCATAAAGTTCCCTACTCGGT-3'), ARHGDIA (F: 5'-
CCTCACACTGCCCCAGAGGAT-3', R: 5'-GCGCACTTCTGAGCAGGAGT-3'),
CLPTM1 (F: 5'-GGAAACAAACGGGCTGGGAGA-3', R: 5'-
CGCGAGATTTCACGCTTTCCTA-3'), and CALCOCO1 (F: 5'-
TGCGCGCAGCCTTCTGGGAT-3', R: 5'-CAACAAAAACAGCACTCCGACT-3'). Real-
time PCR amplification was set up in triplicate in a 20μL volume composed of 0.5μL of IP-
or input-DNA, 0.2μM of each primer, 1×Power SYBR Green PCR Master Mix (Applied
Biosystems, CA) in the 7900HT Fast Real-Time PCR System (Applied Biosystems, CA).
All cycling began with an initial denaturation at 95°C for 10min, followed by 40 cycles of
95°C for 15s, and 60°C for 1min. PCR specificity was checked by melting curve analysis.
The “input” control was used to normalize the ChIP-qPCR data. Fold change was calculated
by dividing the normalized data by the mean of the control group.

Results
Alcohol abuse is associated with widespread changes in brain gene expression

To define alterations in the brain transcriptome produced by chronic alcohol abuse, whole-
transcriptome gene expression profiling was conducted for three brain regions (basolateral
amygdala, BLA; central nucleus of amygdala, CNA; and superior frontal cortex, CTX) from
17 alcoholics and 15 matched control cases. History of alcohol abuse was associated with
global changes in gene expression in all three brain regions. “Global” here refers to the fact
that numbers of transcripts differentially expressed at a nominal P < 0.05 in different brain
regions [3,589 for BLA (FDR<20%), 2,656 for CNA (FDR<28%), and 2,716 for CTX
(FDR<28%)], were statistically greater than those expected by chance (all hypergeometric P
< 0.0001). Overall, our results corroborate previous studies showing widespread changes in
brain gene expression in alcoholics (Mayfield et al., 2008; Zhou et al., 2011). These studies
identified many candidate genes that may play a role in alcoholism, but our goal was to
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extend this line of research beyond the gene-centric approach and to generate and validate
easily testable hypotheses at a systems level.

Construction and validation of gene co-expression networks
Our next step was to construct gene co-expression networks to gain insights into functional
organization of the brain transcriptome. “Co-expression” here refers to the implication that
genes whose expression co-varies (is correlated) across samples are co-expressed, i.e.,
regulated by similar mechanisms. Identification of gene co-expression patterns has been a
fruitful approach to understanding mechanisms of transcriptional regulation in brain
(Oldham et al., 2008). We used the weighted gene co-expression network analysis
(WGCNA) (Oldham et al., 2008) to construct a gene co-expression network for each of the
three brain regions. This method is described in detail elsewhere (Oldham et al., 2008) and
its utility as a systems tool has been validated by several research groups (Saris et al., 2009;
Torkamani et al., 2010; Mulligan et al., 2011).

All reliably detected genes were included in the network construction and data from both
alcoholics and non-alcoholics were combined to detect co-expression patterns. In total, we
identified 72 modules in three gene co-expression networks with 25 modules for BLA, 25
for CNA and 22 for CTX (Figure 1). The module size (i.e., total number of genes in a
module) ranged from ~100 to ~1,600. To evaluate biological significance of the modules,
we used a wide range of gene annotations, including GO, KEGG and major cell classes in
brain (Cahoy et al., 2008; Oldham et al., 2008) and examined an over-representation
(enrichment) of each biological category in a given module by comparing numbers of genes
annotated with this biological category to chance (see Methods for details). Most modules
were highly over-represented with at least one functional or structural category, thus,
validating biological relevance of gene co-expression relationships. Similar to previous
reports (Oldham et al., 2008; Miller et al., 2010; Ponomarev et al., 2010) the most over-
represented biological categories in the present study included major cell classes, such as
neurons, astrocytes, oligodendrocytes and microglia and cell organelles, such as
mitochondrion, nucleus and ribosome (Table 1). This shows that cells and cellular
compartments are main sources of gene co-expression and indicates that cell type – specific
transcriptional signatures can be obtained from complex brain tissue without isolating
cellular populations. We next asked if variation in chromatin states could contribute to gene
co-expression.

Detecting epigenetic variation in gene co-expression
Understanding principles of modular organization in gene co-expression remains a
challenge, because many modules of highly co-expressed genes are not readily explained by
cellular identity or any of the other commonly used annotated functions. This has not been a
problem of annotation availability, but rather a problem of annotation usage, as most gene
expression studies do not explore expression patterns beyond traditionally used databases,
such as GO and KEGG. One area where additional effort is warranted is chromatin marks at
individual gene locations. Changes in chromatin structure, often termed epigenetic changes,
including DNA methylation and histone modifications are critical variables affecting global
gene expression. Therefore, it is reasonable to expect that co-expression of genes in some
modules will be driven by chromatin changes.

