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Abstract
Obesity is a significant risk factor for developing osteoarthritis in weight-bearing and non-weight-
bearing joints. Although the pathogenesis of obesity-associated osteoarthritis is not completely
understood, recent studies indicate that pro-inflammatory metabolic factors contribute to an
increase in osteoarthritis risk. Adipose tissue, and in particular infrapatellar fat, is a local source of
pro-inflammatory mediators that are increased with obesity and have been shown to increase
cartilage degradation in cell and tissue culture models. One adipokine in particular, leptin, may be
a critical mediator of obesity-associated osteoarthritis via synergistic actions with other
inflammatory cytokines. Biomechanical factors may also increase the risk of osteoarthritis by
activating cellular inflammation and promoting oxidative stress. However, some types of
biomechanical stimulation, such as physiologic cyclic loading, inhibit inflammation and protect
against cartilage degradation. A high percentage of obese individuals with knee osteoarthritis are
sedentary, suggesting that a lack of physical activity may increase the susceptibility to
inflammation. A more comprehensive approach to understanding how obesity alters daily
biomechanical exposures within joint tissues may provide new insight into the protective and
damaging effects of biomechanical factors on inflammation in osteoarthritis.
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Osteoarthritis is a painful diarthrodial joint disease that develops as a result of an insufficient
and often aberrant repair of damaged synovial joint tissue. Common features of
osteoarthritis include progressive focal lesions in the articular cartilage, abnormal bone
remodeling, meniscal tears, mild synovitis, and muscle weakness. Aging is the primary
predictor of osteoarthritis, with most people older than 70 years of age showing some signs
of disease in at least one joint (1). The etiology of aging-associated osteoarthritis is not well
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understood, although cellular senescence may contribute to disease pathology. Many of the
pro-inflammatory mediators and proteases attributed to a senescence-associated secretory
phenotype in fibroblasts, such as Interluekin-1β (IL-1β), IL-6, IL-8, matrix
metalloproteinase 3 (MMP-3), and MMP-13, are commonly increased in osteoarthritic
tissues (2,3). These pro-inflammatory mediators, along with nitric oxide and prostaglandin
E2, promote an imbalance in the synthesis and degradation of the cartilage extracellular
matrix that eventually lead to cartilage degradation (4). Identifying the age-associated
changes in chondrocyte biology that promote the cellular senescence phenotype is an active
area of research, with current studies indicating a role for DNA damage, mitochondrial
dysfunction, oxidative stress, and cellular stress protective mechanisms (3).

The extent to which circulating inflammatory factors contribute to osteoarthritis pathology is
uncertain. Synovial fluid and serum inflammatory cytokines, such as IL-1, IL-6, IL-8 and
Tumor Necrosis Factor-α (TNF-α), are elevated in osteoarthritis patient cohorts and animal
models, suggesting that systemic inflammation initiates osteoarthritis pathology (5). A
recent study provided additional evidence linking systemic inflammation and osteoarthritis,
but from a different point of view. Rather than focusing on factors associated with the
presence of osteoarthritis, the authors investigated inflammatory factors associated with the
absence of osteoarthritis in an aged cohort. When older adults with and without
osteoarthritis were compared, those individuals without osteoarthritis showed a reduced
production of IL-1β and IL-6 in whole blood samples stimulated with lipopoly-saccharide
(6). Thus, resistance to a systemic inflammatory stress may protect against osteoarthritis.
Recent genetic studies of inflammatory marker polymorphisms and knee osteoarthritis
indicate that IL-1 receptor antagonist (IL-1Ra) gene polymorphisms may be associated with
differences in the severity of age-dependent knee osteoarthritis (7). The ability of
inflammatory genetic markers or other systemic inflammatory mediators to predict
osteoarthritis risk remains an important area of investigation, especially in the study of
obesity-associated osteoarthritis.

