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Abstract
Objectives—To evaluate brain activation using functional magnetic resonance imaging (fMRI)
and specifically, activation changes across time associated with practice-related cognitive control
during eye movement tasks.

Experimental design—Participants were engaged in antisaccade performance (generating a
glance away from a cue) while fMR images were acquired during two separate time points: 1) at
pre-test before any exposure to the task, and 2) at post-test, after one week of daily practice on
antisaccades, prosaccades (glancing towards a target) or fixation (maintaining gaze on a target).

Principal observations—The three practice groups were compared across the two time points,
and analyses were conducted via the application of a model-free clustering technique based on
wavelet analysis. This series of procedures was developed to avoid analysis problems inherent in
fMRI data and was composed of several steps: detrending, data aggregation, wavelet transform
and thresholding, no trend test, principal component analysis and K-means clustering. The main
clustering algorithm was built in the wavelet domain to account for temporal correlation. We
applied a no trend test based on wavelets to significantly reduce the high dimension of the data.
We clustered the thresholded wavelet coefficients of the remaining voxels using the principal
component analysis K-means clustering.

Conclusion—Over the series of analyses, we found that the antisaccade practice group was the
only group to show decreased activation from pre- to post-test in saccadic circuitry, particularly
evident in supplementary eye field, frontal eye fields, superior parietal lobe, and cuneus.
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Introduction
Cognitive control mediates the process through which tasks transition from new or
unfamiliar to learned or skilled. With practice, a task becomes less-effortful, resulting in
improved performance and a reduced need for cognitive control (e.g. Chein and Schneider,
2005; Jansma et al., 2001; Schneider and Chein, 2003; Schneider and Shiffrin, 1977).
Modifications in the neural circuitry supporting task performance also occur following
practice (e.g. see Chein and Schneider, 2005; Kelly and Garavan, 2005 for reviews). These
changes in brain activation likely include changes in the specific neural circuitry supporting
the response of interest, as well as general changes reflecting a decreased need for cognitive
control.

In the present study, changes in brain activation across time were examined before and after
daily exposure to a set of eye movement tasks. Among eye movements, saccades rapidly
redirect gaze to a location of interest. "Prosaccades" are more reflexive, as a person simply
redirects gaze to a newly appearing visual stimulus. "Antisaccades" are more complex and
volitional, as a person redirects gaze to the mirror image location (same amplitude, opposite
side) of a newly appearing peripheral visual cue. As such, a correct antisaccade response
requires the inhibition of a glance toward the cue and generation of a voluntary saccade to
an unmarked location in the opposite visual field.

Saccadic performance is supported by a network of subcortical and cortical regions, as
identified via neuroimaging and other techniques (Camchong et al., 2008; Dyckman et al.,
2007; Ford et al., 2005; Keedy et al., 2006; McDowell et al., 2008; Muri et al., 1998;
O’Driscoll et al., 1995; Paus, 1996; Raemaekers et al., 2002, Sweeney et al., 2007). While
the basic circuitry is the same for pro- and anti-saccades, the increased complexity of
antisaccades is supported by increased activation of existing circuitry and/or the recruitment
of additional neural regions into the circuitry. As such, the saccade circuitry provides a
specific, well-studied system for understanding changes in brain activation associated with
cognitive control and practice.

The present study used functional magnetic resonance imaging (fMRI) to evaluate the
changes across time in neural system activation after participants practiced either specific or
non-specific eye movement tasks. Participants were engaged in antisaccade performance
during fMR image acquisition at two time points: 1) at pre-test before any exposure to the
task, and 2) at post-test after one week of daily practice on eye movement tasks. Each
participant practiced a single type of eye movement only: either a) antisaccades, b)
prosaccades or c) fixation (maintaining gaze on a target). It was hypothesized that
participants who had task-consistent practice (i.e., the antisaccade practice group) would
show changes in neural circuitry (as measured by the blood oxygenation level-dependent
(BOLD) signal) not observed in the two task-inconsistent practice groups (the prosaccade
and fixation groups) who practiced eye movement control tasks generally, but not
antisaccades specifically. It was further hypothesized that (i) for saccade tasks, saccade-
related circuitry would show decreased BOLD signal over time as a result of the circuitry
becoming more efficient and (ii) in the antisaccade practice group only, prefrontal cortex,
frontal eye fields, and striatum would show decreased BOLD signal due to decreased need
for higher level cognitive control (Camchong et al., 2008, Munoz and Everling, 2004,
Raemaekers et al., 2002).

The comparison of practice groups across time points was conducted using a combination of
statistical techniques that were selected specifically to circumvent commonly acknowledged
methodological problems that are associated with the structure of the data generated via
fMRI and/or the model based GLM analyses as they are typically applied. Features of fMRI
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data that present difficulties for analysis include the accurate modeling of the BOLD
response, massive sized data that are ill-balanced and the influence of spatial and temporal
correlations in the data. These statistical challenges have been addressed in the past using a
variety of methods that fall into two broad categories: model-based and model-free analyses.