To explore the effects of chromatin state on gene co-expression relationships, we used two
variables that are easily obtained from microarray data: expression of genomic repeats and
gene GC content. Repeated sequences, most of which are represented by transposable
elements of various classes, constitute a large fraction of most eukaryotic genomes.
Transposons are homologous DNA fragments that are present in multiple copies in the
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genome and are capable of being reproduced and randomly inserted in the host genome
(Slotkin and Martienssen, 2007). Transposons are normally silenced by epigenetic
mechanisms, including DNA methylation, modifications of histone tails and alterations in
chromatin packing and condensation, but can be expressed when the epigenetic silencing is
released (Slotkin and Martienssen, 2007). Therefore, expression of transposons may serve as
a sensitive marker of changes in chromatin state.

We used the RepeatMasker program (see Methods) and found that 3,992 Illumina
microarray probes could be mapped to one of four classes of transposable elements (TE),
either DNA transposons or one of three types of RNA transposons (retrotransposons): long
terminal repeat (LTR) – containing endogenous retroviruses, long interspersed nuclear
elements (LINE) or short interspersed nuclear elements (SINE). Expression of 825 of these
probes was statistically greater than the background noise in at least one brain region. We
validated these results by manually checking the genomic location of ~15% of the probes
using the UCSC genome browser. Most probes corresponding to TEs also mapped to
untranslated regions or introns of known or predicted genes, while a relatively large fraction
of LTR probes (~20%) also mapped to multiple intergenic regions (Figure 2). Our over-
representation analysis of co-expression modules identified several modules that showed
significant enrichment with TEs in all brain regions. Coordinated expression of Illumina
probes corresponding to LTRs and SINEs was of particular interest as several modules were
highly statistically over-represented with these TEs (Table 1). Many TEs have retained
functional promoters and the effects of TEs on expression of adjacent individual genes have
been well documented (Waterland and Jirtle, 2003). Our over-representation results suggest,
for the first time, that epigenetically-controlled TEs can regulate multiple genes in a
coordinated fashion.

The second variable obtained from our microarray data was gene GC content, a measure of
the nucleotide composition of the gene. Nucleotide composition of individual genes and
their promoters plays a critical role in regulation of transcription; two examples include
DNA methylation at CpG dinucleotides – a marker of transcriptional repression, and
preferential binding of different transcription factors and other regulatory proteins to either
GC- or AT-rich motifs (Dekker, 2007). This notion is consistent with studies that reported
robust correlations between genomic GC content and several epigenetic marks including
DNA methylation, some histone modifications and chromatin condensation (Vinogradov,
2005; Koch et al., 2007). We next examined if gene GC content contributed to gene co-
expression. GC content (GC%) values for each gene were obtained from Ensembl, averages
for each co-expression module were calculated and one-way ANOVA was carried out.
Average GC% showed remarkable variability among modules, ranging from 40 to 56%
(Figure 4A) and ANOVA resulted in a highly significant P value (F(71, 34145) = 235;
P<10-500), indicating that gene GC content is a critical variable affecting gene co-expression
and suggesting that genes with similar GC content are generally co-regulated. Because both
TEs and GC% are mechanistically associated with chromatin marks, our data point to
previously unrecognized epigenetic sources in gene co-expression and suggest that co-
regulation of TEs and genes with similar GC content reflect individual variation in
chromatin states and can be used as markers of epigenetic regulation of gene expression.

Co-expression patterns are highly conserved across brain regions
We next inquired whether observed co-expression patterns in three networks were conserved
across brain regions. Module comparison between networks was accomplished by
identifying overlapping genes and calculating statistical significance of the overlap between
all possible pairs of modules. We found that all modules in a given brain region have genes
significantly overlapping with at least one module from a different brain region and the
majority of modules were highly overlapping across all three brain regions (Figure 3),
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suggesting conserved patterns of gene regulation in different brain regions. This finding was
consistent with the Oldham et al. study (Oldham et al., 2008) that showed similar co-
expression preservation in three different regions. Similar to their study, we found that major
brain cell classes that include neurons, astrocytes, oligodendrocytes and microglia as well as
cellular organelles including mitochondria and ribosomes are the most conserved biological
categories with respect to gene co-expression. In addition, our analysis provides the first
evidence that regulation of modules enriched with LTR and SINE TEs as well as modules
containing genes with high or low GC content are conserved and cluster together. We
hypothesize that conserved modules representing TEs and opposite ends of the GC%
spectrum reflect fundamental epigenetic influences on gene co-expression relationships.

