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Abstract

Emerging infectious diseases (EIDs) are a significant burden on global economies and public 

health1–3. Their emergence is thought to be driven largely by socio-economic, environmental and 

ecological factors1–9, but no comparative study has explicitly analysed these linkages to 

understand global temporal and spatial patterns of EIDs. Here we analyse a database of 335 EID 

‘events’ (origins of EIDs) between 1940 and 2004, and demonstrate non-random global patterns. 

EID events have risen significantly over time after controlling for reporting bias, with their peak 

incidence (in the 1980s) concomitant with the HIV pandemic. EID events are dominated by 

zoonoses (60.3% of EIDs): the majority of these (71.8%) originate in wildlife (for example, severe 

acute respiratory virus, Ebola virus), and are increasing significantly over time. We find that 

54.3% of EID events are caused by bacteria or rickettsia, reflecting a large number of drug-

resistant microbes in our database. Our results confirm that EID origins are significantly correlated 

with socio-economic, environmental and ecological factors, and provide a basis for identifying 

regions where new EIDs are most likely to originate (emerging disease ‘hotspots’). They also 

reveal a substantial risk of wildlife zoonotic and vector-borne EIDs originating at lower latitudes 

where reporting effort is low. We conclude that global resources to counter disease emergence are 

poorly allocated, with the majority of the scientific and surveillance effort focused on countries 

from where the next important EID is least likely to originate.
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In the global human population, we report the emergence of 335 infectious diseases between 

1940 and 2004. Here we define the first temporal origination of an EID (that is, the original 

case or cluster of cases representing an infectious disease emerging in human populations 

for the first time—see Methods and Supplementary Table 1) as an EID ‘event’. Our database 

includes EID events caused by newly evolved strains of pathogens (for example, multi-drug-

resistant tuberculosis and chloroquine-resistant malaria), pathogens that have recently 

entered human populations for the first time (for example, HIV-1, severe acute respiratory 

syndrome (SARS) coronavirus), and pathogens that have probably been present in humans 

historically, but which have recently increased in incidence (for example, Lyme disease). 

The emergence of these pathogens and their subsequent spread have caused an extremely 

significant impact on global health and economies1–3. Previous efforts to understand patterns 

of EID emergence have highlighted viral pathogens (especially RNA viruses) as a major 

threat, owing to their often high rates of nucleotide substitution, poor mutation error-

correction ability and therefore higher capacity to adapt to new hosts, including 

humans5,8,10,11. However, we find that the majority of pathogens involved in EID events are 

bacterial or rickettsial (54.3%). This group is typically represented by the emergence of 

drug-resistant bacterial strains (for example, vancomycin-resistant Staphylococcus aureus). 
Viral or prion pathogens constitute only 25.4% of EID events, in contrast to previous 

analyses which suggest that 37–44% of emerging pathogens are viruses or prions and 10–

30% bacteria or rickettsia5,8,11. This follows our classification of each individual drug-

resistant microbial strain as a separate pathogen in our database, and reflects more 

accurately the true significance of antimicrobial drug resistance for global health, in which 

different pathogen strains can cause separate significant outbreaks12. In broad concurrence 

with previous studies on the characteristics of emerging human pathogens5,8,11, we find the 

percentages of EID events caused by other pathogen types to be 10.7% for protozoa, 6.3% 

for fungi and 3.3% for helminths (see Supplementary Data and Supplementary Table 2 for a 

detailed comparison to previous studies).

The incidence of EID events has increased since 1940, reaching a maximum in the 1980s 

(Fig. 1). We tested whether the increase through time was largely attributable to increasing 

infectious disease reporting effort (that is, through more efficient diagnostic methods and 

more thorough surveillance2,3,13) by calculating the annual number of articles published in 

the Journal of Infectious Diseases (JID) since 1945 (see Methods). Controlling for reporting 

effort, the number of EID events still shows a highly significant relationship with time 

(generalized linear model with Poisson errors, offset by log(JID articles) (GLMP,JID), F = 
96.4, P < 0.001, d.f. = 57). This provides the first analytical support for previous suggestions 

that the threat of EIDs to global health is increasing1,2,14. To further investigate the peak in 

EID events in the 1980s, we examined the most frequently cited driver of EID emergence 

during this period (see Supplementary Table 1). Increased susceptibility to infection caused 

the highest proportion of events during 1980–90 (25.5%), and we therefore suggest that the 

spike in EID events in the 1980s is due largely to the emergence of new diseases associated 

with the HIV/AIDS pandemic2,13.

