
Functional magnetic resonance imaging movers and shakers:
does subject-movement cause sampling bias?

GR Wylie1,2, H Genova1,2, J DeLuca1,2,3, N Chiaravalloti1,2, and JF Sumowski1,2

1Neuropsychology and Neuroscience Laboratory, Kessler Foundation Research Center, 300
Executive Drive, Suite 10; West Orange, New Jersey, 07052
2University of Medicine and Dentistry of New Jersey
3Department of Neurology and Neurosciences, New Jersey Medical School, Newark, NJ 07101

Abstract
Head movement during functional magnetic resonance imaging (fMRI) degrades data quality. The
effects of small movements can be ameliorated during data post-processing, but data associated
with severe movement is frequently discarded. In discarding these data, it is often assumed that
head-movement is a source of random error, and that data can be discarded from subjects with
severe movement without biasing the sample. We tested this assumption by examining whether
head movement was related to task difficulty and cognitive status among persons with Multiple
Sclerosis (MS). Thirty-four persons with MS were scanned while performing a working memory
task with three levels of difficulty (the N-back task). Maximum movement (angle, shift) was
estimated for each difficulty level. Cognitive status was assessed by combining performance on a
working memory and processing speed task. An interaction was found between task difficulty and
cognitive status (high vs. low cognitive ability): there was a linear increase in movement as task
difficulty increased that was larger among subjects with lower cognitive ability. Analyses of the
signal-to-noise ratio (SNR) confirmed that increases in movement degraded data quality. Similar,
though far smaller, effects were found in a cohort of healthy control (HC) subjects. Therefore,
discarding data with severe movement artifact may bias MS samples such that only those with
less-severe cognitive impairment are included in the analyses. However, even if such data are not
discarded outright, subjects who move more (MS and HC) will contribute less to the group-level
results because of degraded SNR.

Introduction
In the analysis of functional magnetic resonance imaging (fMRI) data, perhaps the single
largest factor that degrades data quality is subject motion. This is because when a subject
moves his/her head during a scan, one of the fundamental assumptions underlying fMRI
data analysis is violated– the assumption that a given voxel corresponds to a given volume
of brain tissue across time [see 1 for a review]. This assumption is critical because in fMRI
data analysis, we wish to ascribe variance in the signal from each voxel to our experimental
manipulation(s). However, if a given voxel corresponds to one location in the brain at time 1
and a different location at time 2, then there are at least two sources of variance in the data:
the experimental manipulation and subject motion. In order to ascribe changes in the blood
oxygen level dependent (BOLD) signal to the experimental manipulation(s), it is therefore
necessary to ensure that subject motion accounts for little to none of the variance in the data.
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If this is not done, if data is included in the analyses that has been minimally corrected for
motion, the results become unreliable [e.g., 2, 3]. This is not only because there are two
sources of variance, but also because the changes in the BOLD signal associated with
movement can be far larger than changes associated with the experimental manipulation.
Thus, movement-related changes can ‘swamp’ changes associated with the experimental
paradigm.

In the functional neuroimaging literature, three ways have been proposed and used to
minimize the contribution of head motion to variance in the data. One method is to use
restraints that make movement difficult [4, 5]. Nearly all fMRI studies in the literature use
restraints such as foam pads that are inserted around the subject’s head to help the subject
remain still. While these are useful, they do not completely eliminate movement; their value
is largely in allowing subjects to feel when they are moving, thereby allowing compliant
subjects to remain still. A more invasive method is to use a bite-bar. This is a device that is
anchored to the head-coil, and that subjects hold in their jaws. While it is very effective in
limiting head motion, it is also perceived by some to be aversive and uncomfortable,
limiting its utility; this is particularly so for clinical samples.

Another method that is being developed is to measure head motion in real time and to either
adjust scanning to account for this motion [6–10] or to use this information retrospectively
to correct for head motion [11]. Finally, motion can be corrected retrospectively, during
image processing [1, 12–15]. Several algorithms have been developed for this sort of
‘motion correction’, but the central approach is largely the same: a canonical image is
chosen, and every other image in the time-series is compared to that canonical image. The
extent to which each image differs is quantified in at least six parameters (three angular
deviations: roll, pitch and yaw; three translational deviations: shifts in the right/left,
posterior/anterior, and superior/inferior dimensions), and corrected by applying a rigid-body
transformation. While this approach has proven very useful for minimizing the effects of
small amounts of motion on the BOLD signal, it is less reliable when there are large
deviations in the data [11]. While this problem is difficult in the X and Y directions (i.e.,
movement that is parallel to the slice acquisition plane), it is nearly impossible in the Z
direction (i.e., across slices) because of spin history effects (i.e., it is impossible to know
what the data would have been, if it had been acquired at a different time). It is therefore
common practice to exclude (discard) data in which movement exceeds approximately 1–2
mm, which translates to less than 1° in angular deviation, and less than one voxel (usually
~3×3×3 mm or ~27 mm3) in translational deviation.