A typical model-based analysis is to build activation maps by testing each voxel separately
using a statistical model (e.g., a general linear model). Under the specified model, a p-value
is calculated and used to determine whether the corresponding voxel is activated (see, e.g.,
Worsley and Friston, 1995 for early work in this direction). The flexibility of the linear
model allows for easy incorporation of temporal correlation via specification of an
appropriate error structure. This approach (including the standard GLM-type analysis) may
not be optimal, however. It is prone to the multiple testing problem since inference is
performed at the voxel level (Forman et al., 1995; Genovese et al., 2002; Worsley, 2003).
The number of true signals (active voxels) is typically small compared to the number tested,
which exacerbates the detection issue. Furthermore, model misspecification, especially of
the dependence structure of the fMRI time series, is a potentially serious issue. If the error
structure is incorrect, estimated standard errors are also incorrect and inference will be
severely impacted.

As an alternative, wavelet approaches have been applied to build brain activation maps.
Sendur et al. (2005) pointed out that the wavelet transform increases the SNR and
substantially decreases the serial correlation in the data. Van De Ville and Unser (2008)
constructed a statistical parametric map by applying wavelets to both time and space
domains and adapted the false discovery rate (FDR; Benjamini and Hochberg, 1995) method
to address the multiple testing problem. By contrast, a standard model-free approach such as
clustering (e.g., Goutte et al, 1999, Fadili et al., 2000, Balslev et al., 2002, Windischberger
et al., 2003) groups together voxels with similar activation profiles without assuming any
particular model or functional form in advance. There have been fewer attempts in model-
free clustering, however, that account for the temporal correlation inherent in these data.
One example is Ye et al. (2009), who took a geostatistical approach and clustered fMRI time
series by comparing their correlation structures. Finally, compromises between a massively
univariate model-based analysis and model-free clustering are possible. Heller et al. (2006),
for instance, proposed a cluster-based thresholding approach, which creates groups of
contiguous voxels and tests at the cluster, rather than at the individual, level.

The large number of task-irrelevant voxels poses challenges for both categories of analysis.
In the model-based approaches, the multiplicity problem is greatly exacerbated by the
presence of these voxels. Hence an increasingly common first step is to estimate the number
of “true nulls” (see Benjamini and Hochberg, 2000; Turkheimer et al., 2001 for early work
in this area; much research on this problem has been carried out in both neuroimaging and
genetics contexts) and test only those voxels that are retained after that initial screening. For
clustering methods, so-called “ill-balanced data”, wherein one class is much more prevalent
than the others, are problematic, since many techniques will tend in this situation to cluster
all cases into the dominant class. It is therefore a common practice prior to clustering to
reduce the data size and solve the ill-balanced data problem. For instance, Fadili et al.
(2000) used a priori anatomical information and reduced the number of voxels by testing the
temporal autocorrelation in each voxel’s time series and considering the spatial distribution
of the activated regions. Balslev et al. (2002) used an F test to discard voxels with no overall
effect.

Our approach to treating these issues was based on the application of clustering routines
used in correspondence with wavelet analysis. Transforming to the wavelet domain accounts
for the temporal correlation in the voxel time series. We also used a wavelet-based test to

Lee et al. Page 3

Hum Brain Mapp. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



detect task-irrelevant voxels, thereby mitigating the ill-balanced nature of the data. Our
analysis was composed of several notable steps, including detrending, data aggregation,
decorrelation, no trend test (Park et al. 2011), principal component analysis (Jolliffe, 2002)
and K-means clustering (Hartigan and Wong, 1979). We performed an ANOVA test to
evaluate the main effects of group and time, as well as their interaction. Furthermore, using
regions of interest (ROIs) we identified regions that showed statistical differences between
the groups and time points based on the bootstrap method.

Importantly, the strategies presented above eliminated the need to create an a priori model of
the “expected” activation across time, reduced the massive, ill-balanced data set, and
accounted for temporal auto-correlations. As such, the differences between practice groups
across time were tested in a rigorous manner. These analyses enhanced our ability to
evaluate practice-related brain activity changes across time.

Methods
Participants

Data were collected from thirty-seven right-handed undergraduate women (mean age=19.5
years, SD=1.8) recruited from the Undergraduate Research Pool at the University of Georgia
(UGA) or via flyers posted on campus. All participants were free (by self-report) of
psychiatric illness, history of head injury, and drug and alcohol abuse. Participants provided
written informed consent prior to the study, which was approved by the UGA Institutional
Review Board.

Procedure
FMRI data during antisaccade task performance were acquired at two time points: 1) pre-test
(before any task exposure) and 2) post-test. Between pre- and post-test fMRI sessions,
participants practiced one type of randomly assigned eye movement daily for one week:
either 1) antisaccades (glances away from a cue, N=12), 2) prosaccades (glances towards a
cue, N=14), or 3) fixation (maintains gaze at a central target, N=11). All participants
completed both test sessions.

FMRI Test Sessions—FMRI data were collected using a 1.5T GE Signal Horizon LX
Scanner (GE Medical Systems, Waukesha, Wisconsin). Task instructions were given prior
to entering the scan room. Once in the room, a participant was positioned on a gurney with
her head stabilized with foam padding and a restraint strap across her forehead. A mirror
placed over the participant’s head allowed her to view the stimuli on a rear-projection screen
placed near her feet. Eye movements were recorded using an fMRI compatible iView X
System (SensoMotoric Instrument, Inc.; 60 Hz sampling rate) eye tracking system.

