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Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease. It is
typically characterized by adult-onset degeneration of the upper and lower motor neurons, and is
usually fatal within a few years of onset. A subset of ALS patients has an inherited form of the
disease, and a few of the known mutant genes identified in familial cases have also been found in
sporadic forms of ALS. Precisely how the diverse ALS-linked gene products dictate the course of
the disease, resulting in compromised voluntary muscular ability, is not entirely known. This
review addresses the major advances that are being made in our understanding of the molecular
mechanisms giving rise to the disease, which may eventually translate into new treatment options.
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Introduction
Amyotrophic lateral sclerosis (ALS), also known as Charcot’s disease or Lou Gehrig’s
disease is the most widespread type of motor neuron disease. Striking later in life, the
disease causes degeneration of motor neurons and consequently progressive atrophy of
associated muscle tissues and supporting cells. Unlike similar motor neuron diseases that
primarily affect only a single subgroup of neurons (eg, Primary Muscular Atrophy or
Primary Lateral Sclerosis), ALS patients typically have both lower motor neuron (LMN) and
upper motor neuron (UMN) involvement. The symptoms of ALS commonly are muscle
weakness and wasting, especially in the limbs, cramps, twitching, and difficulties in
speaking. The lifetime risk of acquiring ALS by age 70 is between 1 in 400 and 1 in 1000,1

and in general, ALS individuals succumb to the disease within 2–3 years due to respiratory
failure.

A growing number of ALS-causing genes have been identified recently and are now under
investigation, providing promise for increased understanding of the etiology of the disease.
SOD1, encoding the highly conserved, cytosolic antioxidant enzyme Cu,Zn-superoxide
dismutase (Cu,ZnSOD), was the first such gene to be identified with ALS.2,3 SOD1
mutations are common in both familial ALS (FALS) and sporadic ALS (SALS), and have
been studied in the most depth. Other genes such as OPTN4 or TARDBP, FUS, and ANG
(involved in RNA metabolism)5 were later identified as causative factors in both FALS and
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SALS. Suggestive of proteolytic disfunction, UBQLN2 was recently implicated in ALS,6,7

and very recently, nucleotide repeat expansions in C9ORF72,8–10 were found to comprise
the largest fraction of ALS-causing mutations known to date. The present era is an exciting
time for ALS research with the major challenge of understanding how these distinct,
underlying triggers lead to a common aberrant cellular dyshomeostasis phenotype, resulting
in toxic protein aggregates, neuronal death, and subsequently muscle atrophy that ultimately
paralyzes the ALS patient.

Only one drug, riluzole, has been approved to treat ALS, which typically provides a meager
gain of a few months of survival.11 With advances in diagnostics and personalized medicine,
however, future ALS patients will hopefully find improved treatment regimes to follow for
their specific ALS manifestations. In this review, we will focus on the recent breakthroughs
that will likely provide new avenues to reach this outcome. These include increased
understanding of the basic biology of ALS and progress toward upcoming therapeutics in
development.

Diagnosis of ALS
Epidemiology

Worldwide, the incidence rate of ALS varies from approximately 0.3–2.5 cases per year per
100,000 persons.12 Five percent or greater of all cases run in families (FALS),13 with a
range from 2%–15% in different populations,14 although regional and/or ethnic variations in
incidence15,16 and penetrance17 complicate the estimation,18 as do the organization of the
studies themselves, being either population- or clinic-based.19 Aside from family history, the
clinical presentation of FALS and SALS can be very similar.20 The onset for FALS is
typically several years before that of SALS, although an exact age is difficult to estimate. In
one study, for example, the mean FALS age was 48, as compared to 66 for a population-
based group,21 whereas in another larger study the discrepancy, although still present, was
not as large (52 versus 56, respectively).22 Typically, in SALS cases, but not always in
FALS,21,22 males appear to predominate,23 but this may vary among ethnic backgrounds
and may be trending toward equality with time.24 The higher incidence of ALS among war
veterans and smokers,25–27 potentially accounts for the increased male risk, in addition to
factors such as male hormones.28 Interestingly, a recent study suggested that a lower-than-
average ratio of the index to ring finger is represented in ALS patients.29 This measurement
(termed the 2D:4D ratio) is thought to reflect androgen exposure in the womb30,31 and
therefore postulates a role for prenatal developmental factors in the disease. Sports (soccer
and football) and sport-specific effects (soccer, but not basketball or cycling)32 have also
been implicated in ALS disease development.25,33 Finally, higher body mass index (up to
30–35) was found to correlate to disease survival,34 possibly due to the common weight loss
phenotype from muscle wasting associated with disease progression. An improved
awareness of risk factors and trends for ALS might eventually establish better preventative
measures or treatments, especially for those with a family history of the disease.