While it is unquestionably good practice to exclude data with excessive motion artifact,
there are several potential disadvantages. For example, if there is a systematic relationship
between excessive motion and task difficulty (i.e., if subjects tend to move more during
more difficult tasks), then the removal of blocks with excessive motion will result in the
removal of data from the most difficult conditions, resulting in sampling bias. Moreover, if
subjects who tend to move more are systematically different from those who do not (e.g., if
they have a lower IQ), then the removal of subjects with excessive motion will result in the
removal of subjects with this difference (lower IQ), again introducing sampling bias.
Generally, when data is excluded, it is assumed that head movement is random, and not
affected by task difficulty or by subjects’ cognitive abilities.

Although head motion is common in typical healthy individuals (a recent study on over
1,000 healthy subjects indicated a range of motion from .027mm3 to .051mm3 [3], the
concern about inadvertently introducing sampling bias when subjects with excessive motion
are excluded is stronger when clinical populations are studied. Indeed, motion has been
shown to be a problem in fMRI studies of neuropsychiatric populations including multiple

Wylie et al. Page 2

Hum Brain Mapp. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sclerosis [16], traumatic brain injury [for review, see 17], stroke [18], epilepsy [19] and
schizophrenia [20]. In addition to clinical samples, studies involving pediatric samples are
affected by greater head movement as children are less able to remain still compared to
adults [21, 22]. Despite this, it has not been universally found that head motion is greater in
clinical populations. For example, Yoo et al [23] reported that there was very little head
motion in a group of individuals with schizophrenia, and that their head motion was no
greater than that seen in a matched group of healthy controls. While this result is reassuring,
it is not clear that it is representative of other clinical populations (e.g., multiple sclerosis),
nor indeed whether it is generalizable beyond the group studied inasmuch as the sample was
very small (n = 11).

Here, we investigated this issue in a cohort of subjects with multiple sclerosis (MS), using a
working memory task (the n-back task), with three levels of difficulty. We hypothesized that
movement would be related to task difficulty in MS, based on the idea that the requirement
to remain still in the fMRI scanner is similar to adding a second task to the experimental
paradigm. It has been shown that when MS subjects must perform a demanding cognitive
task while walking, their walking performance declines [24]. We hypothesized that the same
would be true of the ability of MS subjects to remain still in the scanner. Moreover, previous
fMRI research investigating differences in brain activation between MS and healthy controls
(HCs) has shown that cognitive status moderates group differences. For example
Chiaravalloti et al [25] have shown that the activation in high-functioning MS subjects was
similar to HCs, while a lower-functioning cohort of MS subjects showed a markedly
different pattern. Therefore, we also hypothesized that the cognitive status of the MS
subjects would moderate the effect of task difficulty on movement in the scanner. In
Experiment 1 we tested these hypotheses by 1) comparing the extent of maximum motion
(both in angular and translational deviation) across three levels of task difficulty (0-, 1-, 2-
back) in a group of MS subjects, and 2) by comparing the extent of maximum motion across
task difficulty in two groups of MS subjects (high vs. low cognitive ability). In Experiment
2, we examined the effect of task difficulty on maximum motion in a group of healthy
control (HC) subjects.

Methods
Subjects

There were two groups of subjects: MS and HC. The MS sample was comprised of 34 right-
handed persons (29 women) with MS [26] recruited from local MS clinics and the North
Jersey chapter of the National MS Society. Subjects were recruited if they (a) did not have
an exacerbation of their MS during the last four weeks, (b) were not currently taking
corticosteroid medication, (c) were not currently under the care of a physician for any other
major medical condition, and (d) had no history of serious psychiatric illness or other
neurologic disease other than MS. English was the primary language of all subjects. Mean
age was 44.3 (SD=7.6) years with 15.9 (SD=2.4) years of education. Mean disease duration
was 10.1 (SD=6.8) years, and MS course included relapsing-remitting (n = 26), secondary
progressive (n = 6) and primary progressive (n = 2).

MS disease severity was mild-to-moderate, as indicated by a mean Hauser Ambulation
Index (AI; [27]) score of 2.2 ± 2.3 (range: 0 to 8). The AI is the ambulation component of
the Multiple Sclerosis Functional Composite (MSFC) [28], and is highly correlated with
other clinical markers of MS disease progression (e.g., correlation of .88 with EDSS; [29]).
In terms of the other components of the MSFC, the mean Paced Auditory Serial Addition
Task (PASAT) [30] z-score was −.52 (1.1) and the mean 9-Hole Peg Test [31] z-score was .
19 (.56).
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The HC sample was comprised of 20 healthy right-handed persons (13 women) recruited
from the community. These subjects had no history of major medical or psychiatric illness,
and English was the primary language of all subjects. Mean age was 30.1 (SD=6.5) years
with 17.2 (SD=1.2) years of education.

The institutional review boards at UMDNJ and the Kessler Foundation Research Center
granted approval for the study. Informed consent was obtained from all subjects prior to
participation.

Apparatus and tasks
During each series, one of three levels of the visual N-Back working memory task was run:
0-Back (lowest demand); 1-Back (intermediate demand); 2-Back (highest demand). The
three tasks were presented in a counterbalanced block design. Each series began with a 28
sec block of rest followed by three repetitions of task (32 sec of 0-Back, 1-Back, or 2-Back,
in separate series) and rest (32 sec). During the 0-Back task, participants viewed a series of
letters, presented one at a time, and pressed a button when a target letter (e.g. ‘K’) was
presented. During the 1-Back task, participants viewed a different (randomly generated)
series of letters, and responded when any letter was the same as the letter immediately
preceding it in the series (e.g. ‘R C K K’). During the 2-Back task, participants responded
when any letter was the same as the letter presented two letters prior in the series (e.g. ‘R K
C K’). Stimuli were presented with the E-Prime presentation software, which also recorded
participants’ behavioral performance (accuracy and reaction time [RT]).