Two localizer images were taken at the beginning of the session to ensure optimal brain
coverage for each participant. A high-resolution image was then obtained (SPGR-protocol:
sagittal, 2 NEX .9375×.9375×1.5 mm, 124 slices, TE = 2.8 ms, TR = 10.8 ms, flip angle =
20 degrees, scan time = 5 min 41 sec). After this structural image was acquired, functional
imaging was conducted (spiral scan with 2 interleaves, 24 continuous axial slices,
3.75×3.75×4 mm, TE = 40 ms, TR = 1912 ms, flip angle = 77 deg, scan time = 5 min 1 sec).

The functional run consisted of 13 blocks (22.4 sec each) alternating between fixation and
antisaccade trials. Stimuli consisted of 1 deg circles filled with different colors. A fixation
block was indicated by a purple stimulus at the central location and participants were
instructed to fixate on the target for the duration of the block. An antisaccade block
consisted of 7 individual trials, each of which started with a blue stimulus at the central
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location (2000 ms). The stimulus was extinguished and 200 ms later a cue was presented 5
deg to the left or the right (half in each visual field) on the horizontal axis (1000 ms).
Participants were instructed to look at the blue stimulus only when it was in the middle of
the screen, and when it was presented in the periphery, to look to the mirror image of that
stimulus (opposite direction, same amplitude) as quickly and accurately as possible.

Behavioral Practice Sessions—After the fMRI pre-test, each participant practiced her
assigned task (antisaccade, prosaccade or fixation) in the laboratory each of four days
(weekends were excluded). Practice sessions were conducted using a hand held device with
an LCD screen known as “Fix-Train” that was designed for the purpose of providing
practice with eye movement tasks (see Fischer et al., 2000). For each task, the goal of the
participant was to determine the orientation of a “T” symbol and to press the corresponding
arrow key. The bottom leg of the “T” symbol could be facing up, down, left, or right. This
manual task served as a proxy for measuring eye movements because the location and
duration of the “T” presentation was designed so that the participant must execute the
correct eye movement to see the stimulus and discern its orientation.

For fixation training, the symbol remained in the center of the screen and changed direction
two to five times before disappearing. Subjects pressed the arrow key corresponding to the
final orientation of the symbol before it disappeared from the screen. For prosaccade
training, the task was identical except that the symbol jumped to one side after changing
orientation in the middle, and participants pressed the arrow key corresponding to the
orientation of the symbol once it jumped to the periphery. For antisaccade training, a star
appeared in the center of the screen to provide a fixation target. Then the star jumped to one
side of the screen and the “T” symbol appeared 70 ms later on the opposite side of the
screen. Participants were instructed to look to the opposite side of the star and press the
arrow key that corresponded to the orientation of the symbol. If participants made a saccade
toward the star before looking away from it, they would miss the symbol as it was only
visible for 100 ms. Pro- and anti-saccade training consisted of an equal number of trials to
the left and right. Each participant completed 200 trials a day of her specific task (fixation,
pro- or anti-saccade) and her data were recorded on the device. The number of correct trials
and the mean reaction time for each practice session were recorded by the Fix-Train and
downloaded to a computer for further analysis.

Analyses
Behavioral Data from Practice and Test Sessions

We analyzed all behavioral data using repeated measures ANOVA with between-subjects
factor practice group (antisaccade, prosaccade, fixation). The practice data had the within-
subjects factor of day (1–4) whereas the test data were analyzed with the within-subjects
factor of test session (pre-, post-).

Practice data consisted of percent correct (number of correct identifications of the direction
of the symbol/number of total trials) and reaction time (how long it took the participant to
press the button after the disappearance of the symbol). Although these measures were of
hand movements rather than eye movements, they were an adequate proxy because the
participant had to have her eyes in the correct location to see the symbol orientation (see
Fischer et al., 2000 for a similar report).

Test session data consisted of eye movements recorded while the participants were engaged
in antisaccade tasks. Data were analyzed using MATLAB (The Mathworks Inc., Natick,
MA) as described in previous manuscripts (Dyckman et al., 2007). Briefly, trials with blinks
and trials with no saccades were eliminated. Saccades were scored for direction and reaction
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time. “Percent correct” antisaccade performance was calculated by dividing the number of
trials made in the correct direction by the total number of scoreable trials and multiplying by
100.

FMRI Data
The data analysis consisted of standard fMRI preprocessing steps before the novel
application of our combination of statistical techniques: detrending and data aggregation,
decorrelation, no trend test, and clustering the processed voxel BOLD time series using
principal component analysis and K-means. The resulting clustered maps between the two
scan test points (pre-test and post-test) and across the three practice groups (antisaccade,
prosaccade, and fixation) were then compared.

Preprocessing—We preprocessed the data using standard methods in AFNI (Cox, 1996)
including motion correction, slice timing correction, head motion correction, spatial and
temporal filtering, and normalization into Talairach space (Talairach and Tournoux, 1988).