Gene co-expression networks provide insight into functional changes in alcoholic brain
By constructing gene co-expression networks and identifying biological sources of co-
expression modules, we created a functional framework for interpretation of differential
expression between alcoholics and controls at a systems level. To examine global effects of
alcohol abuse on gene co-expression networks, we used an effect size - based approach and
determined the direction and magnitude of alcohol-induced changes by calculating average t
values for genes of each co-expression module (Figure 3, shown in color). T-tests were
conducted for every transcript in each brain region to compare gene expression between
alcoholics and control cases and t values can be used as estimates of the effect size. This
revealed three main findings: 1) chronic alcohol abuse differentially affected major cell
types in brain; transcripts from neuronal modules were mainly down-regulated in alcoholics
while several modules representing microglia were up-regulated, 2) alcohol abuse resulted
in up-regulation of LTR retrotransposons and 3) most genes from GC-rich modules were up-
regulated in alcohol abusers, while genes from GC-poor modules were mainly down-
regulated. This last finding was especially intriguing because it suggested that gene
nucleotide composition determines, at least in part, whether genes will be regulated in
response to strong environmental challenges such as chronic alcohol abuse. We further
investigated the relationship between gene GC content and regulation by chronic alcohol by
calculating Pearson correlation between average gene GC content and t values for the 72 co-
expression modules (Figure 4B). Remarkably, gene GC content accounted for ~68% (R =
0.83; P<10-18) of the differential gene expression between alcoholics and controls. This
relationship was not an artifact of differential microarray probe hybridization, because
neither average gene GC content nor average Illumina probe GC content correlated with
average transcript expression values (Figure 4CD). Based on the rationale discussed above,
the coordinated regulation of LTR retrotransposons and genes with similar GC content
suggests a critical role of chromatin modifications in the modulation of gene expression in
the alcoholic brain. Based on the results of the integration of co-expression networks with
differential gene expression, we further investigated the effects of alcohol abuse on cellular
transcriptomes and chromatin modifications.

Effects of alcohol abuse on cell type – specific transcriptomes
Neuronal and glial cells are the fundamental constituents of the CNS. Despite identical
genomes, different cell types use distinct transcriptional programs that result in remarkable
heterogeneity of cellular transcriptomes that are thought to reflect physiological properties
and the functional state of individual cells (Sugino et al., 2006; Doyle et al., 2008). To
investigate the effects of alcohol abuse on cell type – specific gene expression, we again
used the effect size – based approach and analyzed distributions of t values for genes that are
primarily expressed in one of the four major cell classes: neurons, microglia,
oligodendrocytes and astrocytes (Figure 5). Cell type-specific genes were determined by
literature (Cahoy et al., 2008; Oldham et al., 2008; see Methods for detail). We hypothesized
that the shape and position of the t distributions can reveal global effects of alcohol on
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individual cell types. In principle, an alcohol-induced change in expression of a particular
gene reflects one of two distinct possibilities: an actual change in mRNA copy number or a
change in the abundance of tissue or the number of cells where this gene is preferentially
expressed. For example, a significant shift of the t distribution mean or median compared to
zero chance would most likely indicate a change in abundance or general activity of a
cellular population, while deviation from normality as, for example, “bumps” on the
distribution may indicate a coordinated expression of functionally relevant genes.

Our analysis revealed discrete effects of alcohol on different cell types in different brain
regions (Figure 5). Neuronal distributions in the amygdalar regions were significantly
shifted to the left while all microglial distributions were shifted to the right, suggesting a
decrease in numbers of neurons and an increase in microglia. In addition, several molecular
markers of activated microglia, such as CCL2 and TSPO, were significantly up-regulated in
the amygdala (all P < 0.02), while neuronal markers, such as SST, VIP and GABRG2 were
generally down-regulated. These results are consistent with alcohol literature showing
general degeneration of neurons as well as activation and proliferation of microglia in
alcoholic brain (Crews et al., 2011). This analysis also showed clear differences in regional
sensitivity to alcohol, as BLA was the most affected region, while frontal cortex was the
least affected.

Detailed analysis of the neuronal t distribution in cortex revealed a deviation from normality
as several genes significantly up-regulated in alcoholics contributed to a “bump” on the
distribution (indicated by an arrow in Figure 5). Most of these genes were clustered in the
GC-rich ctx7 module (see Figure 3). A majority of the deviated genes were annotated as
being involved in synaptic transmission, particularly at glutamatergic synapses; examples
include dynamin (DNM1; P = 0.007), syntaxin (STX1A; P = 0.04), synapsin I (SYN1; P =
0.05), synaptophysin (SYP; P = 0.005), glutamate NMDA receptor NR1 subunit (GRIN1; P
= 0.008) and vesicular glutamate transporter 1 (VGLUT1, SLC17A7; P = 0.001). Two
additional up-regulated genes from the ctx7 module with roles in glutamatergic
neurotransmission are GIPC1 (P = 0.005) and MIB2 (P = 0.0002) which are involved in
NMDA receptor trafficking and ubiquitination of the NMDA NR2B subunit, respectively
(Yi et al., 2007; Jurd et al., 2008). Another striking discovery was that GC content of all of
these genes was greater than average, suggesting this played a role in coordinated up-
regulation of synaptic genes in alcohol abusers.