Imaging data and analyses
The fMRI blood oxygen level dependent (BOLD) signal was acquired in a 3T Siemens
Allegra MRI scanner. Three functional acquisition series were collected, each of 115 images
(echo time = 30 ms; repetition time = 2000 ms; field of view = 22 cm; flip angle = 80°; slice
thickness = 4 mm, matrix = 64×64, in-plane resolution = 3.438 × 3.438 mm). The first 5
images of each series were discarded, allowing magnetization to reach a steady state. A
high-resolution magnetization prepared rapid gradient echo (MPRAGE) image was also
acquired (TE= 4.38 ms; TR=2000 ms, FOV = 220 mm; flip angle = 8°; slice thickness = 1
mm, NEX=1, matrix=256 × 256, in-plane resolution=0.859 × 0.859 mm), and was used to
normalize the functional data into standard space.

For each subject, the fMRI data were realigned to correct for subject motion using the
3dvolreg program in the AFNI suite of imaging analysis tools. Fourier interpolation was
used, and all images for each subject were realigned to the 10th image in the 0-Back time-
series. The extent to which each image had to be moved in order for it to be in the same
spatial location as the canonical image was recorded. No additional options were used in the
realignment. The data were then smoothed (8 mm3 FWHM), scaled, deconvolved, and
warped into standard space. The deconvolution used a delayed boxcar function to model the
haemodynamic response. The model included regressors for each task (0-Back, 1-Back, 2-
Back), as well as 9 regressors of no interest: the six movement parameters and three
polynomial regressors. The six movement parameters were the shifts in each of the
orthogonal directions (right/left, anterior/posterior, superior/inferior) and angular rotations in
each of the orthogonal directions (roll, pitch, yaw). The three polynomial regressors
accounted for low-frequency signal drift during the scan. The signal to noise ratio (SNR)
was calculated by dividing the estimate of baseline activity for each time-series (the signal)
by the standard deviation of the residual error (the variance in the data not accounted for by
the model used in the deconvolution). The voxels in the resulting image were averaged to
arrive at an estimate of the SNR for each subject. The steps outlined above were done for all
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subjects, regardless of whether they had moved an excessive amount or not. Of the 34 MS
subjects, 12 moved more than 1° (movers) while the rest moved less than this (non-movers).

Results
Behavior in the MS group

In order to assess cognitive functioning, the symbol-digit modalities test (SDMT) and the
paced auditory serial addition task (PASAT) were administered from the Minimal
Assessment of Cognitive Functioning in MS [MACFIMS; 32]. Each subject’s score on these
tests was converted into a z-score based on published normative data [33], and the mean of
these z-scores was used as a summary measure of information processing efficiency [for a
similar approach, see 34]. For the present MS sample, the z-score for this summary measure
of processing speed was −0.72 (SD=1.07), which corresponds to the 24th percentile (the z-
score for the SDMT was −1.03 (SD=1.52), the z-score for the PASAT was −0.41
(SD=0.84)). Consistent with previous research [for review, 35], information processing
efficiency in the current sample of persons with MS was below average.

Motion in the MS group
The motion parameters (angle and shift) were analyzed with repeated measures, one-way
ANOVAs. The factor was task difficulty (0back, 1back, 2back). For angular motion, there
was a significant linear effect of task difficulty (F(1,33) = 12.59, p = 0.001, η2 = 0.28). The
extent of angular motion increased from 0.65° in the 0back task, to 0.96° in the 1back task,
to 1.31° in the 2back task. Pairwise comparisons showed that all three conditions reliably
differed from one another (ps < 0.05). For translational motion (shift), there was also a
significant linear effect of task difficulty (F(1,33) = 20.96, p < 0.0001, η2 = 0.39). As in the
case of angular motion, translational motion increased from 0.89 mm in the 0back task, to
1.27 mm in the 1back task, to 1.47 mm in the 2back task. Pairwise comparisons showed that
the extent of translational motion in the 0back task was reliably less than in the 1back or
2back tasks (ps < 0.005), but the difference between 1back and 2back only trended towards
significance (p = 0.10).

Motion as a function of cognitive impairment in the MS group
In order to assess the effect of cognitive ability on motion in the scanner, the MS group was
divided into two groups, based on a median split, using the information processing
efficiency z-score: those with higher information processing efficiency (17 subjects; mean z
= 0.16 (SD = 0.60)) and those with lower efficiency (17 subjects; mean z = −1.60 (SD =
0.59)). We will refer to these groups as those with higher cognitive abilities (cog+) and those
with lower cognitive abilities (cog−). The two groups did not differ on age or education, but
they were reliably different on their information processing efficiency score (t(32) = −8.72,
p < 0.0001; see Table 1). Moreover, the groups did not differ in disease duration, and the
distribution of disease type in the two groups was exactly equal, with 13 relapsing-remitting,
1 primary progressive and 3 secondary progressive in each group.