Detrending and Data Aggregation—All 37 participants had data from 38 slices (40×48
voxels in size) covering the full brain. Voxels outside of the brain were masked by applying
a predetermined threshold value. Visual inspection showed that activation occured
predominantly in the 11th – 34th slices (Talairach z = −20 – +72), therefore, we selected this
subset of the full volume for the remaining analyses. We excluded the first five time points
from the analysis to allow for stabilization of the magnetization. Thus, the final data set
contained 37 participants, each with data from 24 slices and 70 time points. Linear and
quadratic trends in the voxel time series were removed from all subject data prior to any
further analysis.

Current software is not capable of clustering massive data sets such as the one we obtained
from this study (37 subjects; 40×48×24 voxels; Mumford and Poldrack, 2007, Wanga et al.,
2007). To make clustering more manageable it was therefore necessary to first reduce the
size of the data. This is not without precedent in the literature. For example, Balslev et al.
(2002) averaged together the results of 18 subjects prior to clustering. In order to validate
the aggregation of the 37 subjects, we evaluated two center measures, mean and median, and
three variation measures, standard deviation, range and interquartile range, at each voxel for
each subject. The distributions of these measures across all subjects were similar. Therefore,
we combined the subjects for each group at each voxel and each time point separately using
a representative value, in this case the median, and then clustered the combined brain. In
what follows, we present results from the median; note, however, that the clustering results
(as seen, for example, in Figures III and IV) are similar with the other summary measures.
An advantage of the median was that it reduced the effect of heavy outliers found in some
voxels. Another advantage of this aggregating approach was that it increased the signal-to-
noise ratio, hence it produced sharper clustering brain maps. After aggregation we have a
single image per group (40×48×24 voxels in size), for each of the 70 time points.

Decorrelation of fMRI Time Series—The existence of temporal correlation is inherent
in fMRI time series and has been evaluated using different types of time series models
ranging from autoregressive of low order (see, for example, Woolrich et al. (2001), Luo and
Nichols (2003) and Gautama and Van Hulle (2005)) to long-range dependence (see, for
example, Bullmore et al. (2003) and Park et al. (2010)). This dependence structure makes
clustering analysis more challenging and should be accounted for because it is nontrivial to
distinguish deterministic patterns from dependence artifacts in fMRI time series. A typical
approach to address this issue in clustering analysis is to assume a temporal model for
characterizing the dependence structure in fMRI time series (e.g. Worsley (2003)). Instead
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of modeling the temporal correlation explicitly, we used the (model-free) wavelet
transformation to take advantage of its decorrelation and denoising properties.

Let ψ be a wavelet function with vanishing moment L (Daubechies, 1992), that is,

and ψj,k(u) = 2jψ(2ju − k),j,k ∈  be a shifted and scaled version of ψ. If we denote a fMRI
time series by Yt at time t, then the wavelet transformation at scale j and time location k is
defined as

and the βj,k s are called the wavelet coefficients of Yt.

One critically important advantage of using the wavelet transformation in fMRI analysis is
that it removes the temporal correlation so that the transformed data have less serial
correlation in the wavelet domain for large L (for example, see Stoev et al., 2005). If we
then cluster the voxels in the wavelet domain rather than in the time domain, the time
correlation effect inherent in fMRI data is reduced. Veitch and Abry (1999) pointed out,
however, that the theoretical improvement with large L is balanced by an increase in the
number of wavelet coefficients influenced by the boundary effect, due to the finite length of
the time series. They used L=3 for Internet traffic data to reduce strong serial correlation and
also remove possible linear and quadratic trends in the data. In our analysis, since we
removed those trends in advance, we used a Daubechies wavelet function (Daubechies,
1992) with L = 2, which would increase the number of available wavelet coefficients, and
applied the wavelet transformation to each (median-valued) voxel. We also compared
clustering maps to check significant changes from L=2 to 4 and found them similar to each
other.

In addition, we applied a wavelet hard thresholding technique to obtain a sparse
representation of a signal by setting the wavelet coefficients less than the threshold
suggested by Donoho and Johnstone (1994) to zero. This denoising process amplifies
important signals and removes noise in the observed data. We used the Wavelab package,
available at http://stat.stanford.edu/~wavelab/, for wavelet analysis.

No Trend Test—For ill-balanced data in which there is a severe lack of balance between
the different classes of voxels, clustering techniques generally do not perform well since the
identified clusters tend to be dominated by the one large class. Since the minority of voxels
is task-related in fMRI studies, clustering results can be dominated by the majority of non-
task related voxels. Goutte et al. (1999) applied a loose statistical test such as F-test as a
reduction tool. Fadili et al. (2000) removed white noise voxels and further reduced the
number of voxels by considering only the gray matter.