Symptom presentation and examination
No single test for diagnosing ALS exists; most cases are established based on symptom
presentation, progression, and tests to eliminate overlapping conditions.35 ALS is typically
characterized by combined symptoms of the UMNs and LMNs. The UMNs of the central
nervous systems originate in the motor cortex or brainstem and relay motor information to
the LMNs. The LMNs are located in the brainstem and spinal cord and relay impulses from
the UMNs to the muscles at neuromuscular synapses to innervate skeletal muscles
controlling the arms and legs. UMN symptoms include weakness, speech problems,
overactive reflexes, spasticity, and inappropriate emotionality; LMN symptoms also include
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weakness, as well as decreased reflexes, cramps, twitching and muscle wasting.36,37 Disease
onset usually begins in the limbs (termed spinal onset), although about a quarter of ALS
patients have “bulbar” onset,38 the term describing the facial, mouth/jaw, and tongue
muscles controlled by the “bulb,” an early name for the lower brainstem. Associated with
poorer prognosis, bulbar onset is more common in elderly patients and women.39,40 A
hallmark of ALS is rapid progression, and over time most patients will display both spinal
and bulbar features (including emotionality, yawning, jaw jerking, tongue twitching,
wasting, drooling, and difficulties swallowing). The El Escorial Criteria are a set of
guidelines for ALS diagnosis, frequently used to gauge clinical trial participation and
clinical practice. In some cases, though, these criteria may be overly stringent when used in
diagnosis.41

Diagnosis may be seen as a process of elimination, although family history can also be
useful. The battery of tests performed, ie, blood tests, electromyography, magnetic
resonance imaging, and nerve conduction studies, can aid in ruling out other conditions.42

For example, in some patients, creatine kinase activity may be slightly elevated.43

Cerebrospinal fluid (CSF) examination, on the other hand, is typically normal but can aid in
diagnosing conditions such as multiple sclerosis. Furthermore, muscle biopsy can rule out
inclusion body myositis.44 Indeed, a central challenge in ALS diagnosis is distinguishing the
many mimics. These include injuries (eg, herniated disk, spinal compression, or heavy metal
poisoning), cervical spondylosis, metabolic problems such as enzyme/vitamin deficiency
(B-12 etc), copper deficiency or thyroid problems, stroke, myopathies or neuropathies,
inclusion body myositis, infections such as Lyme or HIV, or diseases such as myasthenia
gravis, syringomyelia, cancer, Kennedy’s disease, Tay-Sachs diseases, or multiple sclerosis,
among others.12,20,36,37,44–46 Misdiagnoses are in fact very common,20,47 about 10% of
patients with other disorders are diagnosed erroneously with ALS.48,49 These findings may
result in incorrect (potentially harmful) treatments, and delays in obtaining the necessary
therapies and support and in seizing clinical trial opportunities.

Attempts to identify ALS-specific biomarkers may prove useful. For example, a study
examining blood plasma found statistically significant distinctions in a panel of several
hundred metabolites among ALS patients, allowing the authors to cleanly separate control
patients from diseased patients (on taking or not taking riluzole), and even to sub-classify
LMN-affected patients.50 Such efforts may eventually aid the clinician in more specifically
diagnosing motor neuron disease.

Pathophysiology
Protein inclusions and cellular dyshomeostasis

Typical hallmarks of ALS revealed from post-mortem examinations of patient brain and
spinal cord sections are neuronal atrophy and the presence of cellular inclusions. Inclusions
typical of affected cells include the small, cystatin-C and transferrin-immunoreactive Bunina
bodies.51 Also very common are ubiquitinated cellular inclusions, most often skein-like or
of the round Lewy-body hyaline variety.52 The presence of ubiquitin-reactive inclusions is
consistent with a very recent study demonstrating that defects in the ubiquitin proteasome
system may be a more generalized feature of ALS.6 Degenerative cellular abnormalities can
afflict the motor cortex, the brainstem, the anterior horn of the spinal cord, the lateral and/or
anterior corticospinal tracts. Distinct cellular inclusions, suggested by differential protein
composition, are observed in ALS arising from different genetic backgrounds (discussed
below).