The motion parameters (angle and shift) were analyzed with mixed repeated measures
ANOVAs. The within-subjects factor was task difficulty (0back, 1back, 2back) and the
between subjects factor was group (cog− vs. cog+). For angular motion, the interaction
between task difficulty and group was significant (F(1,32) = 6.90, p = 0.01, η2 = 0.18). This
can be seen in Figure 1. The angular motion for the cog− group increased dramatically as
task difficulty increased: 0.71°, 1.32°, 1.82° for 0back, 1back and 2back, respectively. The
effect of task difficulty on motion was considerably less for the cog+ group: 0.59°, 0.60°,
0.80° for 0back, 1back and 2back, respectively. For translational motion (shift), a similar
pattern emerged (see Figure 1): there was a reliable interaction between task difficulty and
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group (F(1,32) = 3.99, p = 0.05, η2 = 0.11). Both groups moved approximately the same
amount in the easiest condition (0back; 0.91 vs. 0.86 mm for the cog− and cog+ groups
respectively), but as the task difficulty increased, the cog− group moved more than the cog+
group: 1.38 vs. 1.16 in the 1back task, and 1.74 vs. 1.20 mm in the 2back task, for the cog−
and cog+ groups, respectively.

Correlations between motion and cognitive impairment in the MS group
To assess this relationship without dichotomizing the MS group, we ran partial correlations
between cognitive status and the six movement parameters, controlling for brain atrophy.
There was no relationship between cognitive status and angular movement during low
cognitive demands (0-Back, rp = −.10, p > .5), but worse cognitive status was associated
with move angular movement when cognitive demands increased during the 1-Back (rp = −.
43, p = .01) and 2-Back (rp = −.48, p = .005). That is, as expected, the inverse relationship
between cognitive status and angular movement increased as cognitive task demands
increased. A similar relationship between cognitive status and shift was not observed (rps = .
00, .02, −.20, all ps > .10), perhaps due to lesser variance in shift relative to angular
movement.

Correlations between motion and signal-to-noise ratio in the MS group
For each level of task difficulty (0back, 1back, 2back), the two motion parameters (angle
and shift) were correlated with the signal-to-noise ratio (SNR) from the appropriate run
(0back, 1back, 2back). As Figure 2 and Table 2 show, there were significant negative
correlations between SNR and both angular and translational (shift) movement. This was
true for the MS sample as a whole, and also for each group, though the relationship was
stronger for the cog+ group. The SNR did not differ between the cog+ and cog− groups at
any level of task difficulty, and the stronger relationship in the cog+ group was due to more
variance in the SNR in that group at every level of task difficulty (standard deviations for
the cog+ and cog− groups at each level of task difficulty were as follows: 0-back: 56.56 vs.
45.64; 1- back: 56.61 vs. 45.65; 2-back: 57.06 vs. 44.85). As expected, the negative
correlations show that as subjects moved more, the ratio of signal to noise in their data
decreased.

fMRI activation in the MS group
In order to better understand the effect of motion on our data, we looked at the functional
data, and because the 2-back condition was the condition most severely affected, we used
this condition to guide our subsequent analyses. A t-test was conducted, comparing those
who moved 1° in angular motion or more (Movers) to those who moved less than 1° (Non-
movers) during the 2-back task. The results showed a single area where the Movers group
showed greater activity than the non-movers group: Left middle frontal gyrus, X Y Z = −48
22 34, at p < 0.01 (corrected for multiple comparisons with clustering threshold of 10
contiguous voxels in the original acquisition space).

Random combinatorial analysis in the MS group
The analysis of the beta weights (above) showed there to be a difference between the
Movers and the Non-movers. However, this difference could be due to several factors (e.g.,
lower signal to noise in the Movers group because of motion, less activity in the Movers
group because of lower cognitive status, less activity in the Movers group simply because of
random chance). We therefore conducted a combinatorial analysis in which we first
extracted the average beta weight from a sphere (radius = 10 mm), placed over the frontal
area that distinguished to two groups. This was done for each subject, in each condition (0-
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back, 1-back, 2-back). The average signal (beta weight) for 1,000,000 different (random)
combinations of 12 subjects was then computed and stored.

We reasoned that if the difference in the beta weights between these the 12 Movers and the
22 Non-movers was due simply to chance, then there should be no systematic relationship
between the number of Movers in the sub-sample of 12 and the average signal. That is,
while it was to be expected that the average signal from the 12 Movers would be relatively
low, if this were due simply to chance, then one would expect sub-samples of 12 of the Non-
movers to have equally low average signal. However, if the difference were due to either
motion or to cognitive status, then having more Movers in the sample would be expected to
systematically result in lower average signal. In this case, if the 12 were comprised
completely of Movers, the signal should be poor; if all 12 were drawn from the remaining 22
subjects (the Non-movers), the signal should be good; and for combinations of subjects that
were comprised of a mixture of Movers and Non-movers, the signal should be somewhere
between these two extremes. While having a propensity to move and having a lower
cognitive status are confounded in the 2-back condition, they are not in the 0-back and 1-
back conditions: it was only in the 2-back that those with lower cognitive status moved an
unacceptable amount. We therefore performed the combinatorial analysis on all 3 levels of
the n-back data. The more Movers there were in the sample of 12, the lower we expected the
average signal to be because those in the Movers group had lower cognitive status.
However, we expected the lower signal to noise associated with movement itself to be most
evident in the 2-back condition.