We performed a no trend test based on wavelets, which is more rigorous than a simple F-test
as it accounts for temporal correlation. Park et al. (2011) proposed the adaptive pivot test
based on wavelets to detect any kind of trend in a time series. The key idea was to convert
the problem of testing a trend of a function into high dimensional normal mean inference in
the wavelet domain. We conducted this test at each voxel to identify voxels with no trend
(i.e. voxels that were non-task related). Details of this procedure are provided in the
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Appendix. Since each voxel was tested using this approach, adjustment for multiple testing
was necessary and we applied the FDR with q = 0.15. This was a relatively generous
threshold, to help ensure that truly interesting voxels were not removed from the rest of the
analysis.

For each session and each group, we started with 46080 (40×48×24) voxels. After the
masking procedure, 14,743 – 15,319 voxels were categorized as brain. Application of the no
trend test with FDR for multiplicity retained 1,852 – 3,329 voxels that were categorized as
antisaccade task-related, categorizing the other voxels as non-task related.

Clustering Methods—We clustered the wavelet coefficients of the remaining voxels after
applying the no trend test using both K -means and Principal Component Analysis (PCA) K
-means clustering. The K -means method starts from specification of the number of clusters,
K, in advance and assigns each voxel to the cluster with the nearest centroid as follows
(Johnson and Wichern, 2002):

1. Partition each wavelet-transformed voxel arbitrarily into K initial clusters, and
calculate the cluster centroids.

2. Reassign each voxel into the nearest cluster based on its distance from the K
centroids.

3. Update the cluster centroid and reassign each voxel into the nearest cluster by
recalculating the distance of each voxel from the updated centroids.

4. Repeat Step 3 until there is no more reassignment.

There are various choices for a distance metric including the Euclidean, Minkowski,
Mahalanobis and correlation. Because the data are suitably standardized by detrending and
are approximately independent by the wavelet transformation, we use the Euclidean metric
for computing the distance between points and cluster centroids, which is a typical choice
for K -means clustering analysis.

PCA (Jolliffe, 2002) is used widely as a data dimension reduction technique. The basic idea
is that if linear relationships exist between variables, analyses will be effective if only a
smaller number M of uncorrelated variables, called principal components (PC), are used.
The clustering procedure for PCA K -means is as follows:

1. For wavelet-transformed voxels, obtain the complete set of PCs via PCA.

2. Draw the scree plot in which the horizontal axis contains the PCs sorted by
decreasing fraction of total variance explained, and identify the M most important
PC scores.

3. Apply K -means clustering to the M selected PC scores of the wavelet-transformed
voxels.

Based on the scree plots for pre- and post-test for the three groups (Figure I), we selected 15
PCs. The 15 components explained at least 80% of the total variance for each test session
and each practice group. The results for the three groups were similar to each other so that
they were indistinguishable at each time point (pre- and post-test).

In both methods, the choice of K is an important issue. It can be determined using criteria
such as silhouette values (Ye, 2003), a likelihood approach with cross-validation (Balslev et
al., 2002), a hierarchical approach (Stanberry et al., 2003), or unsupervised fuzzy c-means
analysis (Fadili et al., 2000). In our analysis, we considered different numbers of clusters, K
= 3, 4, 5, 7, and chose K =3 because the larger numbers of clusters only broke the noise
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cluster into multiple clusters and did not provide additional information. Another issue in K
-means clustering is that initial partitions can affect the final clusters. We therefore ran the
clustering algorithm multiple times for the same number of clusters and obtained similar
clustering results to these presented in Figures III and IV.

In what follows, we summarize the data analysis strategy:

1. Preprocessing.

2. Masking, linear and quadratic detrending, and data aggregation using median.

3. Wavelet transformation of the aggregated voxels for decorrelation and wavelet
thresholding for denoising.

4. No trend test and multiple testing adjustments using FDR to remove non-task
related voxels.

5. PCA analysis to find important PC scores of the wavelet coefficients obtained from
Step 3 in the remaining voxels after Step 4.

6. K -means clustering analysis of the PC scores selected from Step 5.

Results
Behavioral Data from Practice and Test Sessions

Practice Sessions—Practice data obtained from the Fix-Train consisted of a) the mean
percentage correct, and b) reaction time values for each group across the four practice days
for the specific practice task assigned (Figure II).

For percentage correct, we found a main effect of group (F(2,30) = 8.7, p = .001), a main
effect of time (F(3,88) = 9.84, p < .0001), and a significant group × time interaction (F(6,88)
= 3.8, p = .002). The antisaccade practice group showed more correct antisaccades across
practice days, while the prosaccade and fixation groups remained at the same (high) level of
performance across time.

For reaction time, there were main effects of group (F(2,31) = 4.44, p = .02) and time
(F(3,91) = 79.32, p < .001), but no significant group × time interaction (F(6,91) = .39, p = .
89). All three groups decreased their reaction times in their assigned task across practice
days.

Test Sessions—Eye tracking data during fMR imaging (pre- and post-test days) were
available from 86% of the participants. Data from five participants (two in the antisaccade
and fixation practice groups and one in the prosaccade practice group) were not recorded
due to technical limitations. On antisaccade measures, there were no significant main effects
of group or test session and no group × test session interaction (p-values > .18). The mean
percent correct for all participants over both days was 82% (SD = 11.3).