Activation of endogenous retroviruses in alcoholic brain is associated with DNA
hypomethylation

Detailed examination of three highly overlapping modules over-represented with LTR
transcripts (Figure 3) revealed that the majority of the transcripts were up-regulated in
alcoholics, with many up-regulated probes mapping to multiple intronic and intergenic
genomic regions corresponding to LTR TEs. This pattern of expression is consistent with a
genome-wide transcriptional activation of LTR retrotransposons in alcoholic brain. LTR-
containing TEs represent a class of endogenous retroviruses (ERVs) most of which are non-
functional remnants of ancient retroviral infections (Antony et al., 2004). However, many
human ERVs (HERVs) have retained functional promoters and the potential to encode viral
proteins, randomly insert their DNA in the genome and modify the expression of adjacent
genes (Morgan et al., 1999; Waterland and Jirtle, 2003). Because expression of ERVs can
cause genomic instability and disease (Antony et al., 2004), eukaryotic hosts developed
defense mechanisms against these genomic parasites. The LTR regions of ERVs are heavily
methylated in somatic cells, which was proposed as a primary mechanism of their
transcriptional repression (Waterland and Jirtle, 2003). Expression of ERVs correlates with
subtle changes in DNA methylation status (Waterland and Jirtle, 2003) and ERV activity
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can be used as a sensitive marker of global DNA hypomethylation (Schulz et al., 2006;
Balada et al., 2009).

Here, we tested the hypothesis that DNA in brains of alcoholics is less methylated, which
results in transcriptional activation of HERVs. We used a qPCR-based method to measure
DNA methylation in frontal cortex of alcoholic and control cases for three ERV families and
observed a reduction of DNA methylation in the LTR region of these retrotransposons
(Figure 6A), suggesting that activation of ERVs in alcoholics was due, at least in part, to
DNA hypomethylation. This finding was consistent with a 20-30% down-regulation of the
DNA methyltransferase, DNMT1, in all three brain regions of alcoholics (BLA: P=0.002;
CNA: P=0.05; CTX: P=0.04). DNMT1 plays an important role in the establishment and
regulation of tissue-specific patterns of methylated cytosine residues and a reduction of
DNMT1 activity is often observed together with global DNA hypomethylation in several
types of cancer and other pathological conditions (Hervouet et al., 2010). Alcohol-induced
global DNA hypomethylation has been reported in liver (Lu et al., 2000), fetal tissue (Garro
et al., 1991) and colon (Choi et al., 1999), and our study is the first to report it in human
brain.

Up-regulation of GC-rich genes in alcoholics is associated with increased H3K4 tri-
methylation

We next focused on modules containing GC-rich genes, many of which were up-regulated in
alcoholics (Figure 3). Three of these genes significantly up-regulated in all three brain
regions (all P < 0.05) were the histone methyltransferases MLL, MLL4 and SETD1A
specific for tri-methylation of histone 3 at Lysine 4 (H3K4me3), a chromatin mark of
actively transcribed genes. Because of this up-regulation and a strong positive correlation
between genome GC content and the H3K4me3 mark (Koch et al., 2007), we hypothesized
that up-regulation of some genes from the GC-rich modules in alcoholics is associated with
increased H3K4me3. First, we found that global tri-methylation was increased in alcoholic
brain (Figure 6B). Next, we used ChIP-qPCR to test H3K4 tri-methylation level at the
promoter region of six hub genes from the ctx7 module that were up-regulated in alcoholics.
Three out of six genes (GIPC1, BCL2L1 and UBE1) showed significantly increased levels
of H3K4 tri-methylation in alcoholics (Figure 6B), which was consistent with the up-
regulation of their transcripts, while H3K4me3 levels of the other three genes did not differ
between the groups. These results suggest that the alcohol-induced up-regulation of genes in
the GC-rich modules may, at least in part, be explained by increased levels of H3K4me3 in
their promoters.

Alcohol-induced up-regulation of genes involved in transcription co-repressor complexes
Up-regulation of several functionally related genes point to another mechanism of epigenetic
control. Methyl-CpG-binding protein, MBD3, and chromodomain helicase, CHD4, were
significantly up-regulated in alcoholics (MBD3 in all brain regions; CHD4 in BLA; all P <
0.006). These proteins are partners in the NuRD (nucleosome remodeling and histone
deacetylation) transcription co-repressor complex that is involved in transcriptional
repression via coupling histone deacetylase activity with methylated DNA and establishing a
repressive chromatin state (McDonel et al., 2009). Strikingly, most other members of the
transcription co-repressor complexes were also up-regulated in alcoholics; these include
SIN3A, SIN3B, MTA1, MTA2, RBBP4, GATAD2A and GATAD2B, suggesting that these
complexes are activated and play a role in down-regulation of some genes in alcoholic brain.

Identification of candidate genes for alcohol addiction using a systems approach
Identification of candidate genes for human diseases remains the strategy of choice for
genome-wide surveys, such as microarrays and genome-wide association studies. One goal
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of our systems approach was to establish a functional framework for prioritization of
candidate genes. Gene co-expression network analysis determines a connectivity measure
for individual genes based on their Pearson correlations with all of the other genes in the
module. This measure provides an estimate of the gene's importance in gene networks, as
highly connected hub genes proved to be functionally significant (Horvath et al., 2006). We
nominated candidate genes based on two criteria: 1) differential expression between
alcoholics and controls in, at least, one brain region and 2) being in the top 20% of hub
genes with the highest intra-modular connectivity. We hypothesize that these genes have
high functional significance in biological processes associated with alcohol addiction. Our
finding that alcohol abuse changes gene expression through changes in chromatin states
provided rationale for giving additional priority to genes involved in epigenetic regulation of
gene expression.

