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Abstract
Sonification is the process of representing data as non-speech audio signals. In this manuscript, we
describe the auditory presentation of OCT data and images. OCT acquisition rates frequently
exceed our ability to visually analyze image-based data, and multi-sensory input may therefore
facilitate rapid interpretation. This conversion will be especially valuable in time-sensitive surgical
or diagnostic procedures. In these scenarios, auditory feedback can complement visual data
without requiring the surgeon to constantly monitor the screen, or provide additional feedback in
non-imaging procedures such as guided needle biopsies which use only axial-scan data. In this
paper we present techniques to translate OCT data and images into sound based on the spatial and
spatial frequency properties of the OCT data. Results obtained from parameter-mapped
sonification of human adipose and tumor tissues are presented, indicating that audio feedback of
OCT data may be useful for the interpretation of OCT images.

1. Introduction
Optical Coherence Tomography (OCT) can intraoperatively provide valuable diagnostic
feedback about microscopic tissue morphology [1–3]. Depth-resolved backscattered light
from tissues or biological specimens can be obtained from a single A-scan in OCT. The
tissue structure, morphology, and beam attenuation are encoded in the intensities of the
backscattered light. Conventionally, these A-scans are mapped to an image in
synchronization with the transversely scanned position of the beam, where a single A-scan
forms one column of an OCT image. To exploit the high-resolution, non-invasive and real-
time subsurface imaging capabilities of OCT in the operating room environment, the
technique should not only be simple to use and flexible under different operating conditions,
but also present data that is easily interpretable. Often it is desirable to image over large
fields-of-view in real-time such as for screening or surgical guidance. Given the high-
resolution capabilities of OCT, this necessitates an extremely high data acquisition rate
which provides a challenge for real-time interpretation of OCT data [4].

An effective method to enhance the interpretation of diagnostic measurements may be the
rendering of the data as audio signals. The process of converting data into non-speech audio
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signals or waveforms for the purpose of conveying information about the data is known as
sonification. Sonification is a relatively new field that has drawn considerable interest in
recent years due to the challenges of visualizing and interpreting the increasingly large
amounts of scientific data being generated by the availability of inexpensive hardware
resources and computational power. The complementary nature of sound data, the superior
temporal resolution of the human auditory system, and the ability to monitor multiple
parallel audio streams have enabled sonification to be used as warning alarms, for process
monitoring, and data exploration [5]. In general, auditory information has been utilized in a
number of different instruments or devices, such as in Geiger counters, electrophysiological
recordings, warning alarms, human-computer interfaces, and representation of multi-
dimensional and multi-modal data [6,7]. In biomedical applications, sonification has been
used for providing audio feedback for manual positioning of surgical instruments [8],
surgical navigational systems, analysis of EEG signals from the brain [9], heart rate
variability [10] and interpretation of image data [11] and texture [12]. Audio output has also
been utilized in Doppler ultrasound [13] and Doppler OCT [14].

In some situations, auditory representation of OCT data may be more beneficial than the
conventional visual display. This is especially true in the highly demanding operating room
environment where the surgeon has to simultaneously keep track of a number of parameters
while attending to the surgical field and following the surgical plan. The addition of an
audio channel can free the visual sense for other tasks. It is known that human auditory
perception is very sensitive to slight changes in the temporal characteristics of sound and
can detect even small changes in the frequency of a signal [15]. These properties can be
exploited to provide a faster method of tissue classification and identification of
morphological landmarks in time-sensitive image-guided surgical procedures such as
screening, tumor resection, or needle biopsy, and may complement the visual representation
of OCT data. Sonification may also find applications where non-image data is collected such
as optical needle biopsy procedures which use forward sensing devices to collect and
analyze A-scan data [16,17].