Obesity and inflammation in osteoarthritis
Obesity is one of the most significant preventable risk factors for developing knee
osteoarthritis (8). One way in which obesity may increase the risk of osteoarthritis is by
altering knee joint loading patterns, such as occurs with varus/valgus laxity and knee joint
malalignment (9,10). However, mechanical factors alone do not seem to be sufficient to
explain the relationship between osteoarthritis incidence and obesity (11,12). Obesity also
increases the risk of developing osteoarthritis in non-weight-bearing joints such as the hand,
and several recent studies, summarized below, suggest that systemic inflammatory
mediators contribute to the increased risk of osteoarthritis with obesity. Adipose tissue,
especially from the abdomen, is a rich source of pro-inflammatory cytokines, which are
often referred to as adipokines. Many of the adipokines elevated with obesity and metabolic
syndrome have also been shown to mediate synovial tissue inflammation and upregulate
cartilage matrix synthesis and degradation (5,13). In a recent study, cardiometabolic disease
clustering increased the risk of osteoarthritis even when controlling for BMI (14), suggesting
that a common set of metabolic factors underlie both cardiovascular and osteoarthritis
disease conditions. Osteoarthritis, like cardiovascular disease, involves altered lipid
metabolism coupled with increased systemic and cellular expression of pro-inflammatory
mediators (15,16). Establishing a causal relationship between osteoarthritis and metabolic
inflammation is difficult because both factors are correlated with changes in joint loading
biomechanics that occur with obesity. Nevertheless, a growing number of studies, although
not all (17), support a role for metabolic factors in osteoarthritis (3,11,15,18–23).
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One of the central mediators being investigated for a potential metabolic-osteoarthritis link
is leptin. Leptin is a 16-kd polypeptide hormone encoded by the obese (ob) gene (24). Leptin
is primarily secreted by adipocytes, functioning as an afferent signal in a hypothalamic
negative-feedback loop to regulate adipose tissue mass and body weight. We have
previously reported that female mice with impaired leptin signaling are protected from
obesity-induced osteoarthritis (19). These findings indicate that elevated body fat in the
absence of leptin signaling is insufficient to induce systemic inflammation and osteoarthritis
in C57BL/6J mice. Moreover, in a 45-week diet-induced obesity study in female C57BL/6J
mice, we found that serum leptin concentrations predicted knee osteoarthritis severity even
when statistically controlling for the effect of diet and percentage body fat (18).

The extent to which leptin mediates the onset versus the progression of osteoarthritis is
uncertain. The primary pro-inflammatory and catabolic effects of leptin in chondrocytes
occur through co-stimulation with other inflammatory mediators, such as IL-1, TNF-α, and
IFN-γ (21,25). Furthermore, there is some evidence that tissue disease status and patient
BMI are important determinants of leptin-mediated cartilage degeneration. We previously
showed that physiologic doses of leptin were not sufficient to induce or synergistically
increase cartilage nitric oxide production or proteoglycan release in healthy porcine cartilage
explants (18). Moreover, when osteoarthritic chondrocytes are obtained from patients with a
range of body mass indexes, MMP13 gene expression was only altered by physiologic
concentrations of leptin in cells from obese patients (23). It is not known if leptin receptor
expression is increased in chondrocytes from obese patients independent from osteoarthritis
disease status (26). As leptin has also been shown to increase the expression of anabolic
growth factors, such as IGF-1 and TGF-β (27), increased sensitivity to leptin within
osteoarthritic cells appears to mediate an overall increase in cartilage extracellular matrix
turnover, a characteristic of early to middle stages of disease.

Recent studies indicate a potentially important role for the infrapatellar fat pad in mediating
intra-articular knee inflammation (21,28–31). In particular, Hui et al. (21) used conditioned
medium from ex vivo cultures of infrapatellar fat to show that leptin secretion from
infrapatellar fat is sufficient to induce MMP1 and MMP13 gene expression in osteoarthritic
chondrocytes. Leptin is unique among other adipokines analyzed to date in that only leptin
has been found to exist at higher concentrations in the synovial fluid compared to serum,
suggesting an important role for infrapatellar fat in intraarticular leptin production (32).
Moreover, the infrapatellar fat pad also secretes IL-6, adiponectin, and visfatin at greater
levels than subcutaneous fat in ex vivo culture (31). An important question that remains to
be addressed is to what extent cartilage and synovial inflammation drive infrapatellar fat
inflammation. Most studies investigating inflammation in the infrapatellar fat pad harvest fat
tissue from severely osteoarthritic joints during joint replacement surgery. Bastiaansen-
Jenniskens et al. (28) reported increased levels of immuno-regulatory CD206+ macrophages
in infrapatellar fat harvested from osteoarthritic joints compared to joints undergoing ACL
repair. The increased population of immunoregulatory macrophages may explain the
unexpected finding that infrapatellar fat-conditioned media from osteoarthritic joints inhibits
the function of catabolic mediators in healthy cartilage (28). Future studies are needed to
characterize the inflammatory phenotype of infrapatellar fat pads prior to the development
of osteoarthritis. Testing this question in lean and obese animal models may provide much
needed insight into the role of infrapatellar fat and inflammation in obesity-associated
osteoarthritis.