For example, two histone methyltransferases, MLL4 and SETD1A, were among alcohol-
regulated hub genes in CTX and BLA respectively, providing additional support for the
importance of H3K4me3 in establishing patterns of gene expression in alcoholic brain.
Another hub gene, TRIM28 (KRAB-associated protein 1, KAP1) is 20-40% up-regulated in
alcoholics in all brain regions (all P < 0.004). The product of this gene is critical for
silencing ERVs during early embryonic development (Rowe et al., 2010), and its up-
regulation may indicate the cell's compensatory response to ERV activation. Methylation of
DNA and other transmethylation reactions rely on the availability of SAM (S-
adenosylmethionine) molecule, the primary methyl group donor in the cell. One of the hub
genes down-regulated in alcoholics in all brain regions was MAT2B (methionine
adenosyltransferase II, beta subunit; all P < 0.004), the enzyme involved in the synthesis of
SAM from methionine. The beta subunit changes kinetic properties of the catalytic alpha
subunit by rendering it more susceptible to product inhibition by SAM, and a down-
regulation of MAT2B in T cells was accompanied by a 6–10-fold increase in intracellular
SAM levels (LeGros et al., 2001). Because SAM levels are decreased in alcoholics (Blasco
et al., 2005), the down-regulation of MAT2B in alcoholic brain may indicate a
compensatory response to this reduction. In addition, several cortical genes acting at
glutamatergic synapse, including GRIN1, STX1A, SYP, DNM1, GRIK5, GRINA, VAMP2,
GIPC1 and MIB2 were among the significantly up-regulated hub genes (all P < 0.05),
suggesting a central role of glutamate neurotransmission in alcohol dependence. Differential
expression of several prioritized genes including DNMT1, MBD3, MLL4, SETD1A and
GIPC1 was further validated using qRT-PCR (Table 2). Overall, this analysis provides
rationale for targeting epigenetic processes, glutamatergic synapse and functionally relevant
individual genes to promote the development of new therapies for human alcoholism.

Discussion
We used a novel systems approach to transcriptome profiling and provided the first
comprehensive assessment of gene expression changes in alcoholic brain at a systems level.
This approach allowed us to generate several systems hypotheses with an emphasis on
epigenetic regulation of gene expression and we obtained functional evidence for two of
these hypotheses experimentally. Our results provide a functional framework for integrating
data across alcohol-related studies, which we used to generate a global systems hypothesis
for the role of chromatin modifications in alcohol dependence that consolidates the
epigenetic regulation of gene expression and cellular changes in alcoholic brain (Figure 7).
We hypothesize that neuropathology and neuroadaptations that contribute to alcohol
addiction and dependence are, at least in part, mediated by alcohol-induced epigenetically-
mediated changes in gene expression. Below we discuss the evidence for individual
components of this hypothesis and the rationale for their integration.
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Central to our hypothesis is the potentially critical role of DNA hypomethylation in alcohol-
induced gene expression. We detected a small, but reliable, decrease in methylation of
HERV sequences associated with a much larger increase in HERV transcript abundance,
suggesting that a small decrease in DNA methylation can have profound effects on global
gene expression. ERVs are heavily methylated in mammalian genomes, accounting for a
large fraction of all methylated cytosines (Walsh et al., 1998) and an increase in ERV
transcription is a sensitive marker of global DNA hypomethylation (Schulz et al., 2006;
Balada et al., 2009). One example of the relationship between DNA methylation and ERV
activity is that coat color in the yellow agouti mouse is controlled by the level of DNA
methylation of LTR, upstream of the agouti locus (Morgan et al., 1999; Waterland and Jirtle,
2003). Methyl supplements including extra folates, vitamin B12, choline, and betaine fed to
dams increased the level of DNA methylation in the agouti LTR and changed the phenotype
of offspring from yellow to mottled to pseudoagouti (Waterland and Jirtle, 2003). This
research shows that subtle changes in DNA methylation are proportional to the level of
activation of ERVs, which is consistent with our findings. Two other observations provide
additional support for global DNA hypomethylation in alcoholic brain. First, a down-
regulation of DNMT1 in alcoholic brain is consistent with literature showing similar
response in some hypomethylating states associated with cancer and other pathological
conditions (Hervouet et al., 2010). And second, up-regulation of several ribosomal modules
(see Figure 3) suggests a release of transcriptional repression of ribosomal DNA repeats by
DNA hypomethylation (McStay and Grummt, 2008). Alcohol-induced global DNA
hypomethylation has been reported in several peripheral tissues of alcohol-related animal
models, where it was proposed to play a role in alcoholic liver disease, fetal alcohol
syndrome and colon cancer (Garro et al., 1991; Choi et al., 1999; Lu et al., 2000; Shukla et
al., 2008; Hamid et al., 2009). Although the effects of alcohol on DNA methylation and
expression of individual genes in the CNS has been reported (Bleich and Hillemacher,
2009), our study is the first to demonstrate global changes in DNA methylation in alcoholic
brain, where it may contribute to the development and maintenance of alcohol dependence.
Chronic alcohol can result in a decrease in DNA methylation via several mechanisms
(Figure 7), including vitamin B and folate deficiencies, resulting in an impairment of one
carbon metabolism and a decrease in SAM (Hamid et al., 2009), acetaldehyde-mediated
inhibition of the activity of DNMT1 (Garro et al., 1991) and 5-methylcytosine
demethylation induced by alcohol-related DNA damage (Chen et al., 2011). Specifically,
SAM is decreased, while its metabolites, S-adenosylhomocysteine (SAH) and homocysteine
are increased in chronic alcoholics (Blasco et al., 2005), which may be one cause of the
global DNA hypomethylation.