Pratt et al. Page 3

Degener Neurol Neuromuscul Dis. Author manuscript; available in PMC 2012 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Another common facet of ALS pathophysiology is irregular glutamate metabolism, targeted
by riluzole, the only drug approved to treat ALS.53 Elevated synaptic glutamate can lead to
excessive stimulation of glutamate receptors (eg, AMPA and NMDA) on the postsynaptic
neuron, resulting in nerve damage and death through excitotoxicity. Interestingly, the above-
described features may also occur in the supporting glia, including astrocytes in which
inclusions and downregulation of GLT-1 (also known as EAAT2) glutamate transporter
were observed.54 Other relevant cellular abnormalities in ALS include an increase of p53-
mediated apoptosis, impaired axonal transport, and cytoskeletal and mitochondrial
dysfunction.55–58 Additionally, as disease symptoms appear at mid-to-late life, cumulative
damage occurring through increased levels of oxidative stress may be a significant
contributor to the disease.59 A recent study analyzing the CSF of ALS patients suggested
distinct metabolic signatures discernible between SALS patients and those with SOD1 and
non-SOD1 FALS. The metabolomes of SOD1 FALS patients were observed to be more
homogeneous than those of non-SOD1 FALS patients, which were more homogeneous than
those of SALS patients.60 These observations suggest that genetic contributions to the
disease may influence ALS physiology.

FALS and SALS genes
Despite the identification of some ALS-causing genetic defects in individual families, ALS
is not a single-pathway, single-gene condition. Therefore in recent years, high throughput,
genome wide association studies have become a favored tactic for filling in the significant
remaining space of unknown FALS-causing genes.61 Nonetheless, consistency in
reproducing candidate genes had been a problem62 until the recent, notable exception of the
C9ORF72 gene in the 9p21 locus,8,9,63 a major ALS breakthrough. The disease sub-types
associated with FALS mutations have been assigned designations of ALS1-ALS15 (Table
1). However, several known FALS mutations have now been documented in SALS cases,
suggesting a broader role for these gene products in ALS pathogenesis. Although a variety
of genes have been implicated in ALS (Table 1), we will focus on this subset of genes, in
which genetic lesions can cause and contribute to both FALS and SALS.

SOD1—The SOD1 gene encodes the cytosolic enzyme Cu,ZnSOD, which is conserved
from bacteria to humans. Cu,ZnSOD catalyzes the dismutation of the superoxide (O2

·−)
radical anion, a toxic by product of cellular respiration, to produce molecular oxygen and
hydrogen peroxide,64 with the toxicity of the latter being removed by conversion through a
peroxidase or catalase. Over 150 SOD1 mutations (Figure 1) account for a significant
fraction of FALS, and are typically present in about 20% of such cases (ranging from 2.5%–
23.5%), as well as in 0.44% to 7% of SALS cases.19,65 The majority of inherited SOD1
mutations are dominant, and individuals with two copies of a mutation may have much
earlier onset.66,67 The common D90A SOD1 mutation is an exception that can be inherited
in either a dominant or recessive fashion, as well as appearing sporadically.68,69 SOD1
mutations do not appear to cause disease by a loss of function. For example, transgenic
expression of SOD1 mutants in mice is pathogenic without altering enzyme activity.70 This
is also evidenced by the fact that Cu,ZnSOD deficient mice do not develop motor neuron
disease71 and that mutations are not restricted to the active site of the enzyme.2 Instead,
mutant Cu,ZnSODs form toxic, misfolded species within neuronal and glial Lewy-body like
inclusions72,73 that usually appear before symptom presentation.73,74 Within these
aggregates, mutant Cu,ZnSOD can be associated with heat shock protein Hsc7075–77 or
14-3-3 proteins, suggesting in the latter case that sequestration of anti-apoptotic proteins
could contribute to cell death.78 In a recent report, strong mutant Cu,ZnSOD
immunoreactivity was observed in small, granular non-ubiquitin reactive inclusions that
localize to the cytosol and/or lysosomes of FALS (SOD1 and non-SOD1) and non-SOD1
SALS patients.79 Also, Cu,ZnSOD-positive nuclear inclusions have been observed in spinal-
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cord derived glia from FALS and SALS patients.80 Therefore, Cu,ZnSOD aggregates, found
in tissues from distinct ALS patients, may be a component of diverse cellular inclusions in
affected motor neurons and their supporting cells.