Biomechanical modulation of cartilage inflammation
Numerous factors, such as physical activity levels, body weight, and skeletal anatomy, affect
the range of mechanical forces acting on synovial joint tissues. Mechanical signals are not
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only generally well-tolerated by cells embedded within load-bearing tissues such as articular
cartilage, they are essential for normal function and maintenance of the extracellular matrix
(33). Cartilage is subjected to mechanical forces in the form of compression, shear stress,
and hydrostatic pressure (34). These mechanical signals are sensed by chondrocytes and
activate signaling pathways that promote tissue homeostasis by balancing the production of
anabolic growth factors and catabolic cytokines and inflammatory mediators, including
IGF-1, TGF-β, IL-10, IL-1, IL-6, TNF-α, prostaglandin E2, and nitric oxide (33,35).
Proinflammatory mediators are highly expressed under conditions of acute or chronic high
intensity loading (12,36,37). These catabolic loads also significantly increase the production
of reactive oxygen species, which stimulate a pro-oxidative cellular environment leading to
proteolytic enzyme activation and matrix degradation (38,39). Understanding how different
forms, magnitudes, and frequencies of mechanical stimulation activate pro-anabolic and pro-
catabolic pathways may lead to new biomechanical-based therapeutic approaches for
treating obesity-associated osteoarthritis.

Anti-inflammatory mechanisms
Exercise is generally considered anti-inflammatory and therefore may be an important
treatment for reducing osteoarthritis risk, especially in obese individuals with metabolic
inflammation (40). However, current evidence on how increased physical activity affects the
risk of developing osteoarthritis in obese individuals is inconclusive, perhaps due to the
reliance on self-report recall of physical activity. Therefore, we sought to study the
interaction of obesity and exercise on the development of osteoarthritis using an animal
model (20). After 4 weeks of feeding mice a very high-fat diet, mice were divided into
exercise and sedentary groups for an additional 4 weeks. We found that voluntary wheel
running was protective or neutral rather than damaging, indicating that increased joint
loading per se is not sufficient to explain the increased incidence of knee osteoarthritis in
diet-induced obese mice. Furthermore, exercise improved glucose tolerance and disrupted
the co-expression of systemic pro-inflammatory cytokines. Both lean and obese mice
responded to the exercise stimulus with an adaptive increase in heart mass relative to lean
tissue mass and without any change in body mass or percent body fat. Thus, like the benefits
of being ‘fit and fat’ rather than ‘thin and sedentary’ for cardiovascular disease (41), these
findings suggest that increased aerobic exercise may act independent of weight loss in
promoting joint health.

Exercise may also be protective against inflammation and matrix catabolism through direct
biomechanical stimulation of articular cartilage. In a rabbit model of antigen-induced
arthritis, cyclic passive joint motion reduced the expression of pro-inflammatory mediators
IL-1β and cyclooxygenase-2 and increased the expression of the anti-inflammatory cytokine
IL-10 (42,43). Additional work by Agarwal et al. has shown that NF-κB is a critical
mechano-sensitive transcription factor that can either be inhibited or activated depending on
the type of biomechanical stimulation. Cyclic biomechanical loading suppresses NF-κB
activation and down-regulates IL-1α and TNF-α dependent gene transcription (44,45).
Cyclic loading also reduces the expression of inflammatory-induced cartilage catabolic
mediators, matrix metallo-proteinases and aggrecanases, as well as cartilage matrix
degradation (44–48). In contrast, static and high-strain loads activate NF-κB signaling and
downstream inflammatory mediators, including inducible nitric oxide synthase,
prostaglandin E2, reactive oxygen species, and pro-inflammatory cytokines (34,43,49,50).
Damaging biomechanical loads also lead to cellular ATP depletion (51,52) and apoptosis
(53). Thus, identifying how different magnitudes, durations, and frequencies of mechanical
stimulation regulate the transition between anti-inflammatory and pro-inflammatory
mechanisms is critical for understanding disease pathogenesis and developing effective
therapeutic targets.
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Redox regulation
As with obesity, a central cellular characteristic of osteoarthritis is an increase in the
production of reactive oxygen species, cellular oxidation (35,54), and apoptosis (55,56).
Maintaining oxidative homeostasis requires a sufficient activity of endogenous antioxidant
enzymes, such as superoxide dismutase (SOD), catalase, and glutathione, which appear to be
impaired with aging (57–59). Biomechanical stress resulting from injurious or static loads
can also be a source of pro-oxidant stress in chondrocytes by inducing the production of
reactive oxygen species (60). Superoxide anion is thought to be the primary reactive oxygen
species that is biomechanically induced through the activation of NADPH oxidase or
mitochondrial stress (61,62). Superoxide anion is not stable and is readily transformed to
hydrogen peroxide (H2O2) by SOD. H2O2 inhibits protein and DNA synthesis in cartilage
tissue through the depletion of ATP (63). Supplementing chondrocytes with antioxidants
prior to stressful loading can protect against cell death and matrix degradation, suggesting
that biomechanically-induced oxidative stress could be reduced with an increase in
endogenous antioxidant activities (39,64–66). In fact, treatment with low repetitive doses of
H2O2 preconditions cartilage against biomechanical stress (67).