Various methods of auditory representation of data have been reported in literature [18]. The
simplest form is audification which is an audible playback of the data samples where each
data value directly corresponds to a sound pressure value. Re-sampling, shifts in
frequencies, choice of an appropriate time compression, and a level scaling factor may be
required prior to audible playback of the sound [19]. Earcons [20] and auditory icons [21]
have also been used, which are based on associating a unique sound to a specific message
(or signal). Although simple, these methods only work on data than can be categorized.
Another approach is model-based sonification where the data parameters control a
parameterized sound model to generate non-speech audio [18]. The most widely used
techniques are based on mapping data parameters onto sound attributes such as pitch,
loudness, tempo, and duration. However, these interfaces are more difficult to design and
interpretation may require extensive user training.

In this paper, we have applied sonification to OCT data and images of human breast adipose
and tumor tissue with the aim of distinguishing these tissue types based on the rendered
audio signals. To the best of our knowledge, this is the first work describing sonification for
OCT data. In section 2, we describe the psycho-acoustic properties and sonification
principles that would form the basis of any sonification system design. Section 3 shows
results of sonification of OCT data. The limitations and future work are discussed in section
4 followed by the conclusions in section 5.
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2. Methodology
A well designed sonification system must be fast. The sound must make intuitive sense, and
the listener must be able to effectively extract important diagnostic features from the OCT
data. A simple method could be the use of earcons or auditory icons. This requires the use of
classification algorithms to first distinguish between tissue types. Based on the
classification, each tissue type can then be assigned a unique sound. Real-time image
interpretation is thus performed by the classification algorithm, which is subject to its own
sensitivity and specificity limitations [22]. Another method could be the audification of
spatial-domain intensity data which has the potential advantage of high speed due to low
processing requirements, but may be noisy due to the presence of speckle. In this paper we
have used the method of parameter-mapped sonification which is based on extracting
features from the data and mapping them into sound attributes. In the absence of a reliable
classification scheme, this method utilizes the sensitivity of the human auditory sensory
system as a tissue classification mechanism, and hence does not require prior classification
of the data.

The method of parameter-mapped sonification is illustrated in Fig. 1. Characteristics of A-
scans or image parameters that can be used to classify tissue types are chosen, and the
extracted parameters are then mapped to a set of sound attributes for sonification. The
mapping is done while considering the psycho-acoustic response of the human auditory
system to different physical sound attributes. Below we discuss the key parameters used for
the classification of breast tissues, the psycho-acoustic principles relevant to the synthesis of
sounds, and the chosen method of sonification.

2.1 Parameter extraction from OCT data
A range of different parameters have been reported for tissue classification in OCT. These
parameters depend on the nature of the data and may typically be the slope, intensity
variations, spatial frequencies, periodicity of A-scans, and textural features of OCT images
[17,22–24]. The extracted parameters must have good discriminating power and must be
computationally simple in order to meet the real-time requirements of a sonification system.
Previous work on OCT-based classification of breast tissue has found that the slope and
Fourier spectrum possess good discriminating power [17,22]. Therefore in our sonification,
we have used these parameters to distinguish between adipose and tumor tissue.

OCT images of human breast adipose and tumor tissue, and the corresponding A-scans, are
shown in Fig. 2. Adipose tissue has a more regular scattering structure and lower attenuation
compared to tumor tissue, which is more highly scattering and exhibits greater signal
attenuation. The different attenuation causes a difference in the slopes of the
(logarithmically mapped) A-scans with tumor having a higher slope compared to adipose
tissue [17]. The slopes were calculated by selecting values in the A-scans that were above a
certain threshold (~30% of the maximum value) and then fitting a linear function to these
values as shown in Figs. 2(c) and 2(d).

Previous work has shown that the unique Fourier signatures from tissue types can be used
for classification [22]. The Fourier transforms of A-scans are shown in Fig. 2(e). Adipose,
due to its regular structure, has more energy concentrated in the low frequency regions while
tumor has more high frequency content. The Fourier transform was normalized to a unit area
and truncated to half of the maximum spatial frequency (reciprocal of the system axial
resolution) as the latter half mostly consisted of noise and did not show any differences
between the tissue types. The truncated Fourier space was divided into three non-
overlapping regions representing the low (from 0 to 6% of the truncated spatial frequencies),
middle (22–44%), and high frequencies (66–100%) as shown in Fig. 2(e). The squares of the
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areas under the curve corresponding to each of these regions (labeled as region I, II and III
respectively) were selected as the three spectral parameters in our sonification.