FMRI Data from Clustering Analysis
The clustering results by the two methods (K -means and PCA K -means) were similar and
the results from PCA K -means clustering with K =3 are presented for purposes of
demonstration. For each group and each test session (pre- and post-) the brain was
partitioned into three clusters (Figure III) and compared with the behaviorally based
reference wave. For each plot at least one cluster displays this shape, suggesting the
presence of antisaccade task-related voxels. Note that the amplitude of this primary cluster
looks attenuated at post-test compared to pre-test, especially for the antisaccade group.
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To evaluate where in the brain the task-related clusters were located, and to determine
whether amplitude change occurred between pre- and post-test in regions associated with
saccadic performance, the voxels making up the two clusters showing greatest task-related
activation were plotted in the brain map (Figure IV). These data for the antisaccade practice
group clearly identified the well known circuitry supporting saccadic performance that
includes frontal eye fields (FEF), supplementary eye fields (SEF) and posterior parietal
cortex (PPC).

Next we considered in more detail the four superior slices (Talairach co-ordinates z=52, 56,
60, 64) that clearly contained the well known saccadic circuitry, in order to more
specifically investigate changes from pre- to post-test within and between practice groups.
The locations of voxels at each time point were color coded to identify those showing
antisaccade-related activity at pre-test only, at both pre- and post-test or at post-test only
(Figure V). The numbers of voxels in each category in the four slices were tabulated (Table
I). The number of voxels activated at post-test was smaller for the antisaccade practice group
compared to the other groups. This is consistent with the observation in Figure III (b) that
the box-car shaped time series is attenuated for the antisaccade group at post-test.

In order to evaluate the visual observations from the cluster analysis, we performed an
ANOVA using the proportion of activated voxels based on Table I as the response variable,
test session (pre- and post-test) and practice condition (anti-, pro-saccade, and fixation) as
factors, location (after dividing the brain into five regions based on Figure V) as a block
variable, and slice (z=52, 56, 60, 64) as replications. There was a main effect of day (F(1,98)
= 5.06, p = 0.027) that showed more activated voxels at post-test, but practice condition
(F(2,98) = 1.29, p = 0.281) and location (F(4,98) = 1.68, p = 0.162) were not statistically
significant. There was, however, a significant interaction between day and practice condition
(F(2,98) = 50.44, p < .0001). Post-hoc testing showed that the antisaccade group had fewer
activated voxels at post-test than at pre-test while the other groups had more. Only the
antisaccade group had a decreased proportion of activation at post-test (Figure VI).

ROI Analysis
The previous ANOVA revealed an attenuation at post-test for the antisaccade practice group
in the saccade circuitry constrained to superior cortex (slices z=52, 56, 60, 64). This
analysis, however, did not provide information about how specific neural regions within
whole brain saccadic circuitry may have been differentially affected. Therefore, we
conducted an additional analysis using 11 neural regions of interest previously identified
(Dyckman et al., 2007) including: supplementary eye field (SEF), bilateral frontal eye field
(FEF), left and right prefrontal cortex (PFC), right inferior frontal cortex (IFC), bilateral
superior parietal lobe (SPL), bilateral cuneus, bilateral inferior parietal lobe (IPL), bilateral
middle occipital gyrus (MOG), bilateral striatum, and bilateral thalamus.

In order to identify the specific ROIs that showed attenuation at post-test for the antisaccade
group we performed a bootstrap resampling (Efron, 1979) based test by building a 95%
confidence band for the difference of pre- and post-test. More specifically,

1. For a given ROI and a given practice group, obtain the difference between pre- and
post-test time courses for each subject.

2. Obtain a bootstrap sample of the differenced curves with the size corresponding to
the number of subjects of the given practice group and calculate the average curve.

3. Repeat Step 2 1000 times.

4. Use the 1000 average curves from Step 3 to construct a 95% confidence band.
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5. Repeat Steps 1– 4 for each practice group and each ROI.

If pre- and post-test for an ROI showed similar activation patterns, the confidence band for
the difference curve would be expected to include 0 for most time points. If attenuation
occurred at post-test the confidence bands would miss 0 at peaks (with a positive sign) and
valleys (with a negative sign). Application of this bootstrap approach suggested that four
ROIs showed a strong attenuation at post-test for the antisaccade practice group only: SEF,
FEF, SPL and cuneus (see Figures VII–X and Supplemental Materials for the plots for the
entire group of ROIs). The time course for each ROI and each practice group is shown as
solid lines for pre-test and dashed lines for post-test. Time points where statistically
significant attenuations occurred at post-test are identified by dark grey bands. Visual
inspection of these four ROIs showed that attenuation at post-test was characteristic in these
regions only for the antisaccade practice group.

The converse of attenuation at post-test was also possible and such an amplification effect
was indicated by confidence bands that would miss 0 at peaks (with a negative sign) and
valleys (with a positive sign). Time points that show statistically significant amplification at
post-test are identified by light grey bands in the plots (Figures VII –X and Supplemental
Materials). While the prosaccade and fixation practice groups showed some periods of
amplification, there was little evidence of amplification in the antisaccade group at post-test.