Detailed analyses of Cu,ZnSOD structures and enzymatic mechanisms81,82 including
comparisons to bacterial Cu,ZnSOD83 and the human mitochondrial MnSOD84–86 provided
an informed foundation to evaluate the diverse mutations.2,87 To explain the complex effects
of Cu,ZnSOD mutations in ALS pathogenesis, we and others have proposed a framework
destabilization hypothesis.87–89 In this hypothesis each of the diverse set of mutations can
cause local unfolding events that contribute to a globally defective, self-aggregating protein,
which can deleteriously co-aggregate with other cellular proteins.88 Such framework-
destabilizing mutations are associated with other neurodegenerative and cancer prone
diseases as typified by mutants of the XPD helicase.90 Several studies have attempted to
characterize the aggregation propensity of mutant forms of Cu,ZnSOD in vitro and in
cultured cells, but a direct correlation between mutant protein stability and clinical
phenotype has been elusive.91–94 This lack of correlation could be due to a multitude of
contributing factors, ranging from important roles for metals in architectural stability,95 to
aberrant oxidative modifications of the free cysteines,96,97 to anomalous interactions of
mutant Cu,ZnSOD with other cellular components. These components likely include
proteins involved in stress responses (eg, Derlin-1, Rac-1)98,99 folding/maturation (eg,
Hsc70 and the Cu,ZnSOD copper chaperone)77,100 and vesicular transport associated
proteins (eg, chromogranin, dynein heavy chain).101–103

TARDBP—The TARDBP gene encodes TAR DNA binding protein 43 (TDP-43), a
modular DNA/RNA binding protein (Figure 1), localized to the cytosol and the nucleus,
which is involved in splicing and transcriptional regulation.104 In vivo, TDP-43 depletion in
mice resulted in mRNA reduction and splicing errors in many mRNA transcripts and a few
non-coding RNAs, particularly long intron-containing transcripts. This suggests a broad role
for TDP-43 in alternative splicing and prevention of nonsense-mediated decay of transcripts
expressed in neurons.105 The nearly 40 mutations identified in the TARDBP gene encoding
TDP-43 (Figure 1) may contribute to up to 6.5% of dominantly-inherited FALS cases,106,107

in addition to 0%–5% of sporadic cases.107–110 A reduced nuclear pool of TDP-43 is
associated with some mutations, and cytoplasmic, ubiquitin-reactive hyperphosphorylated
TDP-43 inclusions are observed in tissues from frontotemporal dementia (FTD)
patients111,112 and in neuronal and glial tissues samples from SALS and Guam ALS
patients.113 The inclusions commonly co-localize with ubiquitin and the protein p62.113

However, TDP-43 inclusions are not present in SOD1 FALS individuals114 (with the
exception of one case113) or FUS mutant patients.115

FUS—FUS encodes fused in sarcoma (FUS, also known as Translated in Liposarcoma,
TLS), a modular nucleic acid-associated protein with many similarities toTDP-43, including
conservation of protein domains (Figure1), a role in RNA processing115 and localization in
both the cytosol and nucleus in many cells. About 30 known FUS mutations account for
approximately 3%–5% of FALS and ~1% of SALS cases116,117 and all but the one known
recessive variant, H517Q118 cause a dominant phenotype. As with some TARDBP
mutations, certain FUS mutations located near the nuclear localization sequence may shift
the nuclear/cytoplasmic balance towards cytosolic. This imbalance occurs by impairing the
transportin-mediated import of FUS into the nucleus.119 FUS-reactive inclusions have been
found in tissues from FUS mutant FALS patients but not in SOD1 mutant patients.115,117

Furthermore, although earlier studies failed to see FUS-immunoreactivity in SALS cases 115

a more recent study did report FUS staining in inclusions from SALS patients.117 FUS
inclusions are commonly seen in FTD patients,115,118,120 in addition to ALS patients, and
these FUS-proteinopathy phenotypes might be distinguished through co-localization of other
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FUS family member proteins in FTD, but not in ALS.121 Furthermore, FUS and TDP-43
inclusion phenotypes are thought to be mutually exclusive in FTD,122,123 but this may not
be the case in ALS; although TDP-43 reactivity was not observed in FUS ALS mutant
tissues,115 FUS-reactivity was later reported in TDP-43 ALS mutant tissues.117

OPTN—A recent Italian study indicated that approximately 3.5% of SALS patients, in
addition to 1.2% of FALS patients, had mutations in the OPTN gene,4 which encodes
Optineurin. About a dozen mutations in OPTN can lead to ALS, with gain of function
mutations dominant and loss of function mutations recessive.124,125 Optineurin is a
multifunctional cytosolic and Golgi-associated coiled-coil domain-containing, ubiquitin-
binding phosphoprotein (Figure 1). It is involved in vesicular trafficking and Golgi
maintenance, signaling in the tumor-necrosis factor α/NF-κB pathway,126 mGluR
signaling127,128 and autophagy.129 Optineurin has been shown to form homo-complexes and
heteromultimerize with Rab8, myosin VI, and transferrin receptor proteins. In both FALS-
and SALS-affected cells, Optineurin can co-localize in inclusion bodies with FUS130 and
TDP-43,124 although the frequency of such inclusions was shown to be low in another
study.131 Furthermore, Optineurin localization has been observed in basophilic inclusions
from SOD1 FALS patient tissues,124 although conflictingly this co-localization was not
observed in another study in patient-derived or mouse model tissues.132