2.2 Parameter mapping to sound attributes
The psycho-acoustic properties of human hearing have been widely studied and are well
understood. Psychological perception of sound can be described in terms of loudness, pitch,
timbre, and time. These sound attributes in turn depend on the physical properties of
intensity, frequency, waveform, and duration of the sound waves. The relationship between
the physical properties and the psycho-acoustic perception of sound must be considered for
sonification design. Moreover, the interactions amongst the sound attributes must also be
taken into account, especially when more than one of these variables is to be manipulated
simultaneously in the same sonification.

2.2.1 Psycho-acoustic principles—The psycho-acoustic concepts of critical band and
just noticeable difference (jnd) have the strongest implication for a good sonification system
design. Critical band is the frequency-dependent bandwidth at which sound intensities
interact with each other. It can be approximated by the relationship Δf = 25 + 75(1 + 1.4
f2)0.69 where f is the center frequency in kHz [25]. The concept of just noticeable difference
(jnd) characterizes the ability to differentiate between two nearly equal stimuli. In general,
people are much better at making relative judgments of the sound attributes than at making
an absolute judgment.

Loudness L is related to the sound intensity I by the relationship L = kI0.3 where k is a
constant which depends upon the units used and individual perception. However, the same
intensity may produce a different sensation of loudness depending on the frequency of the
waves, as described by the Fletcher-Munson curves [26]. Based on these curves it can be
seen that variation in perceived loudness may be minimized by using a frequency range of
approximately 800–2000 Hz. Moreover, these curves show that the sensitivity of the human
ear to loudness is greatest between 3000 and 4000 Hz. The jnd in intensity between two
sounds is about 1 dB (12% change in intensity). However, in real life scenarios, a change of
3 dB (50% change in intensity) is easily detectable by humans [25]. Loudness is also
dependent on duration. With an increasing duration of a sound, the perception of loudness
stabilizes after about 100 ms. Using loudness as a sound attribute for sonification is
challenging as the human auditory system adjusts to the loudness level of sound. Loudness
is also affected by the distance from the source, and the loudness level of a sound may be
masked by other sounds in the environment [25,27].

Perception of pitch is primarily dependent upon the frequency of the sound wave. For a
harmonic spectrum pitch perception depends on the fundamental frequency while for an
inharmonic spectrum it is a function of the amplitude-weighted mean of the spectral
components. The audible range for most humans is from 20 to 15000 Hz. The smallest
degree of pitch discrimination between two pitches depends on their intensity and frequency
range. Experiments have shown that the human ear is more sensitive to frequency changes at
the mid-frequency region between 1 and 4 kHz. The jnd for pitch is typically about 1/30th of
the critical bandwidth at a particular frequency. The perception of pitch is also dependent on
the duration of the sound. A short duration sound will be heard as a click rather than a pure
tone. On average, sound should have duration of at least 13 ms to be ascribed as a definite
pitch. Although the human ear has sensitivity up to around 20 kHz, sensitivity of the human
ear drops significantly at higher frequencies. Thus, it is reasonable to use frequencies in the
middle of the audible range, i.e. 100–5000 Hz, so that the sound is audible in most
circumstances.
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Those characteristics of sound which enable the human auditory system to distinguish
between sounds of similar pitch and loudness are, by definition timbre. Timbre perception
depends upon the harmonic content, temporal evolution, and the vibrato and tremolo
properties of the sound waves. Timbre may be useful to represent multiple data streams
simultaneously.