The majority (60.3%) of EID events are caused by zoonotic pathogens (defined here as those 

which have a non-human animal source), which is consistent with previous analyses of 

human EIDs5,8. Furthermore, 71.8% of these zoonotic EID events were caused by pathogens 
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with a wildlife origin—for example, the emergence of Nipah virus in Perak, Malaysia and 

SARS in Guangdong Province, China. The number of EID events caused by pathogens 

originating in wildlife has increased significantly with time, controlling for reporting effort 

(GLMP,JID F = 60.7, P < 0.001, d.f. = 57), and they constituted 52.0% of EID events in the 

most recent decade (1990–2000) (Fig. 1). This supports the suggestion that zoonotic EIDs 

represent an increasing and very significant threat to global health1,2,7,13,14. It also highlights 

the importance of understanding the factors that increase contact between wildlife and 

humans in developing predictive approaches to disease emergence4,6,9,15.

Vector-borne diseases are responsible for 22.8% of EID events in our database, and 28.8% in 

the last decade (Fig. 1). Our analysis reveals a significant rise in the number of EID events 

they have caused over time, controlling for reporting effort (GLMP,JID F = 49.8, P < 0.001, 

d.f. = 57). This rise corresponds to climate anomalies occurring during the 1990s16, adding 

support to hypotheses that climate change may drive the emergence of diseases that have 

vectors sensitive to changes in environmental conditions such as rainfall, temperature and 

severe weather events17. However, this controversial issue requires further analyses to test 

causal relationships between EID events and climate change18. We also report that EID 

events caused by drug-resistant microbes (which represent 20.9% of the EID events in our 

database) have significantly increased with time, controlling for reporting effort (GLMP,JID F 
= 5.19, P< 0.05, d.f. = 57). This is probably related to a corresponding rise in antimicrobial 

drug use, particularly in high-latitude developed countries2,7,12.

A recent analysis showed a latitudinal spatial gradient in human pathogen species richness 

increasing towards the Equator19, in common with the distributional pattern of species 

richness found in many other taxonomic groups20. Environmental parameters that promote 

pathogen transmission at lower latitudes (for example, higher temperatures and 

precipitation) are hypothesized to drive this pattern19. Our analyses suggest that there is no 

such pattern in EID events, which are concentrated in higher latitudes (Supplementary Fig. 

1). The highest concentration of EID events per million square kilometres of land was found 

between 30 and 60 degrees north and between 30 and 40 degrees south, with the main 

hotspots in the northeastern United States, western Europe, Japan and southeastern Australia 

(Fig. 2). We hypothesize that (1) socioeconomic drivers (such as human population density, 

antibiotic drug use and agricultural practices) are major determinants of the spatial 

distribution of EID events, in addition to the ecological or environmental conditions that 

may affect overall (emerging and non-emerging) human pathogen distribution19, and (2) that 

the importance of these drivers depends on the category of EID event. In particular, we 

hypothesize that EID events caused by zoonotic pathogens from wildlife are significantly 

correlated with wildlife biodiversity, and those caused by drug-resistant pathogens are more 

correlated with socio-economic conditions than those caused by zoonotic pathogens.

We tested these hypotheses by examining the relationship between the spatial pattern of the 

different categories of EID events (zoonotic pathogens originating in wildlife and non-

wildlife, drug-resistant and vector-borne pathogens, Supplementary Fig. 2), and 

socioeconomic variables (human population density and human population growth), 

environmental variables (latitude, rainfall) and an ecological variable (wildlife host species 

richness) (see Methods). We found that human population density was a common significant 
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independent predictor of EID events in all categories, controlling for spatial reporting bias 

by country (see Methods, Table 1 and Supplementary Table 3). This supports previous 

hypotheses that disease emergence is largely a product of anthropogenic and demographic 

changes, and is a hidden ‘cost’ of human economic development2,4,7,9,13. Wildlife host 

species richness is a significant predictor for the emergence of zoonotic EIDs with a wildlife 

origin, with no role for human population growth, latitude or rainfall (Table 1). The 

emergence of zoonotic EIDs from non-wildlife hosts is predicted by human population 

density, human population growth, and latitude, and not by wildlife host species richness. 

EID events caused by drug-resistant microbes are affected by human population density and 

growth, latitude and rainfall. The pattern of EID events caused by vector-borne diseases was 

not correlated with any of the environmental or ecological variables we examined, although 

we note that the climate variable used in this analysis (rainfall) does not represent climate 

change phenomena.