ANG—Angiogenin (Ang, encoded by the ANG gene), a small, hypoxia- and ischemia-
inducible133 ribonuclease A (Figure 1) involved in angiogenesis, is mutated in a smaller
number of FALS and SALS cases.134 Expressed in many tissues, including motor
neurons,135 where it promotes cell survival,136 Ang is required for the VEGF-mediated
stimulation of angiogenesis.137 Ang is secreted and taken up by effector cells via
endocytosis, then translocated to the nucleus, to stimulate transcription of rRNA, among
other roles.135 Due to loss of ribonuclease and/or nuclear translocation activity,135 ANG
mutations appear to attenuate angiogenesis although the protein stability is not
compromised.138 Eighteen ANG mutations, therefore, can cause a loss-of-function
phenotype, with most ANG ALS patients presenting with bulbar onset (discussed above).134

UBQLN2—UBQLN2, a gene on the X-chromosome, was recently found to be causative for
X-linked dominant FALS.6,139 In affected families, incomplete penetrance was noted in
females, presumably due to X-inactivation. The encoded ubiquilin-2 protein (Figure 1)
normally performs effector functions in the ubiquitin proteasome pathway by tethering
degradation-targeted proteins (through its C-terminal ubiquitin-associated domain) to the
proteasome (through association with its N-terminal ubiquitin-like domain). The intervening
regions within the protein are less well characterized, and include a PXX (proline-rich)
domain, where five distinct mutations were found. In tissues derived from UBQLN2-mutant
patients, ubiquitin-positive skein-like inclusions were also reactive for ubiquilin 2. This
phenotype was particularly notable in the spinal cord and hippocampus, correlating with the
appearance of dementia in 20% of the X-linked ALS patients. Furthermore, these inclusions
were also positive for TDP-43, FUS and OPTN, but not Cu,ZnSOD. Notably, ubiquilin-2
inclusion staining was present in all samples from a wide panel of genetically-distinct ALS
patient tissues (sporadic, SOD1-mutant, TARDBP mutant, and non-FUS/non-TARDBP/
non-SOD1 FALS, and ALS with dementia) but not in non-ALS controls.6 Expression of
mutant ubiquilin-2 protein significantly slowed down proteosomal degradation of a reporter
substrate in Neuro-2a cells,6 suggesting a mechanistic contribution for these mutants. Unlike
the other mutations described, those in the UBQLN2 gene have not yet been implicated in
SALS. However, these findings suggest ubiquilin-2 could be generally relevant to ALS
pathogenesis.

Pratt et al. Page 6

Degener Neurol Neuromuscul Dis. Author manuscript; available in PMC 2012 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



C9ORF72—Very recently, two independent research groups flagged C9ORF72 as the gene
at locus 9p21 that was linked to dominant cases of ALS/FTD8,9 in previous genome-wide
association studies. Strikingly, a substantial hexanucleotide repeat (GGGGCC) within an
intron of this gene was identified in 24%–46% of FALS cases and 4%–21% of SALS cases,
making this the most commonly mutated ALS gene. The expansion appeared to result in
nuclear foci and directed preferential splicing of an alternatively spliced transcript.8

However, precisely how the aberrant RNA metabolism of C9ORF72 causes ALS is not yet
known, and the protein, aside from nuclear localization,9 has no ascribed function.
Interestingly, post-mortem examination of several patients with the C9ORF72
hexanucleotide repeat, who exhibited ALS and FTD-like symptoms, also revealed neuronal
TDP-43 inclusions.8

Commonalities and crosstalk
One puzzle for understanding ALS is that the known ALS-causing gene products have
diverse physiological functions. However, some common themes in pathogenesis are
beginning to emerge. For example, RNA processing defects are visible in mutants of
TARDBP, FUS, and ANG (as well as a FALS gene called SETX).5 Nucleotide repeat
expansions have also now been identified in C9ORF72 (and an ALS-susceptibility protein
called Ataxin-2).140 Proteinacious cellular inclusions are also a common denominator in
ALS patient-derived tissues; these can involve ubiquilin-2, as well as SOD, FUS, TDP-43,
and/or optineurin. Interestingly however, different disease subtypes appear to reveal
aggregates with distinct protein composition. Due to their roles in both ALS and FTD,
TDP-43, FUS, OPTN, and ubiquilin-2 have been proposed to function in the context of a
unified pathway.141 Thus, interactions among these components should be a focus for future
research. Along these lines, a recent study in zebrafish found that the expression of human
FUS could rescue the motor neuron phenotype associated with knockdown of TARDBP
expression, whereas, conversely, TARDBP could not rescue FUS knockdown, suggesting
that TARDBP is genetically upstream of FUS.142 These results are consistent with a study
showing that TDP-43 regulates the mRNA processing of FUS transcripts as well as its
own.105