Many chromatin modifications are mechanistically linked (Jaenisch and Bird, 2003),
resulting in a limited number of chromatin states (Ernst et al., 2011). In addition to DNA
hypomethylation, we detected an increase in global and gene-specific tri-methylation of
H3K4 and activation of several genes involved in transcription co-repressor complexes
(TCC) in alcoholic brain, with all these chromatin modifications being associated with the
methylation status of cytosines within CpGs. Both H3K4me3 and the histone deacetylase
(HDAC) activity coupled to TCCs can be changed by drugs of abuse (Pandey et al., 2008;
Renthal and Nestler, 2009; Zhou et al., 2011). Specifically, acute ethanol and cocaine
decrease HDAC activity, while ethanol withdrawal and chronic cocaine increase it (Pandey
et al., 2008; Renthal and Nestler, 2009). Consistent with these findings and our own results
is an up-regulation of MBD3 in brains of alcoholics and cocaine abusers (Liu et al., 2006;
Zhou et al., 2011), which is a TCC protein critical for coupling HDAC activity and
chromatin remodeling. Importantly, drug effects on key epigenetic “master regulators” result
in changes in chromatin state which cause changes in global gene expression, some of which
are molecular determinants of functional changes in brains of drug addicts. Drugs targeting
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these master switches are emerging as potential therapeutics for neurodegenerative disorders
and drug addiction (Abel and Zukin, 2008; Renthal and Nestler, 2009).

Another important component of our hypothesis is the transcriptional activation of HERVs
in alcoholic brain induced by DNA hypomethylation. Activation of ERVs has been linked to
chronic diseases including cancer, multiple sclerosis and autoimmune disorders (Balada et
al., 2009). It appears that this activation is not just a marker of global DNA hypomethylation
but can result in functional consequences as an ERV-encoded glycoprotein, syncytin, can
directly activate microglia and astrocytes and produce neuroinflammation (Antony et al.,
2004). Microglial activation can result in neuronal degeneration (Crews et al., 2011), and
compounds secreted by syncytin-activated astrocytes can produce cytotoxicity to
oligodendrocytes and myelin degeneration (Antony et al., 2004), which is consistent with
pathologies observed in alcoholics (Harper et al., 2003; Pfefferbaum et al., 2009; Zahr et al.,
2011). Alcohol-induced neuroimmune response was recently proposed to be a critical factor
in alcohol addiction (Crews et al., 2011) and we propose a potential role for endogenous
retroviruses in neuroinflammation and brain pathophysiology of human alcoholism. Our
global profiles of cell type-specific genes were mainly consistent with microglial activation
in all brain regions and neuronal degeneration in the amygdala. In addition, we detected a
subset of synaptic genes highly up-regulated in cortex of alcohol abusers. This up-regulation
may indicate an adaptive increase in glutamatergic transmission in response to the loss of
neurons or alcohol-induced inhibition of NMDA receptors, which is consistent with
literature showing general potentiation of glutamatergic synapses after chronic alcohol (Gass
and Olive, 2008; Henriksson et al., 2008). The glutamatergic potentiation in the PFC may
underlie the long-lasting impairment in cognitive control of goal-directed behaviors that
characterizes addicted individuals (Koob and Volkow, 2009).

One unexpected finding of our study was that the nucleotide composition of a gene,
measured as gene GC content, could determine, at least in part, its patterns of expression and
regulation by homeostatic perturbations, such as chronic alcohol. The importance of genome
GC content in regulation of gene expression is well established because many transcription
factors and other DNA-binding proteins that are part of chromatin modification complexes
preferentially bind to GC- or AT-rich motifs (Lorincz et al., 2004; Zhang et al., 2004;
Dekker, 2007; McDonel et al., 2009). It is possible that up-regulation of many GC-rich
genes and down-regulation of many GC-poor genes in alcoholic brain were mediated by
some of these DNA-binding regulators. How exactly nucleotide composition of a given gene
contributes to its co-expression patterns and regulation by alcohol abuse will be addressed in
future studies.