Our study examines the role of only a few drivers to understand disease emergence, whereas 

many other factors (for example, land use change, agriculture) have been causally linked to 

EIDs6,21. However, until more rigorous global data sets of these drivers become available, 

data on human population density and growth act as reasonable proxies for such 

anthropogenic changes. Other likely future improvements to the model would include a 

more accurate accounting for temporal and spatial ascertainment biases—for example, the 

development of global spatial data sets of the amount of funding per capita for infectious 

disease surveillance.

Our analyses provide a basis for developing a predictive model for the regions where new 

EIDs are most likely to originate (emerging disease ‘hotspots’). A visualization of the 

regression results from Table 1 for EID events from each category (Fig. 3) identifies these 

regions globally. This approach may be valuable for deciding where to allocate global 

resources to pre-empt, or combat, the first stages of disease emergence10,14,18,22. Our 

analysis shows that there is a high spatial reporting bias for EID events (see Methods, 

Supplementary Fig. 3), reflecting greater surveillance and infectious disease research effort 

in richer, developed countries of Europe, North America, Australia and some parts of Asia, 

than in developing regions. This contrasts with our risk maps (Fig. 3), which suggest that 

predicted emerging disease hotspots due to zoonotic pathogens from wildlife and vector-

borne pathogens are more concentrated in lower-latitude developing countries. We conclude 

that the global effort for EID surveillance and investigation is poorly allocated, with the 

majority of our scientific resources focused on places from where the next important 

emerging pathogen is least likely to originate. We advocate re-allocation of resources for 

‘smart surveillance’ of emerging disease hotspots in lower latitudes, such as tropical Africa, 

Latin America and Asia, including targeted surveillance of at-risk people to identify early 

case clusters of potentially new EIDs before their large-scale emergence. Zoonoses from 

wildlife represent the most significant, growing threat to global health of all EIDs (see our 

data in Fig. 1, and recent reviews1,2,5,8,9,13,14). Our findings highlight the critical need for 

health monitoring4,14,23 and identification of new, potentially zoonotic pathogens in wildlife 

populations, as a forecast measure for EIDs. Finally, our analysis suggests that efforts to 

conserve areas rich in wildlife diversity by reducing anthropogenic activity may have added 

value in reducing the likelihood of future zoonotic disease emergence.
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METHODS SUMMARY

Biological, temporal and spatial data on human EID ‘events’ were collected from the 

literature from 1940 (yellow fever virus, Nuba Mountains, Sudan) until 2004 (poliovirus 

type 2 in Uttar Pradesh, India) (n = 335, see Supplementary Data for data and sources). 

Global allocation of scientific resources for disease surveillance has been focused on rich, 

developed countries (Supplementary Fig. 3). It is thus likely that EID discovery is biased 

both temporally (by increasing research effort into human pathogens over the period of the 

database) and spatially (by the uneven levels of surveillance across countries). We account 

for these biases by quantifying reporting effort in JID and including it in our temporal and 

spatial analyses. JID is the premier international journal (highest ISI impact factor 2006: 

http://portal.isiknowledge.com/) of human infectious disease research that publishes papers 

on both emerging and non-emerging infectious diseases without a specific geographical bias. 

To investigate the drivers of the spatial pattern of EID events, we compared the location of 

EID events to five socio-economic, environmental and ecological variables matched onto a 

terrestrial one degree grid of the globe. We carried out the spatial analyses using a 

multivariable logistic regression to control for co-variability between drivers, with the 

presence/absence of EID events as the dependent variable and all drivers plus our measure of 

spatial reporting bias by country as independent variables (n = 18,307 terrestrial grid cells). 

Analyses were conducted on subsets of the EID events—those caused by zoonotic pathogens 

(defined in our analyses as pathogens that originated in non-human animals) originating in 

wildlife and non-wildlife species, and those caused by drug-resistant and vector-borne 

pathogens.