Genetic overlap between ALS and other diseases
Gene products whose mutations cause ALS have been implicated in other diseases. For
example, FUS, TDP-43, ubiquilin-2, and/or optineurin-positive inclusions are found in many
FTD patients,131,143 and C9ORF72 is implicated also in ALS/FTD.8,9 TDP-43-
immunoreactivity is sometimes seen in hippocampal sclerosis, Pick’s disease, and
Alzheimer’s disease (AD), and ubiquitin staining can occur in the latter disease.109

Likewise, optineurin has recently been implicated in AD due to its inclusion body staining in
neurofibrillary tangles.144 Furthermore, optineurin interacts with the protein huntingtin,
suggesting some role in Huntington’s disease,145 and mutations in optineurin are associated
with glaucoma146 and Paget’s disease of the bone.147 The ubiquilin-1 paralog, with a
domain structure similar to ubiquilin-2, is associated with AD.6 The 14-3-3 protein isoforms
co-localized in Cu,ZnSOD inclusions have also been found in a Parkinson’s disease model,
suggesting some commonalities in inclusion formation.148 Angiogenin has been implicated
in a gamut of diseases, from cancers to diabetes, asthma, and heart disease.149 Finally,
nucleotide repeats (as in C9ORF72) are known to cause a variety of neurodegerative
diseases such as Huntington’s disease, Fragile X-syndrome, Kennedy’s disease and
others.150 These observations underscore the need for meaningful synergistic collaborations
among researchers studying these different complex diseases that often involve protein
aggregation, allowing new insights to be compounded.
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Treatment of ALS
The primary goal of ALS treatment is the inhibition of disease progression, although an
important secondary consideration is the treatment of damage already done. Palliative care
(eg, home care and hospice) remains a significant focus of the treatment program for the
ALS patient. Non-invasive ventilation, for example, can improve the quality of life and
extend survival in non-bulbar patients.151 A support team, and hospice care toward the end
of life can help the ALS patient to prepare nutritive food that is easy to swallow, provide
medications for muscle spasticity, weariness, sleep and depression, and adjust ventilators,
enabling the patient to adjust to lifestyle limitations.

Although domestic alterations can provide significant relief to current patients, biochemical
and pharmacological advances will drive forward better therapeutics. A panel of ALS
biomarkers from non-invasive analyses would be a major gain not only in diagnosis and
monitoring progression, but also in identifying affected biological pathways in ALS to target
therapeutically.152 Multiple studies have sought to identify protein biomarkers for ALS,
including increased blood or CSF levels of TDP-43, or the cysteine protease inhibitor
cystatin C, or a skewed CSF ratio of phospho-neurofilament heavy chain to complement
C3.153–156 Furthermore, the combined efforts of GC/MS (gas chromatography coupled to
mass spectrometry), LC/MS (liquid chromatography coupled to mass spectrometry), and
NMR (nuclear magnetic resonance) could potentially span the whole metabolome in
identifying biomarker signatures.50,60 Better disease markers could reduce the long duration,
averaging 14 months, between initial symptom presentation and diagnosis,47 helping to
improve the disease trajectory.157 Such endeavors would also provide a platform for
personalized medicine for ALS patients. At present, at least one clinical trial
(NCT00677768) is being organized to analyze the blood and CSF of ALS patients for
biological markers.