2.2.2 Sound synthesis—A number of sound synthesis methods such as additive
synthesis, subtractive synthesis, frequency modulation (FM) synthesis, and granular
synthesis can be used to generate sound [28]. For any given application, there is no preferred
technique, as each has its own merits and demerits. In our sonification, FM synthesis was
used, which has the advantage of generating a rich variety of sounds with the control of only
a few parameters. The FM signal is described as A cos(2π fct + M sin 2π fmt) where fc is the
carrier frequency, fm is the modulating frequency, A is the amplitude and M is the
modulating index. In this technique, the carrier wave frequency fc is modulated by the
modulating wave frequency fm. The FM modulated signal consists of a complex tone with
frequency components separated from one another by the modulating frequency as shown in
Fig. 3(a). However, if there are reflected side frequencies due to sidebands falling into the
negative frequency domain of the spectrum, then the ratio fc / fm would determine the
position of the components in the spectrum [29]. The amplitude of the components can be
determined by Bessel functions, which would be a function of the modulating index M. For
higher values of M, more spectral energy will be dispersed among the frequency
components.

2.2.3 Parameter mapping—The parameters extracted from the OCT data can be mapped
to any or all of the attributes. We selected as the significant parameters the slope of the A-
scans and the spectral parameters corresponding to the low (I), middle (II) and high
frequency (III) regions of the Fourier spectrum of the data as shown in Fig. 2(e). These
parameters were mapped after appropriate scaling into the carrier frequency fc, modulation
index M, amplitude A, and modulating frequency fm, respectively, where fm = [(Energy in
region III) × (fc )].

Interpretation of the mapping is shown in Fig. 3(b). The slope of the A-scan is mapped to the
pitch. The high frequency content determines the separation of the spectral components
relative to the carrier frequency, while the low frequency content determines the spectral
energy within these spectral components. The final synthesized sound is strongly influenced
by the choice of carrier frequency. In our data sets, slope was the variable with the greatest
discriminating power and hence was mapped into the carrier frequency. As a result of these
mappings, the sonification of signals from adipose and tumor tissues had non-overlapping
audio spectra and the perceived sound of tumor had a higher pitch. This makes intuitive
sense as the Fourier spectrum of tumor tissue has greater energy at higher frequencies
compared to that of adipose tissue.

2.2.4 Sound rendering modes—The sonification of OCT data has been organized into
two modes: A-scan sonification and image-mode sonification. In the A-scan sonification
mode each individual A-scan (or a group of A-scans for faster playback) is sonified.
Although this mode has high resolution, it has the limitation of being non-real-time as the
typical A-scan acquisition rate (~0.1 ms for an A-scan rate of 10 kHz) will be much higher
than the playback time (~100 ms) of the sound. A playback time of 100 ms was chosen
based on the tone perception of the human ear.

Image-mode sonification may be used for real-time sonification of the data. In the image-
mode, each frame is played for the duration of the playback time of the sound, and is
therefore much faster than the A-scan sonification mode. In this mode, each frame is divided
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into a certain number of blocks and for each block the average value of the parameters are
calculated and mapped into sound as shown in Fig. 4. The final synthesized sound consists
of the summation of the waveforms from each individual block. The sonification (parameter
calculation + sound synthesis) of each block is independent of all the other blocks. Hence,
these calculations can be done in parallel for each block, which can significantly decrease
the computational time for each frame. However, this mode will have a lower resolution
than the A-scan sonification mode (where the resolution depends on the number of divisions
of each frame).

Sound was synthesized using Matlab and played at a sample rate of 10 kHz. The final
synthesized sound from each of these modes contained a clicking sound due to appending of
the sound waveforms (~100 ms). These artifacts were minimized by multiplying each of the
100 ms sound waveforms with an envelope having linearly rising and decaying slopes at the
edges.

3. Results
The human tissue used in this study was acquired and handled under protocols approved by
the Institutional Review Boards at the University of Illinois at Urbana-Champaign and Carle
Foundation Hospital (Urbana, IL). The results obtained by sonification in the A-scan mode
and the image-mode are shown below.

3.1 A-scan mode
In the A-scan mode the acquired A-scans are grouped together in bins, each 10 A-scans
wide. The data parameters are calculated for each A-scan and averaged together for each
bin. Each bin is played for a duration of 100 ms based on the tone perception of the human
auditory system.