METHODS

EID event definition

In this paper, we are analysing the process of disease emergence, not just the pathogens that 

cause them. Therefore, we focus on EID ‘events’, which we define as the first temporal 

emergence of a pathogen in a human population which was related to the increase in 

distribution, increase in incidence or increase in virulence or other factor which led to that 

pathogen being classed as an emerging disease2,4,5,8,13,15. We chose the 1940 cut-offbased 

on the Institute of Medicine’s2 examples of a currently or very recently emerging disease, all 

of which had their likely temporal origins within this time period. Single case reports of a 

new pathogen were not considered to represent the emergence of a disease, and emergence 

was normally represented by reports, in more than one peer-reviewed paper, of a cluster of 

cases that were identified in humans for the first time, or (for previously known diseases) 

considered significantly above background. Only events that had sufficient corroborating 

evidence for their geographic and temporal origin were included in our analysis. We based 

our data collection on the list of EIDs in ref. 5 updated to 2004. Unlike this previous study5, 

we treated different drug-resistant strains of the same microbial species as separate 

pathogens and the cause of separate EID events (for example, the emergence of the 

chloroquine-resistant strain of the malaria pathogen (Plasmodium falciparum) in Trujillo, 

Venezuela in 1957 and the sulphadoxine-pyrimethamine-resistant strain in Sa Kaeo, 

Thailand in 1981).
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Variable definitions

The biological, temporal and spatial variable definitions of an EID event used are as follows: 

italic font indicates classes of the variables. (1) ‘Pathogen’, name of pathogen associated 

with the EID event. (2) ‘Year’ (the earliest year in which the first cluster of cases 

representing each EID event was reported to have occurred was taken where a range of years 

was given). (3) ‘Pathogen type’ (PathType): (i) bacterial; (ii) rickettsial; (iii) viral; (iv) prion; 

(v) fungal; (vi) helminth; (vii) protozoan. (4) ‘Transmission type’ (TranType): (0) non-

zoonotic (disease emerged without involvement of a non-human host); (1) zoonotic (disease 

emerged via non-human to human transmission, not including vectors). (5) ‘Zoonotic type’ 

(ZooType): (0) non-zoonotic (disease emerged via human to human transmission); (1) non-

wildlife (zoonotic EID event caused by a pathogen with no known wildlife origin); (2) 

wildlife (zoonotic EID event caused by a pathogen with a wildlife origin); (3) unspecified 

(zoonotic EID event caused by a pathogen with an unknown origin). (6) ‘Drug resistance’ 

(DrugRes): (0) event not caused by a drug-resistant microbe; and (1) event caused by a drug-

resistant microbe. (7) ‘Transmission mode’ (TranMode): (0) pathogen causing the EID event 

not normally transmitted by a vector; and (1) pathogen causing the event transmitted by a 

vector. (8) ‘Driver’. We classified the most commonly cited underlying primary causal factor 

(or ‘driver’) associated with the EID event according to the classes listed in refs 2, 13. We 

re-classified ‘Economic development and land use’ and ‘Technology and industry’ to form 

more descriptive categories: ‘Agricultural industry changes’, ‘Medical industry changes’, 

‘Food industry changes’, ‘Land use changes’ and ‘Bushmeat’. (9) ‘Location. Description of 

where the first cluster of cases representing each EID event was reported to have occurred. 

For these descriptions, accurate spatial coordinates (point location data) were found for 

51.8% of EID events (n = 220) using Global Gazetteer v.2.1 (http://www.fallingrain.com/

world/) and these were assigned to corresponding one degree terrestrial spatial grids. Some 

EID event locations were lesser known and only described sub-regionally or regionally (for 

example, SARS in “Guangdong Province, China” or enterohaemorrhagic Escherichia coli in 

“Peru”). These locations were assigned corresponding boundaries from ESRI sub-regional 

or regional data24 and we randomly selected only one grid cell from the possible grid cells to 

represent each particular event. This treated these lesser known events equivalently to those 

that were assigned a specific point location.

Driver definitions

Definitions of the spatial drivers used are as follows: (1) ‘Human population density’ for 

200025 (persons per km2); (2) ‘Human population growth’, calculated between 1990 and 

200025.We used a dummy variable to indicate grid cells that experienced rapid growth in 

human population. This variable was set to 1 for grid cells where the 1990–2000 human 

population growth exceeded 25% over the decade, and was set to 0 elsewhere; (3) ‘Latitude’ 

(absolute latitude of the central point of each grid cell, decimal degrees); (4) ‘Rainfall’26 

(average rainfall per year, mm); (5) ‘Wildlife host species richness’. We calculated 

mammalian species richness as a proxy for wildlife host species richness. Richness grids 

were generated from geographic distribution maps for 4,219 terrestrial mammalian 

species27.
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Controlling for sampling bias

For our temporal analysis, we included the number of JID articles per year since 1945 

(nTOTAL = 17,979 articles) as an offset in our generalized linear model using a Poisson error 

structure. To control for bias in our spatial analysis, we calculated the frequency of the 

country listed as the address for every author (lead author and coauthors) in each JID article 

since 1973. This generated a measure of reporting effort for each country which was 

matched to the one degree spatial grid for analysis and was included in the multiple logistic 

regression models.