Pharmacological interventions
The only approved medicine to treat the general symptoms of ALS is the anti-excitotoxicity
drug riluzole.158 The drug is thought to preserve motor neuron function by decreasing toxic
glutamate levels at glutamatergic nerve terminals by (a) inactivating sodium channels, (b)
inhibiting glutamate release, and (c) blocking postsynaptic actions of NMDA receptors.159

The safety and efficacy profiles for riluzole are better than those for other excitotoxicity
drugs, but riluzole only increases the chance of an additional year of survival by about 9%,
typically prolonging survival for about 2–3 months.11 The drug serves to slightly preserve
limb and bulbar function but actual muscle strength is typically not improved.11 Recently
approved for treating purely the pseudobulbar affect symptoms less commonly observed in
ALS patients is dual-acting dextromethorphan/quinine (sold as Neudexta®; Avanir
Pharmaceuticals, Aliso Viejo, CA).160 Like riluzole, dextromethorphan also inhibits
glutamatergic signaling, and quinine helps to increase its bioavailability, providing modest
benefit to a subset of patients.160

Promising new therapeutic developments, several of which are in late-phase clinical trials,
may provide strides forward in treating ALS. One such drug in phase III clinical trials
(NCT00349622) is the antibiotic ceftriaxone, used to treat pneumonia and bacterial
meningitis. In ALS patients, ceftriaxone appears to upregulate the GLT-1 (EAAT2)
glutamate transporter, potentially correcting cellular glutamate levels.161 Another potential
treatment option is high-dose methylcobalamin (vitamine B-12), currently in phase II/III
studies (NCT00444613 and NCT00445172) to determine safety and efficacy for long-term
use in ALS.162 This compound was recently shown to reduce homocysteine (another
excitatory amino acid)-mediated toxicity in NSC-34 cells.163 Finally, an antioxidant
targeting the mitochondria is currently in phase III trials (NCT01281189), sponsored by
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Biogen Idec (Westin, MA) and Knopp Biosciences LLC (Pittsburgh, PA). This drug,
dexpramipexole,164 is the R(+)-isomer of the amino-benzothiazole drug pramipexole
(currently approved to treat Parkinson’s disease and restless legs syndrome).
Dexpramipexole was well tolerated in phase II clinical trials, revealing positive trends in
slowing function decline and improving survivability.

SOD1-targeting therapies
The establishment of mutant SOD1 transgenic mice in the late 1990s was a major
breakthrough in the field, providing the first disease models for ALS.70 Now, about a dozen
such SOD1 ALS mouse models exist.165 Other distinctive ALS models have been
developed,166,167 including the newer TARDBP mouse models that similarly display ALS-
like symptoms such as gait abnormalities, weight loss, and spasticity.104 However, the use
of SOD1 mouse models has pre- dominated much of the therapeutic progress, in part
because SOD1 represents a major disease target. For example, because the SOD1 gene is
predominately dispensible,71 reducing its expression and perturbing aggregation are favored
strategies for treatment of ALS. These transgenic animals are appropriate models in many
cases, and guidelines have been suggested for standardizing studies in SOD1 mice.168

Both small molecules and siRNAs are being explored to downregulate and diminish SOD
levels. The hydroxylamine drug arimoclomol (Orphazyme) is currently in stage II/III
clinical trials (NCT00706147). This compound induces a heat shock response that resulted
in a decrease in ubiquitin-positive aggregates in G93A SOD1 mouse models,169 and is now
being tested in SOD1 FALS patients. A free radical scavenger, edaravone (Mitsubishi
Tanabe Pharma Corporation, Osaka, Japan) was recently found to ameliorate ALS
symptoms and diminish SOD aggregate deposition in interior horn cells. Phase III clinical
trials were recently completed (NCT00330681; NCT00424463; NCT00415519), with results
pending publication, so the future success of the drug remains to be seen. Studies aimed at
silencing SOD1 using siRNA-based strategies in mice have met with some success,170,171

although the inability of siRNA to pass the blood–brain barrier makes delivery a problem.
Accordingly, Isis Pharmaceuticals Inc (Carlsbad, CA) has developed a CSF-infused delivery
method for Isis-SOD1RX antisense oligos that recently were successful in animal
models,172 and are now being examined in phase I clinical trials (NCT01041222). Finally,
an approach aimed at prevention, which is in its infancy, is immunization against mutant
Cu,ZnSOD through vaccination with mutant Cu,ZnSOD or metal-free Cu,ZnSOD
(exhibiting some similar pathogenic properties).173 As stable Cu,ZnSOD polymers expected
to break tolerance exist,174 and as antibodies favor reactions with more flexible
regions,175,176 such antibody experiments may be promising.