Cyclic biomechanical loading may precondition cartilage with a regulated production of pro-
oxidants leading to enhanced antioxidant activities and improved cellular redox control.
Low to moderate levels of pro-oxidants act as signaling mediators in pathways involving
transcriptional regulation of cytokines, proteinases, adhesion molecules, and extracellular
matrix components (68–70). One potential mechanism for biomechanically-induced
upregulation of endogenous antioxidant capacity is through stabilization of the transcription
factor NF-E2-related factor-2 (Nrf2). Nrf2 protects cells and tissues from oxidative stress by
activating a family of antioxidant proteins containing the antioxidant responsive element
enhancer sequence (71). Enhanced antioxidant capacity would improve cellular redox
regulation and may also explain how cyclic biomechanical loading downregulates the NF-
κB signaling pathway, which involves several redox-sensitive signaling elements. Thus, the
regulated production of reactive oxygen species via physiologic biomechanical stimulation
may increase endogenous anti-oxidant capacity, thereby providing an adaptive response that
may protect against joint inflammation and cellular oxidative stress (72,73).

Conclusion
Obesity and osteoarthritis: treatment challenges and opportunities

Inflammation is a central component of a progressive disease cycle involving obesity,
osteoarthritis, and physical inactivity (Fig. 1). Metabolic inflammation associated with
obesity is believed to exacerbate the condition by contributing to metabolic inflexibility and
the sustained production of pro-inflammatory mediators (74). Metabolic inflammation also
appears to increase osteoarthritis risk, although the mechanisms for this association are not
yet well understood. Several recent studies suggest that metabolic inflammation and
hyperlipidemia increase the susceptibility of chondrocytes to biomechanically-induced
cellular stress, as occurs following joint injury (11,22). Cyclic physiologic loading of the
limbs, as occurs with a physically active lifestyle and exercise, is an effective means of
reducing inflammation systemically as well as locally in adipose tissue and cartilage.
Obesity is in part attributed to a reduction in physical activity levels, and recent studies
indicate that knee osteoarthritis greatly exacerbates this problem. Approximately 10% of
obese adults with knee osteoarthritis meet the recommended levels of daily physical activity
and nearly 50% are physically inactive, with no moderate-to-vigorous activity ≥10 min
during the previous week (75). These and other data indicate that osteoarthritis is a major
barrier to being physically active (76). Physical inactivity, like obesity, is considered an
independent risk factor for inflammation (77). Thus, a decrease in regular joint loading may

Issa and Griffin Page 5

Pathobiol Aging Age Relat Dis. Author manuscript; available in PMC 2012 May 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increase the susceptibility of joint tissues to inflammatory stress. An important challenge for
the future is to integrate quantitative measures of systemic and local inflammation with
biomechanical exposure data. Does obesity cause local knee inflammation by altering load
distribution and increasing joint stress? Or does a lack of regular cyclic joint loading
increase metabolic inflammation and the susceptibility of synovial joint tissues to cellular
oxidative stress and extracellular matrix degradation? The answers to these questions are not
mutually exclusive, and they highlight the challenges ahead to understand the pathogenesis
of obesity-associated osteoarthritis.
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Fig. 1.
Progressive relationship among obesity, osteoarthritis, and physical inactivity. Obesity is an
independent risk factor for osteoarthritis. The mechanisms responsible for this link are not
completely understood but are thought to involve altered biomechanical loading and
metabolic inflammation associated with excess adipose tissue and lipids. Osteoarthritis pain
increases sedentary behavior and is associated with psychosocial and physical disability.
Physical inactivity is an independent risk factor for inflammation due to the reduced
expression of systemic and cellular anti-inflammatory mediators. Physiologic cyclic loading
of cartilage tissue has been shown to reduce the expression of pro-inflammatory mediators
and decrease cytokine-induced extracellular matrix degradation. Physical inactivity reduces
daily energy expenditure thereby promoting weight gain and continuation of the cycle.
Emerging evidence indicates that osteoarthritis likely impedes the management of chronic
metabolic diseases associated with aging, such as obesity, diabetes, and heart disease,
because of its negative impact on physical activity.
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