Regression analysis

Each logistic regression was repeated ten times using a separate random draw of the EID 

event grids for those events where the region reported covered more than one grid cell. The 

analyses are summarized in Table 1, and given in full in Supplementary Table 3. Different 

random draws can produce a different number of grid cells with events, even though the 

number of events does not change. For graphical purposes (that is, in Figs 2 and 3, and 

Supplementary Figs 1 and 2), we display the first random draw of the EID event grids. 

Human population density and number of JID articles were log-transformed before analysis. 

Statistical analyses were carried out using SPSS (v. 12.0)28 and R (v. 2.2.1)29. As the spatial 

autocorrelation (measured using Moran’s I) in the EID event occurrence spatial grids was 

low (0.1), the data were assumed to represent independent points in these analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Number of EID events per decade
EID events (defined as the temporal origin of an EID, represented by the original case or 

cluster of cases that represents a disease emerging in the human population—see Methods) 

are plotted with respect to a, pathogen type, b, transmission type, c, drug resistance and d, 

transmission mode (see keys for details).
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Figure 2. Global richness map of the geographic origins of EID events from 1940 to 2004
The map is derived for EID events caused by all pathogen types. Circles represent one 

degree grid cells, and the area of the circle is proportional to the number of events in the cell.
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Figure 3. Global distribution of relative risk of an EID event
Maps are derived for EID events caused by a, zoonotic pathogens from wildlife, b, zoonotic 

pathogens from non-wildlife, c, drug-resistant pathogens and d, vector-borne pathogens. The 

relative risk is calculated from regression coefficients and variable values in Table 1 

(omitting the variable measuring reporting effort), categorized by standard deviations from 

the mean and mapped on a linear scale from green (lower values) to red (higher values).
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Table 1

Socio-economic, environmental and ecological correlates of EID events

Pathogen type
Number of EID event grid cells

Zoonotic: wildlife
147–156

Zoonotic: non-wildlife
49–53

b B b B

log(JID articles) 0.34–0.37*** 1.41–1.45 0.40–0.49*** 1.49–1.63

log[human pop. density (persons per km2)] 0.56–0.64*** 1.75–1.90 0.88–1.06*** 2.41–2.89

Human pop. growth (change in persons per km2,1990–2000)† 0.09–0.45 1.09–1.56 0.86–1.31** 2.37–3.71

Latitude (decimal degrees) 0.002–0.017 1.00–1.02 0.024–0.040* 1.02–1.04

Rainfall (mm) (0.14–0.06)×10−3 1.00–1.00 (0.32–0.57)×10−3# 1.00–1.00

Wildlife host richness 0.008–0.013** 1.01–1.01 −0.015 to–0.003 0.99–1.00

Constant −9.81 to–8.78*** −13.84 to–11.73***

Pathogen type
Number of EID event grid cells

Drug-resistant
59–64

Vector-borne
81–88

b B b B

log(JID articles) 0.46–0.53*** 1.62–1.71 0.17–0.21*** 1.18–1.23

log[human pop. density (persons per km2)] 1.03–1.27*** 2.87–3.92 0.41–0.49*** 1.51–1.63

Human pop. growth (change in persons per km2, 1990–2000)† 1.21–1.70*** 2.73–5.06 −0.08 to 0.31 0.93–1.37

Latitude (decimal degrees) 0.047–0.072** 1.04–1.07 −0.015 to 0.002 0.98–1.00

Rainfall (mm) (0.35–0.61)×10−3* 1.00–1.00 (0.10–0.28)×10−3s 1.00–1.00

Wildlife host richness (−0.01 to 0.16)×10−2 1.00–1.02 (0.28–0.74)×10−2 1.00–1.01

Constant −17.45 to–14.41*** −8.21 to–7.53***

Columns represent multivariable logistic regressions for EID events split according to the type of pathogen responsible. Numbers represent the 
range of values obtained from 10 random draws of the possible grid squares, where b represents the regression coefficients and B represents the 
odds ratio for the independent variables in the model. Higher odds ratios indicate that variable value increases have a higher likelihood of being 
associated with an EID event; probability value equals the median probability from 10 random draws of the possible grid squares where

***
P< 0.001,

**
P< 0.01,

*
P< 0.05,

#
P< 0.1. Results from each random draw are shown in Supplementary Table 3.

†
See Methods for details.
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