Our study was not designed to address causality in our integrative view of alcohol
dependence. Therefore, alternative interpretations of our results are possible. For example,
the observed chromatin changes may be secondary to the primary effects of chronic alcohol
on different cells. The cause and effects relationships between different components of our
systems hypothesis will be addressed by validation experiments in the future. Another
limitation is that we cannot distinguish gene expression changes produced by chronic
alcohol abuse and those associated with pre-existing conditions, such as genetic
polymorphisms or pathological states that may lead to alcoholism. Multiple studies in
humans and animal models highlighted the importance of the genetic component in alcohol
addiction (reviewed in Crabbe, 2008; Mayfield et al., 2008; Spanagel, 2009; Treutlein and
Rietschel, 2011), In attempt to determine genes that may be regulated by genetic differences,
we checked our top candidate genes against the Genetic Association Database (http://
geneticassociationdb.nih.gov/) which is an archive of human genetic association studies of
complex diseases, including brain pathologies and substance abuse syndromes. None of the
chromatin modifying genes was genetically associated with alcoholism or other substance
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abuse diseases, and only the NMDA receptor NR1 subunit (GRIN1) was associated with
alcoholism (Wernicke et al., 2003). Additional support for non-genetic causes of differential
gene expression in our study is provided by a recent report showing that chronic intermittent
alcohol consumption changes gene expression in brain of genetically homogeneous C57BL/
6 mice (Wolstenholme et al., 2011). This study showed that chromatin modifications and
glutamate signaling were top functional groups over-represented with alcohol-related genes,
which is consistent with our findings. Finally, a correlational analysis between alcohol
variables and alcohol-related modules showed that the first eigengene of the ctx12 LTR
module (see Figure 3) up-regulated in alcoholics was significantly correlated with the
duration of drinking (corrected P = 0.03), suggesting that DNA hypomethylation and the up-
regulation of LTR retrotransposons is a consequence of chronic alcohol and not a pre-
existing condition. The combined evidence suggests that in our study, global changes in
gene expression in alcoholic brain are mainly caused by chronic alcohol abuse and that
alcohol abuse changes gene expression via changes in chromatin states. To better understand
the interplay between genetic, epigenetic and environmental causes in controlling gene
expression in alcoholism, integrative approaches across studies are warranted.