The mapping of the A-scans parameters obtained from human breast adipose and tumor
tissues are shown in Table 1. These results show that adipose tissue has a sound of lower
pitch with the spectral components more closely spaced to each other, and energy more
widely dispersed among them. In contrast, tumor tissue has a sound of a higher pitch with
relatively large spacing between the spectral components, and with most of the energy
concentrated within the carrier frequency (due to the low modulation index M).

Figure 5 (Media 1 – both video and audio) shows the sonification of a two-dimensional OCT
image containing a tumor margin (boundary between normal adipose tissue and tumor). The
data set in Fig. 5(a) was acquired using a spectral-domain OCT system with a 800 nm center
wavelength and a 70 nm bandwidth, providing an axial resolution of 4 μm. The audio
spectrogram of the output sound is shown in Fig. 5(b). The audio spectrogram (computed
using the short time Fourier transform) displays the frequency components of the sound at
each time instant and is helpful in visualizing the sonification results. Results demonstrate
that tumor and adipose tissues have distinct sounds.

3.2 Image-mode
The results from image-mode sonification are shown in Fig. 6 (Media 2 (13 MB) – both
video and audio). The sonification is applied to a three-dimensional volumetric data set of
dimensions 1.7 mm × 3 mm × 5 mm containing both adipose and tumor tissues. This data
set was acquired intraoperatively using a 1310 nm spectral-domain OCT system with 11 μm
axial and 20 μm transverse resolution. Each frame was divided into 10 blocks and
sonification was performed based on the scheme shown in Fig. 4. A portion of the data set
(after 30 seconds) is played backwards to highlight the distinction in sonification of adipose
and tumor tissues, and to mimic real-time intraoperative imaging back and forth across a
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tumor margin. The audio spectrogram in Fig. 6(b) demonstrates that the sound of tumor has
higher frequency content than the sound of adipose tissue.

The first 190 images or frames contain adipose tissue, except for the 37th frame, which
consists of tumor. This particular frame was artificially inserted between frames of adipose
tissue to highlight the sensitivity of our sonification technique and the human ear at
identifying subtle changes in the image data. If only image data is displayed, then the rapid
transition of adipose-tumor-adipose may be missed if the user does not pay close attention to
the visual display at that particular instant in time. However, the addition of another sensory
information channel in the form of audio feedback in conjunction with the visual display
may make this abrupt transition more easily recognized during high-speed image and data
acquisition.

4. Discussion
Auditory representation of OCT images based on parameter-mapped sonification has been
demonstrated in this study. The current method of sonification of OCT data may potentially
be improved and be made aesthetically more pleasing by using more complex sound
attributes such as vibrato and tremolo of the tones and by using dedicated hardware for
sound manipulation and generation. Additional sound dimensionality such as stereo, where
different parameters could be mapped to the left and right ear, may also be used. Moreover,
depending on the tissue types and data sets employed, additional data parameters based on
the histograms, A-scan peaks, standard deviation (for A-scan data), or textural parameters
(for image-data) can be incorporated for sonification.

Sonification will be especially useful if done in conjunction with the acquisition of A-scans
in real-time. For real-time performance, the calculation of the parameters and the subsequent
mapping into sound attributes must be done faster than the data acquisition rate. A parallel
implementation of the scheme presented in Fig. 4 can be used for real-time performance
utilizing either commercially available sound synthesizers or parallel programming
techniques [30]. For real-time sonification, the data must either be downsampled or
averaged. This will not likely present a problem, as auditory feedback is intended to be a fast
and efficient screening method for the identification of important data features that can alert
the user to suspicious areas of tissue. For more detailed recognition and visualization, the
user may look at the high-resolution image on the screen. The speed of real-time sonification
can be increased by decreasing the playback time of sound (100 ms was used in this
sonification). However, as mentioned previously, this will decrease the resolution of the
sonification, producing audible clicks rather than sound tones.