The findings from this ROI analysis are summarized in Table II. The values indicate
differences between the proportion of time points (out of 70) that had significant
attenuations (dark grey bands) and the proportion of time points showing amplification
(light grey bands) for each practice group at each ROI. A general pattern emerged showing
that in the ROIs identified a priori as saccadic circuitry (Dyckman et al., 2007) there was a
general attenuation (positive values showing less activation at post-test) associated with
task-specific practice (i.e. the antisaccade group). There appeared to be little dramatic
change in either direction in the prosaccade practice group. The only group that showed
evidence of consistent amplification (negative values showing more activation at post-test)
across time was the fixation practice group. This pattern replicates that shown in Figure VI
but with increased specificity and improved ability to evaluate which regions of the circuitry
may be crucial for practice-related changes in performance.

Conclusions
The current study evaluated brain activation associated with practice-related cognitive
control during eye movement tasks. All participants were tested on antisaccade performance
at pre- and post-test while fMRI data were acquired. In between pre- and post-test,
participants engaged in daily practice of one assigned eye movement control task; either
antisaccade, prosaccade or fixation. Over the series of analyses conducted, task-consistent
practice was associated with decreased activation from pre- to post-test. The antisaccade
practice group was the only group to show consistently decreased antisaccade-related
activation in saccadic circuitry, particularly evident in FEF, SEF, SPL and cuneus. This
pattern may be associated with increased efficiency such that fewer neural resources were
necessary to support the response due to task-specific practice. A similar pattern has been
reported in numerous studies showing decreased activity associated with learning (Garavan
et al., 2000, Jansma et al., 2001, Koch et al., 2006, Poldrack et al., 2005).

A distinctly different pattern of neural activation response was demonstrated by the two
groups who practiced test-inconsistent tasks (prosaccade and fixation). The prosaccade
practice group was most likely to show unchanged activation levels between pre- and post-
test. Regional analyses suggested some minor decreases in activation at post-test but they
were neither as widespread nor as strong as those observed in the antisaccade practice group.
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Thus, the brain activation across time in the prosaccade group was relatively stable. The
fixation practice group was the only one that demonstrated generally increased activation at
post-test. The persistent increases in the fixation group may suggest strengthening of the
neural circuitry that inhibits rapid responses away from the fixation target (Leigh and Zee,
2006). While both prosaccade and fixation practice groups constituted control conditions,
their different task requirements would predict different brain activation patterns.

In sum, these data demonstrated that changes in brain activation patterns of the well-
identified (McDowell et al., 2008, Munoz and Everling, 2004, Sweeney et al., 2006) neural
circuitry supporting antisaccade performance differed between task-specific and task-
irrelevant practice. The changes in brain activation were observed despite no quantifiable
differences in antisaccade performance at post-test, which may imply that brain activation
patterns are more sensitive than behavioral measures as indications of plasticity. Of course,
this intervention was merely one week in duration. It may take longer for changes in the
behavioral component of the task to be manifest if they are a less sensitive measure of
changes in brain function.

A notable component of this study was the application of a novel combination of statistical
techniques selected specifically to circumvent typically acknowledged methodological
problems associated with the structure of the data generated via fMRI and/or the model
based GLM analyses as they are commonly applied to fMRI data. These problems include
massive sized data that are ill-balanced and influenced by temporal auto-correlations, which
we successfully moderated via the integration and application of clustering routines and
wavelet analyses. The difficulties inherent in accurate modeling of the BOLD response
which is standard in GLM analyses was likewise avoided in this paper by using a data
driven technique. This improved analysis successfully identified the well-known brain
activation patterns known to support antisaccade performance. Not only was the circuitry
identified, but the analysis of practice-related changes could be evaluated with greater
confidence because these methods were more resistant to common problems. As such, the
differences between practice groups across time were tested in a rigorous manner and
revealed task specific brain activation changes in cognitive control across time.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

No trend test
We summarize the no trend test proposed by Park et al. (2011). Let Yit denote the BOLD
signal value at the ith voxel and the tth time point. Then, we can set up a regression model as
follows. Suppose that
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where fi is a trend function in the ith voxel, n is the total number of time points, and εit is the
error term in the ith voxel time series with mean 0 and standard deviation σ. Our interest is
to test H0:fi = 0 for each i, which implies that the corresponding voxel is not active. The
proposed approach transforms this null hypothesis to the wavelet domain. In order to
simplify notation, we drop i from here on.