The results can be seen in Figure 3. For all three conditions, there was a strong relationship
between the proportion of Movers and the signal: the more Movers there were in the sample,
the lower the signal. Moreover, this effect appears to be more pronounced in the 2-back
condition than for either the 0-back or the 1-back conditions. These observations were
subjected to formal analysis with a multiple regression. The factors were Mover-proportion
(with 12 levels) and N-back (0-back, 1-back, 2-back). The main effect of both Mover-
proportion and N-back were reliable, as was the interaction of their slopes (t=−81.81,
p<0.0001). When only 0-back and 1-back were included in the analysis, the interaction was
no longer significant (t=−1.63, p=0.10), though both the main effects were highly
significant: Mover-proportion (t=−274.88, p<0.0001), N-back (t=298.37, p<0.0001). When
only 1-back and 2-back were included in the analysis, the interaction was once again highly
reliable (t=−75.95, p<0.0001). This was because the slope of the regression line for the data
from the 2-back was larger (more negative) than for the 1-back.

The effect of excluding Movers from the sample
Given the relationship between cognitive status and movement reported above, we predicted
that exclusion of MS subjects with greater movement (Movers) would bias the sample
towards MS subjects with higher cognitive ability. That is, subjects with cognitive
impairment would be underrepresented. Investigating this directly, we found that MS
subjects with greater movement (Movers: subjects with angular movement > 1° on 2-Back,
N = 12) had worse cognitive status than Non-movers (t(32) = 1.913, p = .032, one-tailed).
Of note, the effect size of this relationship was medium-to-large (d = 0.71). We also
investigated this using a Chi-Square analysis in which we tested whether the proportion of
patients with and without cognitive impairment would differ after excluding Movers from
the sample. Our total sample was equally divided between patients with and without
cognitive impairment (Ns = 17); however, after excluding patients with excessive
movement, there was a significantly greater proportion of cognitively intact (N = 14, 64%)
than cognitively impaired (N = 8, 36%) patients in the remaining sample (χ2 = 4.64, p = .
031). That is, disproportionately more patients with cognitive impairment would be
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excluded from final fMRI analyses based on excessive movement, thereby biasing the
sample away from cognitive impairment.

Analysis of motion in the HC group
The motion parameters (angle and shift) were analyzed with repeated measures, one-way
ANOVAs. The factor was task difficulty (0back, 1back, 2back). For angular motion, there
was a significant linear effect of task difficulty (F(1,19) = 9.28, p < 0.01, η2 = 0.33). The
extent of angular motion increased from 0.62° in the 0back task, to 0.82° in the 1back task,
to 0.89° in the 2back task. For translational motion (shift), there was also a linear effect of
task difficulty (F(1,19) = 5.06, p < 0.04, η2 = 0.21). The translational motion (shift) was 1.0
mm, 0.80 mm, and 1.29 mm in the 0back, 1back and 2back tasks, respectively.

Correlations between motion and signal-to-noise ratio in the HC group
As for the MS group, correlations were calculated between the two motion parameters
(angle and shift) and SNR, for each level of task difficulty (0back, 1back, 2back). The
results, shown in Table 2 and Figure 4, were similar to the correlations in the MS group,
though weaker. In the HC group, there were reliable negative correlations between
translational motion (shift) and SNR for each of the N-Back conditions. However, for
angular motion, the relationship only trended toward conventional levels of significance. As
in the MS group, the negative correlations showed that the more subjects moved, the less
signal there was in their data, relative to the noise.

Discussion
This study confirmed that in a clinical sample, such as MS, subjects do indeed move more as
task difficulty increases. This shows that subject movement is not a random variable, but
that it is related to the experimental manipulation. This is somewhat concerning, particularly
if a strict cutoff of 1–2 mm (less than 1° of angular motion and less than one voxel (~3 mm))
is used to determine which data to retain and which to discard. As a group, the MS sample
moved as much as 1.31° (corresponding to approximately 3.43 mm), and 1.47 mm (in the
2back task).

More concerning are the results that emerged when the MS sample was divided into cog−
and cog+ groups. In those analyses, it emerged that the cog− group moved far more than the
cog+ group. This was true for both angular and translational (shift) motion, but was far more
problematic for angular motion. In the 2back task, the cog− group moved nearly 2° (1.82°,
or approximately 4.76 mm), which is far more than can be reliably corrected for with current
image processing software. If these subjects were simply discarded, the sample would be
strongly biased towards individuals with MS who have higher cognitive abilities. This
would likely result in an underestimation of the effects of MS on brain function.