One of the main challenges in sonification is finding the most efficient mapping of data
parameters into sound attributes. Currently, there is no single optimized approach as the
sonification technique will depend to a great extent on the type and form of the data,
individual perception and preference of sound, and the computational requirements. With
this in mind, the current sonification scheme may not be optimal for every OCT data set.
Data from different tissue types may have different distinguishing parameters and a
sonification system would need experimentation with different mappings, synthesis
techniques, and parameter tuning to customize it to the unique properties of the data sets
employed. A versatile sonification system would likely have a calibration mode, where
multiple parameters could be adjusted in real-time to optimize the sounds and sensitivity for
identifying particular tissues of interest.

Sonification of data may also have certain fundamental drawbacks and limitations. Audio
perception will vary between individual users and there could be potential interference from
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other sound sources such as speech and the environment. Another limiting factor is that
sound attributes are not completely independent of each other. For example, loudness has
frequency dependence while pitch perception also depends on the intensity levels, which
may cause misinterpretation of mapped data features. The sound attributes must therefore be
carefully chosen to compensate for these effects.

Future work will incorporate more tissue data from different and similar tissue types. The
performance of human subjects at distinguishing between different tissue types based on
audio feedback will also be evaluated. Experimentation with different mappings, different
OCT data sets, and different variations in the scaling and polarity on the audio rendering is
likely to further improve performance. Sonification of A-scans with multiple cell and tissue
types present within a single A-scan will also be investigated.

5. Conclusion
In this paper we have demonstrated a new method to represent OCT data and images in the
form of audio signals. This representation may complement the traditional visual display,
and enable the user to utilize multi-sensory perception capabilities for the interpretation of
OCT data under real-time imaging conditions, such as during surgical or diagnostic
procedures. In the case of cancer surgery represented here, an estimate of the tumor location
may first be gauged using audio feedback, with subsequent analysis of the image data from
the suspect region made using tissue classification algorithms. Sonification is expected to be
used as a complementary extension rather than a complete replacement of the traditional
visual display. This multi-sensory approach has the potential to improve the real-time
differentiation and interpretation of data during high-speed OCT imaging.
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Fig. 1.
Parameter-mapped sonification for OCT.
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Fig. 2.
OCT image and data analysis from human breast (a) adipose tissue and (b) tumor tissue. (c)
A-scan corresponding to the highlighted line from the adipose tissue. (d) A-scan
corresponding to the highlighted line from the tumor tissue. (e) Normalized Fourier
transforms (average of 150 A-scans). Roman numerals indicate the regions corresponding to
the three spectral parameters. Scale bars represent 200 μm. The superimposed lines in (c)
and (d) represent the 1st order fit to the A-scan for calculation of slope.
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Fig. 3.
Frequency Modulation (FM) synthesis. (a) Spectral components in FM synthesis. (b)
Mapping of parameters for sonification via FM synthesis.
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Fig. 4.
Block diagram for image-mode sonification.
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Fig. 5.
Sonification using the A-scan mode (Media 1 – both video and audio). (a) Human breast
tissue containing a tumor margin with tumor (left side of the image) and adipose (right side
of the image). (b) Audio spectrogram of the output sound, where each column in the
spectrogram corresponds to 10 A-scans in the OCT image in (a).
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Fig. 6.
Sonification using the image mode (Media 2 (13 MB) – both video and audio), (Media 3 (4
MB) – low display resolution video and audio). (a) A single frame from a three-dimensional
volumetric data set, which consists of 450 frames played at 10 frames per second. (b) Audio
spectrogram of the output sound where each frame in the three-dimensional volume now
corresponds to a playback time of 100 ms, and the audio spectrum from each frame is
represented by a single column in this spectrogram.
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Table 1

A-scan parameter mapping for FM synthesis.

FM synthesis parameters A-scan parameters Adipose Tumor

Carrier frequency (fc) Slope Low High

Modulation index (M) Low frequency content (I) High Low

Amplitude (A) Middle frequency content (II) Moderate Moderate

Modulation frequency (fm) High frequency content (III) Low High

Note: Roman numerals refer to frequency bands shown in Fig. 2.
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