A recent study used patient-derived progenitor cells to derive cultured astrocyte cell lines,
and these were found to be toxic to motor neurons, via a mechanism involving secretion of
uncharacterized factors. Interestingly, both FALS (mutant SOD1) and SALS-derived cells,
but not non-ALS derived astrocyte cells, had common pathway changes (namely NF-κB,
MAPK, JNK, and AKT), and knockdown of SOD1 rescued the motor neuron killing
phenotype in four of six cell lines examined.177 This study interestingly reaffirms the use of
SOD1-targeted therapeutics in the context of SALS (although the effects on other FALS
genetic backgrounds were not tested) and also suggests that such cell cultures could prove
useful for therapeutic screening in the absence of an all-encompassing ALS disease model.
Indeed, a few years ago, astrocyte replenishment by injection of glial precursor cells in
SOD1 model rats was found to prolong life and improve motor performance.178 Similarly, a
phase I clinical trial (NCT01348451) aimed at spinal implantation of spinal cord-derived
stem cells is being sponsored by Neuralstem Inc (Rockville, MD). This treatment previously
extended the life of SOD1 transgenic rats by 10 days,179 and provides the first regenerative
medicine strategy for ALS.
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Future directions
Where do we go from here? ALS was first described about 150 years ago180 and recent
biotechnological advances have allowed researchers to begin pinpointing the precise
genetics and pathological mechanisms behind the disease. Yet, many questions still remain:
How do the distinct pathways involved in the disease overlap and converge to cause similar
phenotypes? Can diagnostics improve to the point of early screening and detection?
Arguably most importantly, how can we best treat individual patients? Fortunately, the
complex nature of the disease also allows for many potential targets and means for
therapeutic intervention.

The discovery of the role of SOD1 in ALS was a triggering event that significantly advanced
our current understanding of the disease aided by the basic science of SOD structure and
biochemistry.87,181 Although we now know that the mutant proteins aggregate, we are only
starting to appreciate the key architectural features of the proteins involved in triggering this
aggregation and its consequences. More recently, we have realized the significant
contributions of TDP-43 and FUS in ALS and other degenerative diseases.182 Indeed, RNA
metabolism appears to be a common thread. The recent identification of ubiquilin-2 as a co-
immunolocalized component of ALS inclusions in a wide variety of ALS cell types has also
been a major breakthrough in the field.6 Thus, follow-up work is now needed in order to
determine the mechanism of this ubiquilin-mediated pathology, as well as its potential
contributions to other ALS-linked pathways. Finally, determining the pathogenic mechanism
of action of newly identified C9ORF72 repeats may prove extremely useful in
understanding a significant majority of ALS cases, both sporadic and inherited. Newer
disease models will undoubtedly play a significant role in facilitating these studies.

A critical element of progress in the ALS field will be the dissemination of genetic,
epidemiologic, and therapeutic information. Fortunately, several helpful online databases
and resource are now available, including the ALS online genetics database,183 the Genetic
Association studies website,184 the ALS forum,185 and the Northeast ALS Consortium
(NEALS).186 Outreach and social networking is provided by sites such as the Twitter-based
ALS Untangled,187 which hosts a forum for patient conversations. These assets will increase
awareness and discourse among ALS patients and drive future research collaborations.

Conclusions
Currently, ALS is an unrelenting and incurable neuromuscular disease that paralyzes its
victims, eventually leaving them incapable of breathing. Gradually, thanks in part due to
strides in molecular genetics, the mechanisms leading to aberrant cellular physiology and
toxic inclusions are being sewn together. At present, therapeutic strategies aim to slow down
the pace of the disease. Ultimately, however, future efforts will work to block the initial
events leading to neuronal death. This will prevent damage to the patient’s motor ability
before it happens, stemming from earlier diagnosis and leading to better prognosis.
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Figure I.
Known mutations in FALS and SALS-associated proteins.
Notes: Known mutations are mapped onto their corresponding proteins. Single mutations
can include point mutations, premature stop codons, deletions, or insertions. For simplicity,
one of the SOD dimers contains the mapped mutations. Structural and Domain Organization
is indicated. Solved structures of domains or entire proteins are shown as ribbon diagrams:
Cu,ZnSOD (IPU0); TDP-43 RRM1 (ICQG); TDP-43 RRM2 (IWF0); FUS RRM (ILA6);
Angiogenin (IBII). Clothespins indicate that the tertiary structure and inter-domain
associations are not entirely known, so protein is stretched out to better show mutations
sites. Schematic depictions of conserved domains without solved structures are shown in
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grey. Where applicable, known or putative oligomeric state and molecular weights are
indicated.
Abbreviations: FALS, familial amyotrophic lateral sclerosis; SALS, sporadic amyotrophic
lateral sclerosis; NLS, nuclear localization sequence; NES, nuclear export sequence; Sec,
cleaved signal sequence; RRM, RNA regnition motif; X rich, X (amino acid residue) rich
motifs; UBD, ubiquitin binding domain; ZnF, zinc finger; UBL, ubiquitin like domain; STII,
heat-shock-chaperonin-binding motifs; UBA, ubiquitin associated domain.
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