One way to avoid the introduction of this sampling bias would be to correct for the motion
as much as possible during image-processing, and then to include the motion parameters in
the deconvolution as regressors of no interest. This would minimize the effects of motion on
the data (though it would by no means remove them entirely), and might allow some of the
subjects who would otherwise be discarded to remain in the sample. However, while this
approach works well for event-related designs, it appears to decrease the sensitivity of the
General Linear Model when block designs are used [36]. Moreover, the analyses of the SNR
in the data presented here show this solution to be flawed as well: the more subjects move,
the lower their SNR. This means that the results from subjects who moved very little are
stronger than the results from subjects who moved more. This has the unfortunate result that
the group-level statistics will be skewed towards the subjects who moved less: the cog+
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subjects. Thus, even if the data from subjects with a large amount of motion are not simply
discarded, a bias remains in the group-level data because of the higher SNR in the data from
the subjects who moved less.

The random combinatorial analysis demonstrates the effect of including subjects with
excessive motion in the sample. In the 2-back condition, 12 subjects moved more than 1°.
As the data from these 12 movers was incrementally added to a subsample of 12 subjects,
there was a systematic decrease in the strength of the signal. This was true for 0-back and 1-
back, but was particularly marked for the 2-back condition. Because the 12 subjects who
moved more than 1° in the 2-back condition (movers) were also all in the cog− group,
adding them to the sample would be expected to result in decreased signal for two reasons:
the signal from the cog− group might be expected to be less than that of the cog+ group, and
the SNR would be expected to be less in this group because these 12 subjects moved.
However, the difference in SNR should be worst in the 2-back condition, since that is where
these subjects moved the most.

These data tell an important cautionary tale in relation to fMRI studies of clinical
populations such as MS. However, a great many fMRI studies are conducted to better
understand brain function in healthy populations. We therefore also assessed whether the
motion parameters increase with task difficulty in healthy controls.

As with the MS sample, the HC group showed increasing motion as the task increased in
difficulty. However, unlike the MS group, the mean amount of motion in the HC group
never exceeded 1° of angular motion or one voxel of translational motion (shift). This is
reassuring for those who investigate cognition in healthy samples. However, the fact that
SNR was nevertheless correlated with motion (albeit only for translational motion) is
concerning. Just as with the MS sample, this means that the results from those who move
more will be weaker than the results from those who move less, and that any group-level
statistics will over-represent those subjects who moved less in the scanner.

The purpose of these experiments was to empirically assess the concern that subject motion
(in the scanner) is not a random variable, a concern that is particularly important in clinical
samples [e.g., 16, 17]. The results suggest that motion is indeed a problem in clinical
samples (in this case, MS), particularly in cog− group. If subjects with excessive motion
were simply removed from the group-level analyses, the excluded subjects would
overwhelmingly be the cognitively cogsubjects. This would introduce sampling bias into the
study because the subjects remaining in the group-level analyses would be biased against
cognitive impairment. Thus, any results would not represent MS subjects as a whole, but
would rather represent MS subjects who had higher cognitive abilities. This would almost
certainly lead to underestimations of the effect of MS on brain activity.

If discarding subjects with excessive motion results in sampling bias, would it be better to
leave these subjects in the group-level analyses (after attempting to mitigate the motion
artifact by, for example, including the motion parameters in the deconvolution as regressors
of no interest)? Unfortunately, there can be no simple answer to this question. Certainly,
including data from subjects with significant motion artifact will not benefit the group-level
analyses: in avoiding sampling bias, spurious activation patterns (associated with motion
artifact) would be included in the analyses. Moreover, even if only subjects with no obvious
motion artifact are included in the group-level analyses, the signal-to-noise ratio (SNR) will
be less from those who moved more (i.e., the group with low cognitive ability). Thus, it is
very difficult (though not impossible: see below) to escape from sampling biases in the data,
using current techniques.
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Relationship to prior research
While we found clear evidence of greater motion in our subjects with MS than in our HC
subjects, others have reported no such difference in other clinical populations [e.g., 23].
While this might have to do with a difference in disease type (MS vs. schizophrenia), it is
more likely due to the fact that the cognition of the individuals with schizophrenia used in
the Yoo et al [23] study was relatively intact. Although their performance on working
memory tasks was worse than the HCs, their IQ was very high (mean = 111.5), and the
estimate of disease severity was very low (brief psychiatric rating scale total score = 25.5).
Inasmuch as movement became a larger problem in our sample as cognitive impairment
increased, one might not expect the head motion in the sample of individuals with
schizophrenia studied by Yoo et al. to be that much more than their healthy counterparts.
Moreover, because only 11 subjects were included in the Yoo et al study, it is possible that
the null effect they report is due, at least in part, to a lack of power.