In summary, our study is the first to present an integrated view of alcohol dependence using
a systems approach to transcriptome profiling in human brain. The systems analysis of the
transcriptome allowed us to make mechanistic predictions about the upstream epigenetic
control as well as downstream cellular physiology. One implication is that epigenetic
interventions may effectively correct the widespread changes in brain gene expression and
functional abnormalities produced by chronic alcohol abuse. Many epigenetic therapeutics
have been developed for other diseases and our study may direct some of these therapeutics
toward alcoholism and drug addiction.
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Figure 1.
Network analysis of gene expression in three brain regions of human alcoholics and control
cases identifies distinct modules of co-expressed genes. Shown are dendrograms produced
by average linkage hierarchical clustering of transcripts (see Methods). Horizontal color bars
represent different co-expression modules that are also numbered. Bar sizes correspond to
the number of transcripts in each module. CTX = prefrontal cortex; BLA = basolateral
amygdala; CNA = central nucleus of amygdala.
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Figure 2.
Illumina probes can detect expression of transposable elements (TE) in human genome.
Shown are 7 example panels from the UCSC Genome Browser (http://genome.ucsc.edu)
showing genomic locations that are perfect matches for several Illumina probes representing
TEs. Each panel shows whole chromosome on top, with the small red bar representing the
location of the Illumina probe. The next track (in blue) shows the location of a known gene,
which is followed by the location of the Illumina probe (in brown). Four tracks at the bottom
represent the location of known or predicted TEs including SINE, LINE, LTR and DNA
transposons. Red arrows point to TEs to which Illumina probes map. A. Probe mapping to
an LTR transposon and a 3’UTR of a known gene (IGFL3). B. Probe mapping to a SINE
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transposon and a 3’UTR of RAX2gene. C. Probe mapping to a LINE transposon and a
3’UTR of FCRL2 gene. D. Probe mapping to a DNA transposon and a 3’UTR of ZNF395
gene. E. Probe mapping to a SINE transposon and an intron of RCBTB2 gene. F. Probe
mapping to an LTR transposon and an intron of TTY14 gene. G. Probe mapping to an LTR
transposon and an intergenic region.
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Figure 3.
A meta-network of overlapping gene co-expression modules in human brain. Each node
represents a module of co-expressed genes. Nodes are labeled with brain region and a
module number. An edge between two nodes indicates a significant overlap of genes
between two modules of different brain regions. Shown are only highly overlapping
modules (P < 10-20). An overlap of three and more modules from different brain regions
(e.g. ribosomes) indicates a cluster of highly conserved co-expression modules (represented
by rectangular boxes with a dashed borderline). All overlapping modules within a cluster are
over-represented with genes from a major biological category shown in Table 1, such as
Neuron or Transposable Elements. In addition, several modules were clustered based on
average GC content of their genes; GC-rich and GC-poor modules formed separate clusters.
Several GC-poor modules were also over-represented with “nucleus” genes. Thickness of
connecting edges is proportional to the significance of the overlap. Module colors represent
the direction and magnitude of regulation in alcoholic brain based on average t values (see
Methods) (yellow = up-regulation, blue = down-regulation in alcoholics; intense colors: |t|
>1.8; light colors: |t|>0.9; bla = basolateral amygdala; cna = central nucleus of amygdala, ctx
= prefrontal cortex).
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Figure 4.
Effects of gene GC content on gene co-expression relationships and regulation by alcohol
abuse. A. ANOVA of average gene GC content (GC%) for 72 co-expression modules
(labeled with brain region and module number) reveals remarkable heterogeneity among
modules [F(71, 34145)=235; P<10-500]. B. Average gene GC% for 72 co-expression
modules plotted vs average t values. A t-value represents the magnitude and direction of
alcohol effects (t < 0 - down-regulation; t > 0 - up-regulation by alcohol). Average gene GC
% (C) and average GC% of Illumina probes (D) are plotted vs average gene expression
values for the 72 co-expression modules. (R = Pearson correlation, n.s. = not significant).
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Figure 5.
Global effects of alcohol abuse on transcriptomes of four brain cell classes. Direction and
magnitude of alcohol-induced changes were estimated by plotting t-distributions for genes
enriched in a specific cell type (cell type specificity was determined based on Cahoy et al.,
2008 and Oldham et al., 2008). A t-value represents the magnitude and direction of alcohol
effects (t < 0 - down-regulation; t > 0 - up-regulation by alcohol). Left panels: Average t
distributions for each cell class for three brain regions. Right panels: Corresponding average
t values (± SEM) (* = P < 0.05; based on one-sample t-test comparing average t values to
zero chance with a Bonferroni correction). Grey arrow points to a “bump” on cortical
distribution caused by a cluster of alcohol up-regulated genes (all t > 2).
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Figure 6.
Epigenetic modifications in alcoholic cortex. A. DNA hypomethylation is associated with
higher expression of LTR retrotransposons in alcoholics. Top panel: Schematic diagram of
three families of LTR (MLT2A1, THE1B and LTR8). Illumina probes shown below as
black bars can detect expression of these classes of LTRs and were up-regulated in alcoholic
brain (Fold Change range from 20 to 48%; P value range from 0.007 to 0.03). Arrows show
locations of RT-PCR primers used for DNA methylation assays. DNA methylation shown as
fold change compared to control group was measured using a combination of DNA
digestion with a methylation-sensitive enzyme and qRT-PCR. B. Tri-methylation of histone
3 Lysine 4 (H3K4me3) shown as fold change compared to control group is increased in
alcoholics. Left panel: Global methylation of H3K4 measured using a combination of
chromatin immunoprecipitation (ChIP) and qRT-PCR. Three right panels: H3K4me3 levels
at the promoter of three hub genes from the ctx7 GC-rich module (gene symbols are
italicized). * = P < 0.05; ** = P < 0.01, as determined by a t-test.
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Figure 7.
A systems hypothesis for the central role of epigenetic modifications in alcohol dependence.
Yellow color indicates general increase, up-regulation or activation, while blue color
indicates general decrease, down-regulation or degeneration. Chronic alcohol causes well-
documented vitamin B and folate deficiencies that negatively affect one-carbon metabolism
and can result in homocysteinemia and a decreased production of S-adenosylmethionine
(SAM), the methyl group donor in most transmethylation reactions. Decreased SAM and
other alcohol-mediated effects, such as acetaldehyde-induced inhibition of the maintenance
DNA methyltransferase, DNMT1 and 5-methylcytosine demethylation induced by the DNA
damage and repair can cause global DNA hypomethylation, a chromatin state associated
with many pathological conditions including cancer. DNA hypomethylation may trigger a
chain of events resulting in changes in chromatin state, such as increase in H3K4 tri-
methylation and activation of transcription co-repressor complexes, which result in changes
in global gene expression. Epigenome – mediated changes in transcriptome can determine
cell type – specific functional states, such as activation of microglia, neuronal degeneration
in the amygdala and neuroadaptations in the PFC. In summary, alcohol-induced
epigenetically-mediated changes in gene expression may underlie brain pathology and brain
plasticity associated with alcohol abuse and alcohol dependence.

Ponomarev et al. Page 26

J Neurosci. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ponomarev et al. Page 27

Table 1

Biological categories critical for the organization of brain transcriptomes and gene co-expression
relationships. Shown are categories highly over-represented in at least one module in each brain region. Over-
representation P-values in column 3 represent the highest statistical significance detected for a given
biological category.

BIOLOGICAL CATEGORIES P value

Cell Classes Neuron 10-104

Microglia 10-56

Astrocyte 10-94

Oligodendrocyte 10-54

Cell Organelles Ribosome 10-57

Mitochondrion 10-16

Nucleus 10-9

Transposable Elements LTR (Long Terminal Repeat) 10-17

SINE (Short Interspersed Nuclear Element) 10-151
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