Let φ and ψ denote scaling and wavelet functions, respectively, and define their dilated and
translated versions as

where j and k represent the scale and location, respectively. Assume that a trend function f ∈
L2[0,1], then one can expand f with the wavelet basis functions:

where J0 is a positive integer, αk =< f, φJ0,k >, βj,k=<f, ψj,k >, and <·,·> denotes the inner
product in L2[0,1]. In practice, the series is truncated based on the sample size n = 2J1 (J1 >
J0). In our analysis, we choose J0 = 3, and J1 = 6 by binning the data to avoid boundary
effects. The wavelet coefficients can be estimated as follows:

Denoting μn = (μ1, ⋯, μn) = (α0, ⋯, α2J0−1, βJ0,0, ⋯, βJ02J0−1,, ⋯, βJ1−1,2J1−1
−1), the null

hypothesis H0: f = 0 we test becomes H0: μn = 0, i.e., H0: all the wavelet coefficients are
0.The standard deviation of the error can be estimated using the wavelet coefficient
estimates,

where . We consider the soft thresholding estimators to
increase the power of the test. Define

. Here, (·)+
indicates the negative pieces are set to zero. For λ, one can use either the universal

threshold, , or the levelwise SureShrink rule (Donoho and Johnstone, 1995)
which minimizes

where
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Under H0:μn = 0, Genovese and Wasserman (2005) showed that

which leads to the rejection region

where zα. stands for the 100(1 − α)% percentile of the standard normal distribution.
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Figure I.
Scree plots of PCA for each test session ((a) pre-test and (b) post-test) and each practice
group. Each curve represents one of the practice groups (antisaccade, prosaccade or fixation)
and the heights of the vertical bars on the bottom represent the contributions of each PC for
that group. Note that there are little differences across the groups so that lines are
indistinguishable. Based on these plots, we selected 15 PCs (dashed vertical line) because
they explained at least 80% of the total variance.
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Figure II.
Behavioral data (percent correct and reaction time) from showing data from each groups'
practice sessions. Black lines represent the antisaccade practice group, dark grey lines
represent the prosaccade practice group, and light grey lines represent the fixation practice
group.
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Figure III.
Three clusters (cluster 1 is shown in black, cluster 2 is shown in dark grey and cluster 3 is
shown in light grey) for pre- and post-test for antisaccade (a, b), prosaccade (c, d), and
fixation groups (e, f). Black dashed lines represent the stimulus timing with values on the x
axis being number of whole brain collections ("TR"s) across time.
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Figure IV.
Brain maps of pre- and post-test for the antisaccade practice group with two primary
clusters. Voxels shown in green represent cluster 1 and those shown in blue represent cluster
2. The slices were arranged starting from inferior (Talairach z = 20, upper left) and moving
superior (z = 64, lower right).
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Figure V.
Overlay plots for (a) antisaccade, (b) prosaccade, and (c) fixation groups for 4 slices inferior
to superior (Talairach z=52, 56, 60, 64). Voxels in red are activated at pre-test but not at
post-test; those shown in orange are activated at both pre- and post-test, and those shown in
yellow are activated only at post-test. Activation is observed in typical saccadic circuitry at
this level of the brain which includes bilateral front eye fields (FEF), supplementary eye
field (SEF) at the midline and bilateral posterior parietal cortex (PPC).
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Figure VI.
Interaction plot with 95% error bars between test session (pre- and post-test) and proportion
of activated voxels (i.e. the number of activated voxels / total number of voxels in a slice) by
practice group: antisaccade in black, prosaccade in dark grey and fixation in light grey.
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Figure VII.
SEF. The average time series plots for pre- (solid) and post-test (dashed) are drawn for the
three practice groups. Black dashed lines at the bottom show the timing of antisaccade task
blocks. Dark grey bands represent time points where attenuations at post-test were
statistically significant and light grey bands represent time points where amplifications at
post-test were statistically significant by the bootstrap resampling method.

Lee et al. Page 23

Hum Brain Mapp. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure VIII.
FEF. See Figure VII for detailed explanation.
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Figure IX.
SPL. See Figure VII for detailed explanation.
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Figure X.
Cuneus. See Figure VII for detailed explanation.
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Table II

Differences of the proportions of statistically significant attenuations (positive values) and amplifications
(negative values) for the three groups at each ROI. These values are calculated as: [(proportion of time points
attenuated (i.e. number of time points significantly decreased at post-test) - proportion of time points amplified
(i.e. number of time points significantly increased at post-test))/70]. Values greater than or equal to 0.07 are
boldfaced. [SEF: supplementary eye field (Talairach x=0, y=1, z=56); FEF: frontal eye field (LH −34, 5, 53;
RH 34, 7, 52); SPL: superior parietal lobe (LH −22, −59, 55; RH 15, −60, 55); cuneus (LH −14, −79, 7; RH
10, −78, 7); thalamus (LH −13, −13, 12; RH 10, −13, 14); IPL: inferior parietal lobe (LH −47, −31, 25; RH 54,
−42, 23); PFC: prefrontal cortex (LH −34, 34, 38; RH 36, 43, 26); striatum (LH −18, 1, 17; RH 15, 2, 18);
MOG: middle occipital gyrus (LH −29, −85, 4; RH 24, −87, 4); IFC: inferior frontal cortex (RH 37, 32, 1)]

ROI Anti Pro Fix

SEF 0.16 −0.01 −0.01

FEF 0.19 0.04 −0.01

SPL 0.11 0.06 −0.07

Cuneus 0.09 −0.03 −0.07

Thalamus 0.04 0.03 −0.09

IPL −0.03 0.00 −0.14

PFC – L −0.04 0.07 0.00

PFC - R 0.04 −0.01 −0.01

Striatum 0.06 0.04 −0.01

MOG −0.01 −0.01 0.01

IFC 0.01 0.03 0.00
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