A rather different aspect of prior research is that studies investigating functional activity in
MS relative to HCs often report ‘more’ activity in the MS group. This increased activity is
generally two-fold: there is an increase in the intensity of activity in the same brain areas
that HCs use to perform a given task, and the extent of the active areas is greater in the MS
group [e.g., 25, 37]. The results presented here suggest that this frequent finding in the MS
literature may represent an under-estimate of the increase in activity seen in MS. This is
because movement is correlated with decreased SNR, which means that the more people
move, the less signal there is to detect (relative to the noise). Inasmuch as individuals with
MS move more than HCs, it is more difficult to detect activity in MS. Despite this, we
consistently see increased activity in MS cohorts (relative to HCs). Therefore, it seems likely
that if individuals with MS moved as little as HCs, the increase in activity seen in MS would
be even larger than what is reported in the literature. There is an important caveat to this line
of reasoning. In many studies that investigate increasing task difficulty in MS relative to
HC, there are large differences when the task is relatively easy, but the differences are less
apparent as the task becomes more difficult [for a good example using the N-back task, see
37]. The results of the current paper suggest one possible reason for this perplexing lack of
difference at higher levels of task difficulty: increased motion (and therefore decreased
SNR) in the MS group as difficulty increases. As the amount of motion in the MS group
increases, the concomitant decrease in SNR would eventually begin to make even robust
functional activity difficult to detect. Thus, if the results presented here are present in other
MS samples (as seems likely) the lack of differences in activity as task difficulty increases
may be due, at least in part, to progressive increases in head motion and consequent
decreases in SNR in the MS group.

Another frequent observation, when functional activation in MS samples are compared to
HCs, is that the MS group shows activation in areas where the HC group shows no reliable
activation [e.g., 37]. The contribution of motion to this finding is more nuanced. On the one
hand, decreased SNR may play a smaller role here: if there is no reliable activation in these
regions in the HC group, a smaller increase in the MS group would be detectable (even if
this increase was lessened by poorer SNR). On the other hand, motion artifact may result in
spurious activation in the MS group, thus producing artifactual ‘activation’ . Unfortunately,
in many studies it is difficult to determine which cause (real activation or motion artifact)
produces this type of activation pattern.

Functional MRI research has traditionally considered head motion a source of random error.
This would suggest that, at worst, motion reduces the SNR and, therefore, reduces statistical
power. In fact, as shown by the current study, head movement may actually be a source of
systematic error, which is far more troubling. That is, if clinical samples move more than
healthy samples, and impaired patients move more than intact patients, then SNR and
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statistical power may also vary between groups and within groups as a function of
impairment. One current goal of clinical fMRI research is to identify neurophysiologic
biomarkers of neurologic disease and behavioral/cognitive impairment. For instance, several
studies have demonstrated that functional connectivity within the default network differs
between healthy adults and persons with Alzheimer disease [e.g., 38, 39]. Other studies have
correlated continuous measures of behavioral/cognitive impairment with functional
connectivity in clinical samples [e.g., 40]. Given that movement impacts SNR and statistical
power within functional connectivity analyses in general [2, 3, 41] and default network
analyses in particular [3], it is at least possible that group related differences are due in
whole or in part to head movement rather than differences in neurophysiology. However,
this conclusion is far from certain: the data presented in the current paper show that MS
subjects move more as the task becomes increasingly difficult while much of the functional
connectivity literature is based on resting state scans which, of course, involve no overt task.
Therefore, it may be that clinical samples do not move more during rest than HCs.
Nevertheless, the field of neuroimaging must consider head movement within the MR
scanner as a possible source of systematic error, and seek ways to ameliorate this confound
in the acquisition, analysis, and interpretation of fMRI data.

Why do subjects with cognitive impairment move more in the scanner?
Although it is not clear why task demands and cognitive impairment are associated with
greater movement, we have considered one possible explanation. Persons with MS typically
require greater cerebral resources (e.g., prefrontal activation) to perform the same cognitive
tasks as healthy controls [e.g., 37]. This is especially true for MS patients with cognitive
impairment [25]. Experimental fMRI paradigms typically require subjects to perform two
tasks simultaneously: (a) perform the cognitive task of interest (e.g., n-back), and (b) remain
still. As demands of the cognitive task increase (2-back), there may be fewer cerebral
resources available to maintain the second task (remain still). Healthy persons and MS
patients with higher cognitive abilities may process the cognitive task with enough
efficiency that cerebral resources remain available for remaining still; however, cerebral
inefficiency in MS patients with lower cognitive ability may lead to depleted cerebral
resources, resulting in neglect of the second task (remain still).

Another factor which may contribute to increased movement in the MS population is
fatigue. Individuals with MS frequently report high levels of both physical and cognitive
fatigue [42], and self-reported fatigue levels often increase during a difficult cognitive task
[43]. Although it was not directly studied in the current study, increased fatigue throughout
the course of the fMRI paradigm likely leads to increased head movement, which will
significantly impact the BOLD signal.

Going forward
Because we cannot fully correct for subject motion, we are left having to decide between
two unpalatable alternatives: 1) exclude subjects with excessive motion and accept the
resulting bias in our sample, 2) include as many subjects as possible, and accept the fact that
the subjects who moved more will contribute less to the group-level results. In practice, the
latter choice is preferable, but only because the former choice is unacceptable. One insidious
problem with the latter choice has to do with the fact that the SNR is almost never reported
in fMRI studies. Therefore, when two groups are compared (e.g., individuals with high vs.
low cognitive ability), it is almost impossible to tell how much of the difference between the
groups is due to differences in SNR. This problem is less concerning in studies involving
only HCs, but it would be wise for studies involving clinical samples to include analyses of
SNR in their results.
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A better solution would be to prospectively co-register all of the images in the fMRI time-
series, adjusting the scanner to track changes in the position of the brain as they occur.
Several methods have been devised to do this, ranging the use of three external markers
placed on the participant’s head [7, 8], to techniques that calculate rigid-body
transformations of the EPI image, similar to algorithms used in retrospective motion
correction [9, 10], to techniques that measure differences in k-space [6]. These techniques
are very promising and may obviate the need to correct for motion retrospectively by
ensuring that the time-series of EPI images is coregistered at the time of acquisition. This
would minimize signal distortions and changes in SNR due to motion, and would thus allow
clinical populations to be scanned without the concern that motion artifact will cause
differences in signal strength between groups. Indeed, some of these methods have recently
become commercially available (e.g., PACE, available on Siemens scanners).

Another solution is to carefully monitor motion parameters from every subject who
participates in the study (an approach that should be followed in any case), and to ensure
that sufficient numbers of subjects with low cognitive ability are included. From the scatter
plots in our analyses, it can be seen there are some subjects with low cognitive ability who
were able to remain still. One consequence of this observation is that, despite the fact that
many subjects with impaired cognition will move too much to be included, it is possible to
continue to sufficiently power a study by continuing to recruit such subjects until a sufficient
number who are able to remain still have been found. This is a rather costly option, since it
entails the collection of many datasets that will not ultimately be usable, but it is perhaps the
best solution for studies of clinical samples.
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Figure 1.
Angular (upper panel) and translational motion (lower panel) in the MS sample, divided into
cog− (black squares) and cog+ subjects (gray circles). For angular motion, the cog− group
differed between 0-back and 1-back (d=0.64, p<0.05) and between 0-back and 2-back
(d=0.096, p<0.01); the cog+ group differed between 0-back and 2-back only (d=0.66,
p<0.05). For translational motion, the cog− group differed between 0-back and 1-back
(d=0.80, p<0.01), 1-back and 2-back (d=0.61, p<0.05), and between 0-back and 2-back
(d=1.20, p<0.001); the cog+ group differed between 0-back and 2-back only (d=0.54,
p<0.05).
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Figure 2.
Scatterplots showing signal-to-noise ratio (SNR) in the MS groups. The panels on the left
show SNR vs. angular motion in the 0-Back task (upper left), 1-Back task (middle-left) and
2-back task (lower-left). The panels on the right show SNR vs. translational (shift) motion in
each of the levels of the task (0-, 1-, 2- Back in the upper, middle, and lower panels
respectively).
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Figure 3.
The average activity in an ROI placed in the middle frontal gyrus, as a function of of task
load (0-back, 1-back, 2-back) and the number of subjects who moved more than 1° during
the 2-back condition.
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Figure 4.
Scatterplots showing signal-to-noise ratio (SNR) in the HC group. The panels on the left
show SNR vs. angular motion in the 0-Back task (upper left), 1-Back task (middle-left) and
2-back task (lower-left). The panels on the right show SNR vs. translational (shift) motion in
each of the levels of the task (0-, 1-, 2- Back in the upper, middle, and lower panels
respectively).
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Table 1

The demographics of the MS sample.

Age
(years)

Education
(years)

Disease Duration
(years)

Information Proc.
Efficiency (z-score)

MS Cog+ 45.3 ± 7.8 16.5 ± 2.1   9.1 ± 7.5   0.2 ± 0.6

MS Cog− 43.3 ± 7.5 15.2 ± 2.6 10.2 ± 6.2 −1.6 ± 0.6

Hum Brain Mapp. Author manuscript; available in PMC 2015 January 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wylie et al. Page 20

Ta
bl

e 
2

T
he

 c
or

re
la

tio
n 

be
tw

ee
n 

th
e 

si
gn

al
-t

o-
no

is
e 

ra
tio

 a
nd

 th
e 

m
ov

em
en

t p
ar

am
et

er
s 

(a
ng

le
 a

nd
 s

hi
ft

) 
fo

r 
ea

ch
 le

ve
l o

f 
ta

sk
 d

if
fi

cu
lty

 (
0b

ac
k,

 1
ba

ck
, 2

ba
ck

).

0-
B

ac
k

1-
B

ac
k

2-
B

ac
k

A
ng

le
Sh

if
t

A
ng

le
Sh

if
t

A
ng

le
Sh

if
t

M
S

C
og

+
−

0.
80

**
−

0.
74

**
−

0.
74

**
−

0.
74

**
−

0.
51

*
−

0.
75

**

C
og

−
−

0.
67

**
−

0.
57

*
−

0.
52

*
−

0.
66

**
−

0.
56

*
−

0.
51

*

A
ll

−
0.

70
**

−
0.

64
**

−
0.

40
*

−
0.

70
**

−
0.

42
*

−
0.

55
**

H
C

A
ll

−
0.

42
‡

−
0.

49
*

−
0.

43
‡

−
0.

46
*

−
0.

35
−

0.
70

*

St
at

is
tic

al
 s

ig
ni

fi
ca

nc
e 

is
 d

en
ot

ed
 a

s 
fo

llo
w

s:

* de
no

te
s 

p 
<

0.
05

;

**
de

no
te

s 
p 

<
 0

.0
1;

‡ de
no

te
s 

p 
<

 0
.1

 (
2-

ta
ile

d 
te

st
s 

in
 a

ll 
ca

se
s)

.

Hum Brain Mapp. Author manuscript; available in PMC 2015 January 01.


